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1. Introduction. It is known that the equilibrium states of Hamiltonian models of
interacting particle systems correspond to states with extremal entropic properties.
The transition to equilibrium occurs through the metastable states, related to prob-
abilistic limit results, such as the law of large numbers, the central limit theorem,
large deviations. The principle of maximum entropy is well known and widely used
in the construction of mathematical models. According to it, under the uncertainty of
the choice of a specific type of distribution to be used as a model of a physical phe-
nomenon, maximum entropy distributions (and/or their mixtures) should be tested
first. Conversely, if a distribution fits a real phenomenon well, its relationship with
maximum entropy distributions should be investigated.
Recall that for a discrete random variable X taking values x1, . . . ,xn with probabil-

ities p1, . . . ,pn, Shannon’s entropy is H(X)=−
∑n

k=1pk logpk. For an absolutely con-
tinuous random variable X with Lebesgue density p(x), Shannon’s entropy is given
by H(X)=−Ep(X) logp(X).
The probability distributions corresponding to the extremal entropy cases are the

building blocks of infinitely divisible distributions, as proved by Goldman [4]. Namely,
the normal and exponential/Poisson distributions maximize Shannon’s entropy when
certain moments are prescribed.

Exponential distributions have maximum entropy among all distributions concen-
trated on the positive half-line and having finite expectations (if Y1 is a random vari-
able with exponential distribution of parameter λ > 0 (EY1 = λ), then for all X random
variables such that P(X ≤ 0)= 1 and EX = λ, one has H(X)≤H(Y1)).

Normal distributions havemaximum entropy among all distributions with finite vari-
ances (if Y2 is a normal random variable with parameters 0, σ 2, then for all X random
variables with EX = 0 and EX2 = σ 2, one has H(X)≤H(Y2)).
This paper is organized as follows. In Section 2, we present the classical link be-

tween the relative entropy and Fisher information measure developed by Barron [1].
The concept of free random variable is introduced in Section 3, by analogy with the
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classical notion of independence. In Section 4, we present the free relative entropy
and free Fisher information and provide a step-by-step derivation of a relationship
between these two measures, in analogy to the classical case presented in Section 2.
We conclude with a discussion and comparison of various candidates for the quantum
analogue of Fisher information which is not uniquely defined in the recent literature.

2. The relative entropy and Fisher information measure. In considering central
limit theorem type results, it is more convenient to introduce the relative entropy
(Kullback-Leibler information “distance”), as remarked by Barron in [1].

Definition 2.1. If X is a random variable with finite variance and density p(x)
(with respect to the Lebesgue measure), then the relative entropy of X with respect to
the normal density g, with the same mean and variance as p, is

S(X)=
∫
p(x) log

[
p(x)
g(x)

]
dx. (2.1)

Obviously, the relative entropy is not symmetric with respect to p and g, so it is
not a proper metric (distance). Nonetheless, it measures the deviation of p from g in
terms of entropy. If EX = a and varX = σ 2, then

S(X)=
∫
p(x) logp(x)dx−

∫
p(x) logg(x)dx

=−H(X)−
∫
p(x)

[
log

1√
2πσ 2

− (x−a)2
2σ 2

]
dx

= 1
2

[
log

(
2πσ 2

)+1]−H(X).
(2.2)

Hence the relative entropy is the difference between Shannon’s entropy of the nor-
mal law and that ofX. The concavity of the logarithm implies that S is nonnegative and
equals zero only if p(x)= g(x) almost everywhere (i.e., the normal law has maximum
Shannon’s entropy for a given variance).

Definition 2.2. For a random variable X, with continuously differentiable density
f(x) and EX = a, varX = σ 2 < ∞, the standardized Fisher information measure is
defined as

Φ(X)= σ 2E
[
f ′(X)
f(X)

− g′(X)
g(X)

]2
, (2.3)

where g is the normal density with the same mean and variance as f .

The normal density has minimum Fisher information measure for a given variance
(since Φ ≥ 0, with equality only if f = g).

Proposition 2.3 (see [1]). The relative entropy S(X) of any random variable X
with finite variance is the integral of Fisher’s standardized information, with respect to
an independent normal random variable Y having the same mean and variance as X,
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namely

S(X)= 1
2

∫ 1
0

1
t
Φ
(√
tX+

√
1−tY

)
dt. (2.4)

In what follows we derive an analogue of the above relationship in the noncommu-
tative setting of free probability.

