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Abstract. From a fixed point theorem for compact acyclic maps defined on admissible
convex sets in the sense of Klee, we first deduce collectively fixed point theorems, inter-
section theorems for sets with convex sections, and quasi-equilibrium theorems. These
quasi-equilibrium theorems are applied to give simple and unified proofs of the known
variational inequalities of the Hartman-Stampacchia-Browder type. Moreover, from our
new fixed point theorem, we deduce new variational inequalities which can be used to
obtain fixed point results for convex-valued maps. Finally, various general economic equi-
librium theorems are deduced in the forms of the Nash type, the Tarafdar type, and the
Yannelis-Prabhakar type. Our results are stated for not-necessarily locally convex topolog-
ical vector spaces and for abstract economies with arbitrary number of commodities and
agents. Our new results extend a lot of known works with much simpler proofs.

Keywords and phrases. Multimap (map), closed map, compact map, upper semicontin-
uous (u.s.c.), lower semicontinuous (l.s.c.), acyclic map, quasiconcave, quasiconvex, ad-
missible subset of a topological vector space (t.v.s.), fixed point, convex space, polytope,
quasi-equilibrium problem, variational inequality, economic equilibrium theorem, abstract
economy, equilibrium point, maximal point.

2000 Mathematics Subject Classification. Primary 46A55, 49J40, 49J53, 91B50; Secondary
47H10, 52A07, 54H25, 55M20.

1. Introduction. Recently, we obtained a new fixed point theorem for compact mul-
timaps defined on admissible convex subsets in not-necessarily locally convex topo-
logical vector spaces (see [51, 53]). Our theorem is one of the most general results
and substantially extends a large number of known theorems, including Kakutani’s
theorem [26] for Euclidean spaces and Himmelberg’s theorem [17] for locally convex
topological vector spaces. Because these theorems were so useful in various problems
in mathematical sciences including economic and game theories, it seems to be quite
natural to generalize known results on applications of theorems of Kakutani and Him-
melberg in view of our theorem. In this way, we can treat more general topological
vector spaces than locally convex ones.
In the first half of the present paper, from a particular form of our fixed point

theorem with the aid of some known selection theorems, we deduce new results on
collectively fixed points (see Section 3), intersection theorems for sets with convex
sections (see Section 4), and quasi-equilibrium problems (see Section 5). These quasi-
equilibrium theorems are applied to give simple and unified proofs of the known
variational inequalities of the Hartman-Stampacchia-Browder type (see Section 6).
In the second half, we deduce new variational inequalities (see Section 7) which can
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be used to obtain fixed point theorems generalizing a large number of historically
well-known extensions of the Brouwer or Kakutani theorems. Finally, various general
economic equilibrium theorems are deduced. These are the Nash type (see Section 8),
the Tarafdar type (see Section 9), and the Yannelis-Prabhakar type (see Section 10).
Our results are stated for not-necessarily locally convex topological vector spaces
and for abstract economies with arbitrary number of commodities and agents.
Consequently, our new results extend a lot of known works due to von Neumann

[71], Nash [41], Fan [11, 12, 13, 14], Ma [37], Idzik [21, 22], Yannelis and Prabhakar
[73], Tarafdar [69], Kim and Tan [30], and others, with much simpler proofs.

2. A fixed point theorem for acyclic maps. A multimap or map T : X � Y is a
function from X into the power set of Y with nonempty values, and x ∈ T−(y) if and
only if y ∈ T(x).
For topological spaces X and Y , a map T : X � Y is said to be closed if its graph

Gr(T)= {(x,y) : x ∈X, y ∈ T(x)} is closed in X×Y , and compact if the closure T(X)
of its range T(X) is compact in Y .
A map T :X � Y is said to be upper semicontinuous (u.s.c.) if for each closed set B ⊂

Y , the set T−(B)= {x ∈X : T(x)∩B =∅} is a closed subset ofX; lower semicontinuous
(l.s.c.) if for each open set B ⊂ Y , the set T−(B) is open; and continuous if it is u.s.c.
and l.s.c. Note that every u.s.c. map T with closed values is closed.
Recall that a nonempty topological space is acyclic if all of its reduced C̆ech ho-

mology groups over rationals vanish. Note that any nonempty convex or star-shaped
subset of a topological vector space is contractible, and that any contractible space is
acyclic. A map T :X � Y is said to be acyclic if it is u.s.c. with acyclic compact values.
Recall that a real-valued function g :X →R on a topological space X is lower (resp.,

upper) semicontinuous (l.s.c.) (resp., u.s.c.) if {x ∈X : g(x) > r} (resp., {x ∈X : g(x) <
r}) is open for each r ∈ R. If X is a convex set in a vector space, then g : X → R is
quasiconcave (resp., quasiconvex) if {x ∈ X : g(x) > r} (resp., {x ∈ X : g(x) < r}) is
convex for each r ∈R.

