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ON A FOUR-GENERATOR COXETER GROUP
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Abstract. We study one of the 4-generator Coxeter groups and show that it is SQ-universal
(SQU). We also study some other properties of the group.
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1. Introduction. We consider the Coxeter group P given by the presentation

P = 〈x1,x2,x3,x4 | x21 = x22 = x23 = x24 =
(
x1x2

)3

= (x2x3
)3 = (x1x3

)3 = (x1,x4
)3 = (x3x4

)3 = (x2x3
)3 = e〉.

(1.1)

The Coxeter graph of this group is clearly just a combinatorial tetrahedron:
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We observe that each face is the graph of the Euclidean triangle group�(3,3,3)which
is an affine Weyl group and this contains a nilpotent subgroup of finite index. The
group P is infinite and it will be interesting to see its largeness by answering whether
it is SQ-universal or not.

2. SQ-universality. We let S3 be the symmetric group of degree 3. Thus

S3 =
〈
y1,y2 |y21 =y22 =

(
y1y2

)3 = e〉. (2.1)

We consider the map θ : P → S3 defined by

θ
(
x1
)=y1, θ

(
x2
)=y2, θ

(
x3
)= θ(x4

)=y1y2y1. (2.2)

It is easy to see that θ is an epimorphism and P/kerθ � S3. A Schreier transver-
sal for S3 in P is {e,x1,x2,x1x2,x2x1,x1x2x1}. A straightforward application of the

http://ijmms.hindawi.com
http://www.hindawi.com


822 MUHAMMAD A. ALBAR

Reidemeister-Schreier process gives the following presentation for kerθ:

kerθ = 〈a,b,c,d | (ad)3 = (bc)3 = (abcd)3 = e〉. (2.3)

Letting a = d−1 and b = c−1, we see that kerθ is mapped homomorphically onto the
free group of rank 2, F2. Hence kerθ is SQU. Since the index of kerθ in P is finite (6),
we get that P is also SQU [4].

3. The growth series. Let (P,X) be a Coxeter system and let Y ⊆ X. We denote
the subgroup of P , generated by Y , by PY . Then (WY ,Y) is also a Coxeter system.
In Bourbaki [2, Section 1 of Chapter 4], Exercise 26 gives the following formula for
computing the growth series of P (word growth in the sense of Milner and Gromov):

∑
Y⊆x

(−1)|y|
PY (t)

=



tm

P(t)
if P is finite,

0 if P is infinite.
(3.1)

In the formula, G(t) is the growth series of G,m is the length of the unique element
of P of maximal length.
We use (3.1) to compute P(t). We compute P(t) in steps corresponding to the car-

dinality of Y :
|Y | = 0 is the trivial subgroup with growth series γ0 = 1.
|Y | = 1 four cyclic subgroups of order 2 with growth series γ1 = 1+t.
|Y | = 2 six dihedral subgroups of order 6 with growth series γ2 = (1+t)(1+t+t2).
|Y | = 3 four affine subgroups with growth series given by 1/γ0 − 3/γ1 + 3/γ2 −

1/γ3 = 0, that is, γ3 = (1+t+t2)/(1−t)2.
|Y | = 4 the whole group with growth γ4(t) = P(t) given by 1/γ0 − 4/γ1 + 6/γ2 −

4/γ3+1/γ4 = 0, that is, γ4 = (1+t)(1+t+t2)/(1−t)(1−t−3t2).
The growth coefficients {cn} are given by the linear recurrence c0 = 1, c1 = 4, c2 =

12, c3 = 30, cn = 2cn−1+2cn−2−3cn−3, n ≥ 4 (see [3]). We observe from the growth
series γ4 that zeros of the denominator are not on the unit circle. This implies that P
has no nilpotent subgroup of finite index—in accordance with the fact that P is SQU.
It is possible to show that the group P and the Geisking group G = 〈x,y | x2y2 =

xy〉 are isometric and hence γ4 is also the growth series of G (see [3]). In [1], it ap-
pears that the two Coxeter groups Tn and Sn are also isometric and so have the same
growth series.

4. The commutator subgroup. Using the Reidemeister-Schreier process, we get the
following presentation for P ′:

P ′ = 〈x,y,z | x3 =y3 = z3 = (xy)3 = (xz)3 = (yz−1)3 = e〉. (4.1)

We use P ′ to show that P is SQU in a different method. Let K be the normal closure
of the elements xy−1,xz−1,yz−1 in P ′. The group K has index 3 in P ′. Using the
Reidemeister-Schreier process, we get the following presentation for K:

K = 〈u1,u2,u3,v1,v2,v3 | v21 = v22 = v23 =u1u2u3
=u1u3u2 = v1v2v3 =u1v2u3v1u2u3 = e

〉
.

(4.2)
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Letting u3 = v3 = e, we see that K is mapped homomorphically onto Z ∗Z3. Since
Z∗Z3 is SQU (see [4]), therefore K is SQU. Since K is of finite index in P ′ and P ′ is of
finite index in P , we get that P is SQU.
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