3. Freeness. We investigate results describing the entropy and the asymptotic be-
havior of sequences of observables (physical quantities), treated as elements of a von
Neumann algebra�, acting on a separable complex Hilbert space, and having a faithful
normal stateϕ. The states are represented by the linear functionalsϕ on�, satisfying
the conditions of positivity (ϕ(A∗A)≥ 0, A∈�) and normalization (ϕ(I)= 1); ϕ(A)
is then interpreted as the expected value of the observable A for the state ϕ. The
states of a given system form a convex set, with the pure states being its extremal ele-
ments and the mixed states are represented by positive trace class operators (density
matrices). The dynamical properties are reflected in the spectrum of the density evo-
lution operators (density matrices). For instance, dynamical systems with continuous
spectrum evolve in a mixing manner, as first noted by von Neumann and Koopman [6].
The classical notion of independence allows the calculation of mixed moments in

terms of single moments. Consider two random variables X and Y , living on some
probability space (Ω,U,P), assumed to be bounded (so that all their moments
exist and determine their respective distributions). The expectation ϕ(f(X,Y)) =∫
f(X(ω),Y(ω))dP(ω) is well defined for any bounded function f of two variables.
Then X is independent of Y if

ϕ
(
Xn1Ym1 ···XnkYmk

)=ϕ
(
Xn1+···+nk)ϕ(Ym1+···+mk

)
. (3.1)

In particular, ϕ(XY)= ϕ(X)ϕ(Y) and ϕ(XXYY)=ϕ(XYXY)= ϕ(XX)ϕ(YY).

Definition 3.1. A noncommutative probability space (�,ϕ) consists of a unital
algebra � and a unital linear functional (analogue of the classical expectation map)

ϕ :�→ C, ϕ(I)= 1. (3.2)

A random variable X is an element of the given algebra �. The random variables
X1,X2, . . . ∈ � are free (with respect to ϕ) if, for all m ∈ N and for all polynomials
p1(X),p2(X), . . . ,pm(X) in the variable X we have:

ϕ
[
p1
(
Xr(1)

)
p2
(
Xr(2)

)···pm(Xr(m)
)]= 0 (3.3)

whenever ϕ
[
pk(Xr(k))

] = 0, for all k = 1, . . . ,m and r(k) ≠ r(k + 1), for all k =
1, . . . ,m−1 (consecutive indices are distinct).
This definition provides a rule for calculating mixed moments in the free variables

in terms of moments of the single variables.
Consider, for instance, the noncentered polynomial-like variablesp1(X)=X−ϕ(X)1

and p2(Y)= Y −ϕ(Y)1. The definition of freeness yields
0=ϕ

[
p1(X)p2(Y)

]=ϕ
[(
X−ϕ(X)1)·(Y −ϕ(Y)1)]=ϕ(XY)−ϕ(X)ϕ(Y), (3.4)
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as in the independent case. Similarly,ϕ(XXYY)=ϕ(XX)ϕ(YY) follows fromϕ[(X2−
ϕ(X2)1) ·(Y 2−ϕ(Y 2)1)] = 0. But considering the mixed moment ϕ(XYXY), which
can be resolved fromϕ[(X−ϕ(X)1)·(Y−ϕ(Y)1)·(X−ϕ(X)1)·(Y−ϕ(Y)1)]= 0, we
obtain ϕ(XYXY)=ϕ(XX)ϕ(Y)ϕ(Y)+ϕ(X)ϕ(X)ϕ(YY)−ϕ(X)ϕ(Y)ϕ(X)ϕ(Y).
Hence ϕ(XXYY)≠ϕ(XYXY), illustrating the fact that freeness is the noncommu-

tative analogue of independence.
Since for the free random variables X and Y the moments of X+Y can be expressed

in terms of the moments of X and the moments of Y , the distribution µX+Y depends
on the distributions µX and µY , through a special type of convolution introduced by
Voiculescu in [12], called the free additive convolution and denoted ,

µX+Y = µXµY . (3.5)

The analogue of the logarithm of the Fourier transform used to linearize the convolu-
tion in the classical case (ln�µ∗ν(t)= ln�µ(t)+ ln�ν(t), with �µ(t)=

∫
R eitxdµ(x)=

ϕ[eitX]) is the R-transform in the free setting. The R-transform Rµ(z), correspond-
ing to each probability measure µ, is an analytic function on the upper half-plane,
viewed as a formal power series in the indeterminate z. The desired feature of the
R-transform is to linearize free additive convolution:

Rµν(z)= Rµ(z)+Rν(z). (3.6)

The R-transform is uniquely determined by the Cauchy-transform Gµ of µ, defined by
the analytic function

Gµ(z)=
∫

1
z−xdµ(x)=ϕ

[
1

z−X
]
, on C\R, (3.7)

such that Gµ(z)=Gµ(z). Its Laurent series expansion, involving the moments of µ, is

Gµ(z)=
∞∑
n=0

z−n−1
∫
R
xndµ(x). (3.8)

This series can be formally inverted with respect to z:

Kµ(z)= 1z +
∞∑
n=1

Cnzn−1. (3.9)

The coefficients Cn (called free cumulants) are polynomial functions of the moments
mk =

∫
Rxkdµ(x) of µ. The link between the R-transform and the Cauchy-transform

is that Gµ(z) and Rµ(z)+1/z are inverses of each other with respect to composition:
Gµ[Rµ(z)+1/z]= z.
For example, if µ = (1/2)(δ0+δ1), then Gµ(z) = (z−1/2)/(z(z−1)) and Kµ(z) =

(z+1+√1+z2)/(2z). Hence, Kµµ(z)= 1+(1/z)
√
1+z2 and Gµµ(z)= 1/

√
z(z−1).

The inverted Cauchy transform,d[µ  µ](x) = 1/(π√x(2−x))dx on [0,2], is the
arcsine distribution.

Definition 3.2. An element A=A∗ ∈� is a semicircular element of radius σ > 0
if its distribution is absolutely continuous with respect to the Lebesgue measure and
its density is ρ(t) = 2(πσ 2)−1√σ 2−t2 on [−σ,σ]. (σ 2 is the free analogue of the
variance parameter of a classical normal law.)
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4. Free entropy. The free analogues of Shannon’s entropy and Fisher information
measure were first considered by Voiculescu in [13, 14], and further investigated in [8].
For a von Neumann algebra � and a faithful normal trace state ϕ :�→ C, consider

the tracial W∗-probability space (�,ϕ). The distribution of any X ∈�, is defined by
the unique probability measure µ, compactly supported on R, having

∫∞
−∞ tndµ(t) =

ϕ(Xn), for all n≥ 0.
The Hilbert space L2(�,ϕ) is obtained completing � with respect to the norm

‖X‖2 =
√
ϕ(X∗X), X ∈�. For a positive integer N , denote by �N(�) the W∗-algebra

of the N ×N matrices over �, and ϕN = Tr⊗ϕ : �N(�) → C its faithful trace-state
(i.e., ϕN(X) = (1/N)

∑N
i=1ϕ(aii), for X = (aij)1≤i, j≤N ∈ �N(�)). Since ‖X‖2L2(ϕN)

=
(1/N)

∑N
i, j=1‖aij‖2L2(ϕ), for any X ∈ �N(�), one can extend the previous norm by

continuity to the Hilbert space L2(�N(�),ϕN).
For an n-tuple of selfadjoint elements Xj ∈�sa, the free entropy, denoted χ(X1, . . . ,

Xn), involves sets of points in (�N(�))n, that is, finite-dimensional matrices, so-called
matrix microstates. The free entropy is then defined as the normalized limit of the
logarithms of volumes of all such possible microstates. For one random variable X ∈
�sa with the distribution µ, the free entropy was defined in [13] as:

χ(X)=
∫∫
log |s−t|dµ(s)dµ(t)+ 3

4
+ log(2π)

2
. (4.1)

Proposition 4.1. Let Ω = {X = (X1, . . . ,Xn) ∈�N(�)n | Xj = X∗j , ‖Xj‖2L2(ϕN)
= 1}

and let S= (S1, . . . ,Sn)∈Ω be a semicircular system (i.e., {Sj} are free and each Sj has
a (0,1) semicircular distribution). Then χ(X)≤ χ(S), for all X∈Ω.

Proof. Since 3/4+∫∫ log |s−t|dµ(s)dµ(t)= 1/2, for µ with density 1/(2π)√4−t2,
concentrated on [−2,2], we have

χ(S)=nχ
(
S1
)=n

[∫∫
log |s−t|dµ(s)dµ(t)+ 3

4
+ log(2π)

2

]
= n
2
log(2πe). (4.2)

Denote by ϕN(X2j ) the norm ‖Xj‖2L2(ϕN)
. Then ϕN(X21 +···+X2n)=n implies χ(X)≤

(n/2) log(2πe)= χ(S).