Berge’s theorem (see [5]). Let X and Y be topological spaces, f :X×Y →R a real
function, F :X � Y a multimap, and

f̂ (x)= sup
y∈F(x)

f (x,y), G(x)= {y ∈ F(x) : f(x,y)= f̂ (x)
}
, for x ∈X. (2.1)

(a) If f is u.s.c. and F is u.s.c. with compact values, then f̂ is u.s.c.
(b) If f is l.s.c. and F is l.s.c, then f̂ is l.s.c.
(c) If f is continuous and F is continuous with compact values, then f̂ is continuous

and G is u.s.c.

Throughout this paper, all topological spaces are assumed to be Hausdorff, a t.v.s.
is a topological vector space, and co and denote the convex hull and closure,
respectively.
A nonempty subset X of a t.v.s. E is said to be admissible (in the sense of Klee [31])

provided that, for every compact subset K of X and every neighborhood V of the
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origin of E, there exists a continuous map h : K → X such that x−h(x) ∈ V for all
x ∈K and h(K) is contained in a finite dimensional subspace L of E.
Note that every nonempty convex subset of a locally convex t.v.s. is admissible

(see Hukuhara [19] and Nagumo [40]). Other examples of admissible t.v.s. are �p and
Lp(0,1) for 0<p < 1, the space S(0,1) of equivalence classes of measurable functions
on [0,1], the Hardy spacesHp for 0<p < 1, certain Orlicz spaces, ultrabarrelled t.v.s.
admitting Schauder basis, and others. Note also that any locally convex subset of an
F -normable t.v.s. is admissible and that every compact convex locally convex subset of
a t.v.s. is admissible. For details, see Klee [31], Hadžíc [15], Weber [72], and references
therein.
The following particular form of our new fixed point theorem in [51, 53] is the basis

of our arguments in this paper. We give its proof for completeness.

Theorem 2.1. Let E be a t.v.s. and let X be an admissible convex subset of E. Then
any compact acyclic map F :X �X has a fixed point x ∈X; that is, x ∈ F(x).

Proof. Let v be a fundamental system of neighborhoods of the origin of E. Since
F is closed and compact, it is sufficient to show that for any V ∈ v , there exists an
xV ∈X such that (xV +V)∩F(xV)≠∅.
Since F(X) is a compact subset of the admissible subset X, there exists a continuous

map h : F(X) → X and a finite dimensional subspace L of E such that x−h(x) ∈ V
for all x ∈ F(X) and h(F(X))⊂ L∩X. Let M := h(F(X)). Then M is a compact subset
of L and hence P := coM is a compact convex subset of L∩X. Note that h : F(X)→ P
and F|P : P → F(X). Since h and F|P are acyclic maps, it is well known (see [53]) that
their composition h(F|P ) has a fixed point xV ∈ P ; that is, xV ∈ hF(xV) and hence
xV = h(y) for some y ∈ F(xV). Since y−h(y) ∈ V , we have y ∈ h(y)+V = xV +V .
Therefore, (xV +V)∩F(xV)≠∅. This completes the proof.
Note that Theorem 2.1 generalizes many of known fixed point theorems even when

E is locally convex, especially, for the case F has convex values (see Kakutani [26],
Himmelberg [17], and Park [46, 60]).

Corollary 2.2. Let X be an admissible compact convex subset of a t.v.s. E and
F :X � E a map with closed convex graph. If F(X)⊃X, then F has a fixed point.

Proof. Let G := F−|X : X � X be defined by G(y)= {x ∈ X : y ∈ F(x)} for y ∈ X.
Then the graph Gr(G) of G is the symmetric part of Gr(F)∩(X×X) and, hence, closed
and convex. Therefore, G has closed convex values. Now, by Theorem 2.1, G has a
fixed point x ∈G(x); that is, x ∈ F(x). This completes the proof.

Note that if F is single-valued, Corollary 2.2 reduces to Penot [61, Proposition 1.7]
whenever E is locally convex, and to Park [50, Theorem 7] whenever E∗ separates
points of E.

3. Collectively fixed points. A convex space is a nonempty convex set (in a vector
space) with any topology that induces the Euclidean topology on the convex hulls of
its finite subsets. Such convex hulls are called polytopes (see Lassonde [34]).
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Lemma 3.1 (see [55]). Let X be a topological space, Y a convex space, and S,T :X �
Y maps satisfying
(1) for each x ∈X, coS(x)⊂ T(x);
(2) for each y ∈ Y , S−(y) is compactly open in X; or X =⋃{IntS−(y) :y ∈ Y}.

