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Abstract. We prove two existence theorems, one for evolution quasi-variational inequal-
ities and the other for a time-dependent quasi-variational inequality modeling the quasi-
static problem of elastoplasticity with combined kinetic-isotropic hardening.
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1. Introduction. A comprehensive updated account of the elliptic quasi- and evo-
lution quasi-variational inequalities is presented by Baiocchi and Capelo [1]. Evolution
variational inequalities have been investigated by Lions and Stampacchia [9], Brézis
[2, 3], Duvaut and Lions [4], and Lions [8]. A related general problemofMoreau’s sweep-
ing process can be found in [10]. Elliptic variational and quasi-variational inequalities
are discussed in [1] along with the references on evolution variational inequalities.
In 1994, Mosco [11] formulated the implicit Signorini problem in terms of the ellip-
tic quasi-variational inequality problem and indicated many open problems including
the numerical methods and the probable outlines of the method. Recently, Kočvara
and Outrata [6] and Outrata and Zowe [12] have studied numerical solutions of quasi-
variational inequalities using techniques of nonsmooth optimization. The evolution
quasi-variational inequality modeling the evolving shape of a growing pile has been
studied by Prigozhin [13]. Han, Reddy, and Schroeder [5] have investigated a new class
of evolution inequalities where rate quantities occur in all of its terms. An inequal-
ity of this type represents, for example, the quasi-static evolution of an elastoplastic
body where the stress law is of the linear kinematic or isotropic hardening type. Such
a variational inequality may be useful in the modeling of financial derivatives and
option pricing, see Wilmott et al. [14]. In this paper, we discuss the existence of solu-
tions of the implicit evolution quasi-variational inequalities. In Section 2, we present
an existence theorem which is closely related to an open problem mentioned in [13].
The evolution quasi-variational inequality problem of the Han-Reddy-Schroeder type
is considered in Section 3.

2. Evolution quasi-variational inequalities of Bensoussan-Lions-Mosco type. Let
H be a Hilbert space with the inner product 〈 ,·, 〉 and the induced norm ‖ · ‖ =
(〈·,·〉)1/2. Let L2(0,T ;H) denote the space of all measurable functions u : (0,T )→H,
then it is a Hilbert space with respect to the inner product
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〈u,v〉L2(0,T ,H) =
∫ T

0

〈
u(t),v(t)

〉
H dt. (2.1)

If H∗ is the topological dual of H, then the dual of L2(0,T ,H) = L2(0,T ,H∗) in case
of real H.
Let H1,p(0,T ,H) or, very often, Hp(0,T ,H) denote the space of functions f ∈

Lp(0,T ,H) such that their distributional derivatives Df also belong to Lp(0,T ,H).
Hp(0,T ,H) equipped with the norm

‖f‖2HP (0,T ,H) = ‖f‖2Lp(0,T ,H)+‖Df‖2Lp(0,T ,H) (2.2)

is a Banach space andH2(0,T ,H) is a Hilbert space. Let F ∈H2(0,T ,H∗) and let C be a
nonempty, closed, and convex subset ofH2(0,T ,H). Further, let a(·,·) be a symmetric
bounded and coercive bilinear form. We consider here the following problem.

Bensoussan-Lions-Mosco problem. Find u∈K(u)∩C such that
〈
∂u
∂t

,v−u(t)
�
+a

(
u,v−u(t)

)≥ 〈F(t),v−u(t)
〉

∀v ∈K(u), u(t)∈K, u(0)=u0 ∈K
(
u0
)
.

(2.3)

Here, K(·) : C → 2H is a set-valuedmapping defined on C which associates a nonempty
closed convex subset K(z) of H with every z ∈ C ; and F(t)∈H∗.
We also assume the following conditions.
The set-valued map z→K(z) is weakly continuous on C , in the sense that for every

sequence zh ∈ C converging to some z ∈ C , weakly in H, the sequence of subsets
K(zh) converges to K(z) in H, equivalently to the following conditions:

(i) if wh ∈K(zh) and wh converges weakly to some w in H, then

w ∈K(z); (2.4)

(ii) for every v ∈K(z), there exists vh ∈K(zh) such that vh converges strongly to
v in H.

We further assume that sets K(z) for all z ∈ C have a nonempty intersection, that
is, u0 ∈⋂h∈H K(h) and S maps C into itself.

Theorem 2.1. Let a(·,·) be a coercive continuous bilinear form. Then, under the
above conditions, (2.3) has at least one solution.