The extension of the above result to matrices is the following.

Proposition 4.2. Let C = (cij)1≤i, j≤N be a real positive definite invertible ma-
trix, and Ω(C) = {X = (X1, . . . ,XN) ∈ Ω | ϕN(XiXj) = cij, 1 ≤ i, j ≤ N}. Let B =
(bij)1≤i,j≤N = C1/2. Then χ(X) ≤ log(detB)+χ(S), for all X ∈ Ω(C), where S is a free
family of (0,1) semicircular elements. Equality is attained if and only if (X1, . . . ,XN)
and (

∑
j b1jSj, . . . ,

∑
j bnjSj) have the same distribution.

Proof. Apply the previous result to Y = (Y1, . . . ,YN), with Yi =
∑

j aijXj and
(aij)1≤i, j≤N = A = B−1. Namely, χ(X) = log(detB)+χ(Y) and χ(Y) ≤ χ(S), for X ∈
Ω(C) and Y ∈Ω(I)=Ω, respectively.

Definition 4.3. {Aj}j∈J ⊂� is a selfadjoint family if there is an involutive bijec-
tion σ : J → J such that A∗j = Aσ(j), for all j ∈ J. The family of vectors {ξj}j∈J ⊂
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L2(�,ϕ) is said to fulfill the conjugate relations for {Aj}j∈J , with respect to the W∗-
subalgebra �⊆�, if for all n≥ 0, B0, . . . ,Bn ∈�, j,j1, . . . ,jn ∈ I,

ϕ
(
ξjB0Aj1B1 ···AjnBn

)

=
n∑

m=1
δj,jmϕ

(
B0Aj1 ···Ajm−1Bm−1

)·ϕ(BmAjm+1 ···AjnBn
)
.

(4.3)

As usual, the conjugate relations allow the introduction of an inner product in
L2(�,ϕ).

Definition 4.4. Let (�,ϕ) be a faithful trace W∗-probability space. If {Aj}j∈J ⊂
� is a selfadjoint family, � ⊆ � is a unital W∗-subalgebra such that {Aj}j∈J has a
conjugate system {ξj}j∈J relative to �, then the free Fisher information of {Aj}j∈J
with respect to � is

Φ∗
({
Aj
}
j∈J |�

)=∑
j∈J
‖ξj‖2. (4.4)

If {Aj}j∈J does not have a conjugate system relative to �, then Φ∗({Aj}j∈J |�) def= ∞
(see [8]).

An analogue of the classical Cramér-Rao inequality concerning the free Fisher in-
formation was formulated in [15].

If (X1, . . . ,Xn) is a selfadjoint family of elements of L2(�N(�),ϕN), such that the
total variance ϕN(X21 + ··· + X2n) is prescribed, then the free Fisher information
Φ∗(X1, . . . ,Xn) is minimized when the Xj ’s are free semicircular elements of equal radii.
The link between the free entropy and the free Fisher information (similar to relation

(2.4) for the classical case) is presented in the stages below.
(1) For the one-dimensional case, let c ∈ � be a circular variable (i.e., the real

and imaginary parts of c are free and have semicircular distributions of equal radii).
Assume further that the variance ϕN(c)= 1 and {c,c∗} is free from {a,a∗}. Then,

χ
({
a,a∗

})= 1
2

∫∞
0

[
2
1+t −Φ

∗
(
a+c

√
t,
(
a+c

√
t
)∗)]dt+ log(2πe). (4.5)

(2) Consider the matrix A+ S√t =
[

0 a+c√t
(a+c√t)∗ 0

]
, with A,S ∈ �2(�)sa, S semi-

circular of variance 1 (ϕ2(S2n) = ϕ[(c∗c)n], ϕ2(S2n+1) = 0, for all n ≥ 0) and free
from A. Then,

χ(A)= 1
2

∫∞
0

[
1
1+t −Φ

∗(A+S√t)
]
dt+ 1

2
log(2πe). (4.6)

(3) The multidimensional version of (4.5) is

χ
({
ai,a∗i

}m
i=1∪

{
bj
}n
j=1
)

= 2m+n
2

log(2πe)