Then, for any nonempty compact subset K of X, there exists a continuous function
f :K→ Y such that
(3) f(x)∈ T(x) for each x ∈K;
(4) f(K) is contained in a polytope of Y ;
(5) for any compact subset L of X containing K, there exists a continuous extension

f̃ : L→ Y of f such that f̃ (x)∈ T(x) for each x ∈ L and f̃ (L) is contained in a
polytope of Y .

Lemma 3.2 (see [18]). Let X be a paracompact space, Y a convex space, and A :X �
Y a map such that X = ⋃{IntA−(y) : y ∈ Y}. Then coA : X � Y has a continuous
selection s :X → Y ; that is, s(x)∈ coA(x) for all x ∈X.

Let {Xi}i∈I be a family of sets, and let i∈ I be fixed. Let

X =
∏

j∈I
Xj, Xi =

∏

j∈I\{i}
Xj. (3.1)

If xi ∈Xi and j ∈ I\{i}, let xi
j denote the jth coordinate of xi. If xi ∈Xi and xi ∈Xi,

let [xi,xi] ∈ X be defined as follows: its ith coordinate is xi and, for j ≠ i, the jth
coordinate is xi

j . Therefore, any x ∈ X can be expressed as x = [xi,xi] for any i ∈ I,
where xi denotes the projection of x in Xi.
For A⊂X, xi ∈Xi, and xi ∈Xi, let

A
(
xi)= {yi ∈Xi :

[
xi,yi

]∈A
}
, A

(
xi
)= {yi ∈Xi :

[
yi,xi

]∈A
}
. (3.2)

For a family {Ei}i∈I of t.v.s., let E =
∏

i∈I Ei. Similarly X =
∏

i∈I Xi and K =∏i∈I Ki

for subsets Xi and Ki of Ei for i∈ I.
We begin with the following collectively fixed point theorems.

Theorem 3.3. Let {Xi}i∈I be a family of convex sets, each in a t.v.s. Ei, Ki a
nonempty compact subset of Xi, and Ti : X � Ki a closed map with convex values for
each i ∈ I. If X is admissible in E, then there exists an x̂ ∈ K such that x̂i ∈ Ti(x̂) for
each i∈ I.

Proof. Define T : X � K by T(x) =∏i∈I Ti(x) for each x ∈ X. Then T : X � X is
a compact closed map with convex values. Since X is admissible, by Theorem 2.1, T
has a fixed point x̂ ∈K; that is, x̂ ∈ T(x̂) and hence x̂i ∈ Ti(x̂) for each i∈ I.

Remarks. (1) If Ti is u.s.c. for each i∈ I, then T is also u.s.c. This was first shown
by Fan [11, Lemma 3].
(2) If each Ei is locally convex, Theorem 3.3 reduces to Idzik [22, Theorem 5] and

Kim et al. [28, Theorem 5].
(3) If I is a singleton, Theorem 3.3 reduces to a particular form of Theorem 2.1 for

convex-valued maps.
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Theorem 3.4. Let {Xi}i∈I and {Ki}i∈I be the same as in Theorem 3.3. For each i∈ I,
let Si, Ti :X �Ki be maps satisfying
(1) for each x ∈X, coSi(x)⊂ Ti(x);
(2) D = coK ⊂⋃y∈Ki IntS

−
i (y).

If D is admissible in E, then there exists an x̂ ∈K such that x̂i ∈ Ti(x̂) for each i∈ I.

Proof. Since K is compact in E, D = coK is σ -compact (see Lassonde [35]) and
hence Lindelöf. SinceD is regular, we know thatD is paracompact. Consider Si|D :D �
Ki. Note that D = ⋃y∈Ki(IntS

−
i (y))∩D by (2) and IntD(Si|D)−(y) = (IntS−i (y))∩D

for y ∈ Ki. Therefore, by Lemma 3.2, (coSi)|D : D � Xi has a continuous selection
si : D → Ki such that si(x) ∈ coSi(x) ⊂ Ti(x) for each x ∈ D. Define s : D → K by
s(x)=∏i∈I si(x) for x ∈D. Since D is an admissible convex subset of E and s :D→D
is a continuous compact map, by Theorem 2.1, s has a fixed point x̂ ∈ K; that is,
x̂ = s(x̂) and hence x̂i = si(x̂)∈ Ti(x̂) for each i∈ I. This completes the proof.

Examples. (1) Yannelis and Prabhakar [73, Theorem 3.2]: I is a singleton, Ei is
locally convex, Si = Ti, and Xi is paracompact.
(2) Ding, Kim, and Tan [10, Theorem 2]: each Ei is locally convex.
(3) Husain and Tarafdar [20, Theorem 2.2]: each Ei is locally convex.

If all Xi’s are compact in Theorem 3.4, we do not need the admissibility of X as
follows.

Theorem 3.5. Let {Xi}i∈I be a family of compact convex spaces and, for each i∈ I,
let Si, Ti :X �Xi be maps satisfying
(1) coSi(x)⊂ Ti(x) for each x ∈X; and
(2) X =⋃y∈Xi IntS

−
i (y).