Proof of Theorem 2.1. We can associate with problem (2.3) the following family
of variational inequalities indexed by the fixed z ∈ C , namely u∈K(z),

〈
∂u
∂t

,v−u(t)
�
+a

(
u,v−u(t)

)≥ 〈F(t),v−u(t)
〉

∀v ∈K(z), u(t)∈K(z), u(0)=u0 ∈K(z).
(2.5)

Equation (2.5) can be written in the form:
for some u∈K(z)

〈
∂u
∂t
+Au(t)−F(t),v−u(t)

�
≥ 0, (2.6)
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where A is a coercive continuous linear operator induced by a(·,·). By the well-known
existence theorem of the evolution variational inequality (cf. [2, 3, 4, 8, 9]) for each
fixed z ∈ C , (2.6) has a unique solution w, which we denote by w = S(z). This defines
the map

S : C �→H, w = S(z). (2.7)

It is clear that (2.7) is the selection map associated with (2.3) and the existence of its
solution is equivalent to the fixed point problem

u∈ C : S(u)=u. (2.8)

The existence of a fixed point is guaranteed by the Schauder-Tychonov fixed point
theorem if we show that S(C) is bounded and S is a weakly continuous map with
respect to the weak topology of H. By the hypothesis of the theorem, we find that
every w = S(z), w ∈ C , satisfies

∥∥∥∥∂w∂t
∥∥∥∥≥ µ

∥∥w∗−w
∥∥2, (2.9)

where v in (2.6) is replaced by w∗. This shows that S(C) is bounded.
We now prove that S : C → C is continuous for the weak topology of H. Let zh be a

sequence in C , converging weakly to z and let wh ∈ K(zh). Since ‖wh‖ is bounded,
there is a subsequence, say wh, which converges weakly to some w. By (i), w ∈ K(z).
Furthermore, by (ii), for everyv ∈K(z), there existsvh ∈K(zh) such thatvh converges
to v strongly.
Replacing u by vh in (2.6) and taking the limit as h→∞, we get

〈
∂w
∂t
+Aw(t)−F(t),v−w(t)

�
≥ 0. (2.10)

Thereforew = S(z). By the uniqueness of solution of (2.6),wh converges weakly tow.
By restricting S to the setC∗ = C∩{z : ‖z‖ ≤ r}, r � 0, which is a weak compact subset
of H, we see that S maps C∗ into itself provided r is sufficiently large. This proves
the existence of a fixed point of S and consequently a solution of (2.3).

Remark 2.2. Very recently our attention has been drawn to a preprint of December
1997 by Kunze (University of Köln) and Monteiro Marques (University of Lisbon) en-
titled “On parabolic quasi-variational inequalities and state-dependent sweeping pro-
cess” where a result similar to Theorem 2.1 has been proved by a different method.
This paper has now appeared [7]. In a recent paper of Lions [8], it is observed in
Remark 6.3 that one can extend the methods of the present paper to some quasi-
variational inequalities.

It may be observed that the stationary case models the implicit Signorini problem

−∆u+u=ϕ in Ω,

u−
(
h−

∫
Γ
ϕ

∂u
∂n

)
≥ 0, ∂u

∂n
≥ 0,

[
u−

(
h−

∫
Γ
ϕ

∂u
∂n

)]
∂u
∂n

= 0 on ∂Ω.

(2.11)
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Many important physical phenomena can be interpreted in this form.
The number of solutions of (2.3) and its numerical analysis like error estimation,

stability and convergence are open questions even in the stationary case. Mosco [11,
page 29] has made certain suggestions in this connection. Kočvara and Outrata [6] and
Outrata and Zowe [12] have studied the existence and numerical solutions of certain
elliptic quasi-variational inequalities. Numerical solutions of (2.3), in some special
cases, have been considered by Prigozhin [13].

3. Evolution quasi-variational inequality of Han-Reddy-Schroeder type. Han,
Reddy, and Schroeder [5] have studied the following evolution variational inequality
problem and its application to elastoplasticity:
Find u : [0,T ]→H, u(0)= 0 such that for almost all t ∈ [0,T ], u̇(t)∈K and

a
(
u(t),v−u̇(t)

)+j
(
u̇(t)

)≥ 〈F(t),v−u̇(t)
〉
, ∀v ∈K. (3.1)

We prove here an existence theorem for the following evolution quasi-variational in-
equality problem:
Find u∈K(u)∩C , u(0)= 0 such that for almost all t ∈ [0,T ],

a
(
u(t),v−u̇(t)

)≥ 〈F(t),v−u̇(t)
〉
, ∀v ∈K(u). (3.2)

Theorem 3.1. Under the hypothesis of Theorem 2.1, inequality (3.2) has at least
one solution.

Proof of Theorem 3.1. The problem of evolution quasi-variational inequality
can be expressed as the following family of variational inequalities indexed by the
vector z ∈ C :

w ∈K(z), a
(
w,v−ẇ(t)

)≥ 〈F(t),v−ẇ(t)
〉
, for every v ∈K(z). (3.3)

By [5, Theorem 4.3], (3.2) has a unique solutionw, denoted byw = S(z) which defines
the map

S : C �→ C, w = S(z), (3.4)

that is, ż(t) is associated with every z and is itself mapped to PKż(t)−ρ(Az−F(t)),
where A is the bounded linear operator induced by a(·,·), namely

〈Az,v〉 = a(z,v). (3.5)

By the arguments used in the proof of Theorem 2.1, it can be proved that S has a fixed
point which proves the existence of a solution of (3.2).

It may be observed that the uniqueness, stability and finite element analysis of this
class of evolution variational equalities are open problems.
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