+ 1
2

∫∞
0

[
2m+n
1+t −Φ∗

({
ai+ci

√
t,a∗i +c∗i

√
t
}m
i=1∪

{
bj+sj

√
t
}n
j=1
)]
dt,

(4.7)
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where sj ∈ � are semicircular and ci ∈ � are circular elements, normalized by their
variances (ϕN(c∗i ci)= 1=ϕN(s2j ), for all 1≤ i≤m, 1≤ j ≤n) such that {{ci,c∗i }mi=1,
{sj}nj=1} and {{ai,a∗i }mi=1,{bj}nj=1} are free.
(4) Taking {{bij,b∗ij}Ni,j=1∪{bii}Ni=1} instead of

{{ai,a∗i }mi=1∪{bj}nj=1} (i.e., when n=
N andm=N(N−1)/2), using relations (4.7) and (4.6), yields the matrix version:

χ
[
B = (bij)Ni,j=1

]
= 1
2

∫∞
0

[
N2

1+t −Φ
∗
((
bij+sij

√
t
)N
i,j=1

)]
dt+ N2

2
log(2πe), (4.8)

where the selfadjoint family (bij)Ni,j=1 is viewed as
({bij,b∗ij}Ni,j=1∪{bii}Ni=1), and the

family (sij)Ni,j=1 ⊂� has the properties:
• The elements sii are semicircular of variance 1, for all 1≤ i≤N .
• s∗ij = sji, for all 1≤ i,j ≤N , and the elements sij are circular of variance equal

to 1, for all 1≤ i < j ≤N .
• The sets {s11}, . . . ,{sNN},{s12,s∗12}, . . . ,{sN−1,N ,s∗N−1,N},{bij}Ni,j=1 are free.

(5) Denoting S = (sij)Ni,j=1 ∈�N(�), the matrix (1/
√
N)S is semicircular of variance

1 and free from B in (�N(�),ϕN) and relation (4.8) becomes

χ
(
1√
N
B
)
= 1
2

∫∞
0

[
1
1+t −Φ

∗
(
1√
N
B+

√
t
N
S
)]

dt+ 1
2
log(2πe). (4.9)

(6) Using the scaling formulas: Φ∗(κX) = κ−2Φ∗(X) and χ(κX) = χ(X)+ logκ, for
κ > 0 and X a selfadjoint random variable, then (4.9) leads to

χ(B)− logN
2

= 1
2

∫∞
0

[
1
1+t −NΦ

∗(B+√tS)]dt+ 1
2
log(2πe), (4.10)

which is the free setting analogue of relations (2.1) and (2.4).
Recently, Nica et al. [8] provided free entropy minimization criteria not only when

the expectation or variance were prescribed, but also when the moments of all orders,
that is, the whole distribution of an element A∗A, is specified.

5. Entropy considerations in quantum setting. Since the quantum analogue of
the classical Fisher information is not uniquely defined in the recent literature, it
is useful to study and compare various candidates. The relative entropy has several
generalizations in the context of density matrices describing the mixed quantum state
space of a system. For two density matrices P and Q, with positive eigenvalues, the
relative entropy would be S(P,Q) = TrP log(P/Q). To give meaning to the quotient
P/Q, one can consider Umegaki’s relative entropy [11],

SU(P,Q)= TrP(logP− logQ) (5.1)

or the Belavkin and Staszewski relative entropy [2],

SBS(P,Q)= TrP log
(
P1/2Q−1P1/2

)
(5.2)

(note that SBS and SU coincide in the case of commuting density matrices).
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If � represents a finite quantum system, then the family of states ϕ corresponding
to the density matrices Pϕ in the Gelfand Naimark Segal (GNS) space � of ϕ, consists
of essentially localized modifications of ϕ and

ϕ(A)= Tr(PϕA) ∀A∈�. (5.3)

When ϕ is faithful, the representation is unique and the normalization ϕ(I) = 1 im-
plies TrPϕ = 1.
The relative entropy of the state ϕ with respect to ψ is naturally defined by

S(ϕ,ψ)=

TrPϕ

(
logPϕ− logQψ

)
, if suppPϕ ≥ suppQψ,

+∞, otherwise,
(5.4)

where suppPϕ designates the smallest projection V such thatϕ(V)=ϕ(I). In partic-
ular, S(ϕ,ψ) is always finite if the density ofψ has strictly positive eigenvalues (i.e.,ψ
is faithful). The functional (ϕ,ψ)� S(ϕ,ψ) is lower semicontinuous with respect to
the weak* topology on the state space of the C*-algebra�. If� is finitely dimensional,
the functional (ϕ,ψ)� S(ϕ,ψ) is measurable [9].

Proposition 5.1. The relative entropy functional S(ϕ,ψ) has the following prop-
erties:
(a) For any ϕ,ψ positive functionals on the finite quantum system �,

S(ϕ,ψ)≥ 1
2
Tr
(
Pϕ−Qψ

)2+ψ(I)−ϕ(I)≥ 0, (5.5)

S(ϕ,ψ)= 0 occurs only when ϕ =ψ.
(b) S(ϕ,ψ) is monotonous under unital Schwarz mappingsα :�1→�2, for any states

ϕ,ψ of �2,

S(ϕ◦α,ψ◦α)≤ S(ϕ,ψ). (5.6)

(Note: α is a Schwarz mapping if it is linear and satisfies the inequality α(A∗A) ≥
α(A)∗α(A), for all A∈�1.) In particular, if α is an automorphism of �, we obtain the
invariance property: S(ϕ◦α,ψ◦α)= S(ϕ,ψ).
(c) If � =�1⊕�2 and ϕ12(a⊕b) = λϕ1(a)+(1−λ)ϕ2(b), ψ12(a⊕b) = λψ1(a)+

(1−λ)ψ2(b), for all a∈�1, b ∈�2, λ∈ (0,1), then the following joint convexity holds:

S(ϕ,ψ)≤ S
(
ϕ12,ψ12

)= λS
(
ϕ1,ψ1

)+(1−λ)S(ϕ2,ψ2
)
. (5.7)

Proof. (a) Let Pϕ =
∑

i λipi and Qψ =
∑

j κjqj be the spectral decompositions of
the density matrices Pϕ andQψ. The Taylor expansion of the function η(x)=−x logx
yields the inequality

−η(x)+η(y)+(x−y)η′(y)=−1
2
(x−y)2η′′(θ)≥ 1

2
(x−y)2 (5.8)

for some θ ∈ (x,y). Since η(x) = −x logx is convex on real intervals [x,y], the
functional F(P)= Tr[η(P)] is convex on the set of selfadjoint matrices with spectrum
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in [x,y], {P ∈�sa : Sp(P)⊂ [x,y]}. Thus

Trpiqj
[
−η(Pϕ)+η(Qψ

)+(Pϕ−Qψ
)
η′
(
Qψ

)− 1
2

(
Pϕ−Qψ

)2]

=
[
−η(λi)+η(κj)+(λi−κj)η′(κj)− 12

(
λi−κj

)2]
Trpiqj ≥ 0.

(5.9)

Summing over i and j gives the desired inequality

Tr
[
−η(Pϕ)+η(Qψ

)+(Pϕ−Qψ
)(
I− logQψ

)− 1
2

(
Pϕ−Qψ

)2]≥ 0. (5.10)

(b) Consider the linear map β :�1→�2 defined by β
(
AT 1/21

)=α(A)T 1/22 , for A∈�1

and the invertible positive operators Ti ∈ �i, i = 1,2, satisfying TrT2α(A) ≤ TrT1A,
for A∈�+

1 . Note that β is a contraction (with respect to Hilbert-Schmidt norm):

∥∥∥α(A)T 1/22

∥∥∥2 = TrT2α(A)∗α(A)≤ TrT2α(A∗A)≤ TrT1A∗A= ∥∥∥AT 1/21

∥∥∥2. (5.11)

Next, introduce the positive operators γ and δ by

γ
(
AT 1/21

)
= S1AT

−1/2
1 , A∈�1, (5.12)

δ
(
BT 1/22

)
= S2BT

−1/2
2 , B ∈�2, (5.13)

where Si ∈ �i, i = 1,2, are positive operators satisfying TrS2α(A) ≤ TrS1A, for A ∈
�+
1 . Then 〈

β∗δβ
(
AT 1/21

)
,AT 1/21

〉
=
〈
δα(A)T 1/22 ,α(A)T 1/22

〉
=
〈
S2α(A)T

1/2
2 ,α(A)T 1/22

〉
= TrS2α(A)α(A)∗
≤ TrS2α

(
AA∗

)≤ TrS1AA∗
=
〈
γ
(
AT 1/21

)
,AT 1/21

〉
.

(5.14)

Hence, β∗δβ ≤ γ. In particular, for 0 < t < 1, β∗δtβ ≤ (β∗δβ)t ≤ γt , yielding for any
A∈�1,

Trα(A)∗St2α(A)T
1−t
2 ≤ TrA∗St1AT 1−t1 . (5.15)

The inequality (5.6) is obtained by differentiating in (5.15) at t = 0 and using the
following representation of the relative entropy (for nonnegative density matrices
Pϕ = T1 and Qψ = S1):

TrPϕ
(
logPϕ− logQψ

)=− d
dt
TrQt

ψP1−tϕ
∣∣
t=0. (5.16)

An integral formulation similar to (5.16) is

S
(
Pϕ,Qψ

)= TrPϕ
∫∞
0

[(
Qψ+tI

)−1(Pϕ−Qψ
)(
Pϕ+tI

)−1]dt. (5.17)
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(c) Let T1 and S1 be the densities of ϕ and ψ; likewise, let T2 and S2 be the densi-
ties of ϕ12(a⊕b) = λϕ1(a)+ (1−λ)ϕ2(b) and ψ12(a⊕b) = λψ1(a)+ (1−λ)ψ2(b),
respectively. Then (5.17) holds and

[
(1−t)−1

(
1−TrSt2T 1−t2

)
≥ (1−t)−1

(
1−TrSt1T 1−t1

)]
. (5.18)

Letting t ↗ 1 yields the joint convexity of the relative entropy: S(ϕ,ψ)≤ λS(ϕ1,ψ1)+
(1−λ)S(ϕ2,ψ2).

Allowing other functions in place of the logarithm, broadens further the concept of
relative entropy. For instance, considering the operator convex function f : (0,∞)→
R, with f(1) = 0, f(x) = x logx, then Sf (P,Q) = SBS(P,Q). Another notable special
case is f(x) = (x−1)2, producing the so-called quadratic relative entropy (the χ2-
divergence)

S(x−1)2(P,Q)= TrP−1(P−Q)2. (5.19)

Proposition 5.2 (see [10]). The quadratic relative entropy satisfies the properties:
(a) S(x−1)2(P,Q)= Tr(X∗X), with X = P−1/2(P−Q);
(b) S(x−1)2(P,Q) > 0 if P ≠Q;
(c) S(x−1)2(α(P),α(Q)) ≤ S(x−1)2(P,Q), for every trace-preserving Schwarz map-

ping α of the matrix algebra, which sends density matrices into density matrices;
(d) the quadratic entropy coefficient cannot exceed 1. If P and Q are invertible den-

sity matrices, then

η(x−1)2(α)= sup
P≠Q

{
S(x−1)2

(
α(P),α(Q)

)
S(x−1)2(P,Q)

}
≤ 1. (5.20)

Proof. (a) is obvious; (b) follows from (5.5); (c) is a restatement of (5.6); (d) follows
from (c).

Remark 5.3. If α is interpreted as a communication channel between two finite
quantum systems, then the inequality (5.20) says that the output information corre-
sponding to the statesα(P), α(Q) is always less than or equal to the input information
of the states P andQ; Sf (α(P),α(Q)) represents the amount of information correctly
transmitted through the channel α, and ηf (α) can be viewed as the efficiency of the
communication channel.

The quadratic relative entropy (5.19) can be extended for an arbitrary operator con-
vex function f : (0,∞)→Rwith f(1)= 0 when the density matrix P is assumed to be
invertible. The function f admits the integral representation

f(x)= a(x−1)+b(x−1)2+c (x−1)
2

x
+
∫∞
1

(x−1)2
x+t dν(t) (5.21)

by means of a finite positive measure ν on R. Based on the integral representation
(5.21) it was recently shown by Petz and Ruskai [10] that ηf (α)= η(x−1)2(α), for any
operator convex function f . Since the relative entropy coefficientηf (α) is independent
of the operator convex function f , it is the object of current investigations to establish
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whether the relative entropy coefficient depends on the Riemannian metric defined
on the manifold of density matrices.
A generalized relative entropy induces a Riemannian metric on the state space. The

set� of positive definite density matrices P = (Pij) (with normalized trace, equal to 1)
can be parametrized in an affine way, by the real numbers RePij , ImPij (1≤ i < j ≤n)
and the positive numbers Pii. Thus � can be embedded into the Euclidean k-space
with k=n2−1 and become a manifold. At each point P ∈�, the tangent space TP(�)
is identified with the set of all traceless selfadjoint matrices. Then, an inner product
can be defined on TP(�) by

gP(A,A)= TrP−1A2. (5.22)

In the commutative case, a positive and trace-preserving Riemannian metric corre-
sponding to the (logarithmic) relative entropy

Slog(P,Q)= TrP
(
logP− logQ)= TrP

∫∞
0

(
1

Q+tI (P−Q)
1

P+tI

)
dt (5.23)

is

glogP (A,B)= TrA∗P−1B. (5.24)

The quantum noncommutative case is richer, since the left and right multiplications
by P−1 are not equivalent. In this setting, an analogue of P−1B can be defined by
ΩlogP (B)= ∫∞0 ((1/P+tI)B(1/P+tI))dt, hence

glogP (A,B)= TrA∗ΩlogP (B). (5.25)

This Riemannian metric coincides with

glogP (A,B)=− ∂2

∂u∂v
Slog(P+uA,P+vB)|u=v=0

= TrA
∫∞
0

(
1

P+tI B
1

P+tI

)
dt

(5.26)

(for A ∈ TP(�) = {A = A∗ : TrA = 0}). Obviously one may extend the metric (5.25) to
other operator convex functions f : (0,∞)→ R, f(1) = 0 besides f(x) = x logx. For
f(x)= (x−1)2, corresponding to the symmetrized quadratic relative entropy

Ssym(x−1)2(P,Q)= Tr(P−Q)P−1(P−Q), (5.27)

one has the Riemannian metric

g(x−1)
2

P (A,B)= TrA∗ΩP (B)= TrA∗
(
BP−1+P−1B). (5.28)

Further entropic properties of quantum systems can be discussed in terms of the
geodesic distance defined as

γf (P,Q)= inf
�

∫ 1
0

√〈
ω̇(t),Ωf

ω(t)ω̇(t)
〉
dt, (5.29)

where �= {ω(t) smooth path |ω(0)= P, ω(1)=Q}.
The squared geodesic distance [γf (P,Q)]2 is a differentiable monotone relative en-

tropy distance, that is, it satisfies the properties:
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(a) [γf (P,Q)]2 ≥ 0,with equality if and only if P =Q.
(b) γf (P,Q)= γf (Q,P), for all P,Q ∈�.
(c) γf (P,Q)≤ γf (P,R)+γf (R,Q), for all P,Q,R ∈�.
(d) γf (κP,κQ)= κγf (P,Q), for scalars κ > 0.
(e) γf (P,Q) is jointly convex in P and Q.
(f) γf (α(P),α(Q))≤ γf (P,Q), for any trace-preserving Schwarz map α.
(g) The function h(u,v)= S(P+uA,Q+vB) is differentiable.
The above properties are easily verified in light of Propositions 5.1 and 5.2; (g) fol-

lows from Theorem 3.6(2) [5].
In [7] it was shown that γf (P,Q) is majorized by γ

sym
(x−1)2(P,Q), for any operator

convex function f . Moreover, for each fixed convex operator function f and Schwarz
trace-preserving map α, the following entropy contraction coefficients:

ηRelEntf (α)= sup
P≠Q

{
Sf
(
α(P),α(Q)

)
Sf (P,Q)

}
, (5.30)

ηRiemf (α)= sup
P

sup
A∈TP (�)

{〈
α(A),Ωf

α(P)
[
α(A)

]〉
〈
A,Ωf

P (A)
〉

}
, (5.31)

ηgeodf (α)= sup
P≠Q

{[
γf
(
α(P),α(Q)

)]2
[
γf (P,Q)

]2
}
, (5.32)

satisfy the inequality: ηgeodf (α)≤ ηRiemf (α)≤ ηRelEntf (α)≤ 1 (see [7]).

6. Conclusion. The concept of entropy relies on having chosen certain measures
(like phase space volumes, or Hilbert space norms) which are conserved under unitary
time evolution. We highlighted the importance of the probability distributions corre-
sponding to the extremal cases for the relative entropy and free entropy in various
instances. These entropy inequalities may be viewed as manifestations of a universal
principle of nondecrease of uncertainty, similar to the second law of thermodynamics,
as remarked by Gnedenko and Korolev in [3].
The powerful blend of operatorial algebraic and probabilistic points of view afforded

by the free probability theory provides the ideal framework for describing the limiting
behavior of special classes of random matrices, as their size tends to infinity. Such
large random matrices are extensively used in physical modeling (e.g., Ising models,
phase transition phenomena, spin tunneling) motivating the interest in further inves-
tigating this topic in future work.
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