Then there exists an x̂ ∈X such that x̂i ∈ Ti(x̂) for all i∈ I.

Proof. By Lemma 3.1, for each i ∈ I, Ti has a continuous selection fi : X → Ki,
where Ki is a polytope in Xi. Note that each Ki is a compact convex subset of a finite
dimensional space Ei, which is a locally convex t.v.s. Define a map f :K→K by f(x)=∏

i∈I fi(x) for x ∈ K. Note that f is continuous and that K is admissible as a convex
subset of a locally convex t.v.s. E. Therefore, by Theorem 2.1, we have a fixed point
x̂ ∈X of f ; that is, x̂i = fi(x̂)∈ Ti(x̂) for all i∈ I. This completes the proof.

Examples. (1) If I is a singleton and Si = Ti, then Theorem 3.5 reduces to the well-
known Fan-Browder fixed point theorem (see Park [47]).
(2) For the case I is a singleton, Theorem 3.5 was due to Ben-El-Mechaiekh et al. [4,

Theorem 1] and Simons [64, Theorem 4.3]. This was extended by many authors (see
Park [47]).

4. Intersection theorems for sets with convex sections. The collectively fixed
point theorems in Section 3 can be reformulated to generalize various von Neumann
type intersection theorems for sets with convex sections as follows.

Theorem 4.1. Let {Xi}i∈I be a family of convex sets, each in a t.v.s. Ei, Ki a
nonempty compact subset of Xi, and Ai a closed subset of X such that Ai(xi) is a
nonempty convex subset of Ki for each xi ∈ Xi and each i ∈ I. If X is admissible in E,
then

⋂
i∈I Ai ≠∅.
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Proof. We use Theorem 3.3 with Ti : X � Ki defined by Ti(x) = Ai(xi) for x ∈ X.
Then, for each x ∈X, we have

(x,y)∈ Gr(Ti
)⇐⇒ (xi,xi)∈Xi×Xi and y ∈Ai

(
xi)⊂Ki

⇐⇒ (xi,xi,y
)∈Xi×

(
Ai∩

(
Xi×Ki

))
,

(4.1)

which implies that Gr(Ti) is closed in X ×Ki. Hence, each Ti is a closed map with
nonempty convex values. Therefore, by Theorem 3.3, there exists an x̂ ∈ K such that
x̂i ∈ Ti(x̂) for all i∈ I. Since x̂i ∈ Ki ⊂ Xi, we have x̂ = [x̂i, x̂i]∈Ai for all i∈ I. This
completes the proof.

Examples. (1) von Neumann [71]: I = {1,2} and Ei are Euclidean.
(2) Fan [11, Theorem 2]: Ei are locally convex and Xi =Ki for all i∈ I. This result was

applied in [11] to obtain a minimax theorem generalizing von Neumann’s and Ville’s.
(3) Idzik [22, Corollary 1]: each Ei is locally convex.

Note that, as the von Neumann intersection theorem is equivalent to Kakutani’s fixed
point theorem, Theorems 3.3 and 4.1 are easily seen to be equivalent.
From Theorem 3.4, we have the following equivalent form.

Theorem 4.2. Let {Xi}i∈I and {Ki}i∈I be the same as in Theorem 4.1. For each
i∈ I, Ai and Bi are subsets of X satisfying
(1) for each xi ∈Xi, ∅= coBi(xi)⊂Ai(xi)⊂Ki; and
(2) for each y ∈Ki, Bi(y) is open in Xi.

If coK is admissible in E, then we have
⋂

i∈I Ai ≠∅.

Proof. We apply Theorem 3.4 with Si, Ti : X � Ki given by Si(x) = Bi(xi) and
Ti(x)=Ai(xi) for each x ∈X. Then, for each i∈ I, we have the following:
(a) for each x ∈X, we have coSi(x)⊂ Ti(x)⊂Ki;
(b) for each y ∈Ki,

x ∈ S−i (y)⇐⇒y ∈ Si(x)⇐⇒ (x,y)∈ Gr(Si
)⊂X×Ki (4.2)

and, on the other hand,

x ∈ S−i (y)⇐⇒y ∈ Si(x)= Bi
(
xi)⇐⇒ (xi,y

)∈ Bi. (4.3)

Hence,

S−i (y)=
{
x = [xi,xi

]∈X : xi ∈ Bi(y), xi ∈Xi
}= Bi(y)×Xi. (4.4)

Note that S−i (y) is open in X =Xi×Xi.
Therefore, by Theorem 3.4, there exists an x̂ ∈K such that x̂ ∈ Tx̂ =∏i∈I Ti(x̂); that

is, x̂i ∈ Ti(x̂)= Ai(x̂i) for all i∈ I. Hence, x̂ = [x̂i, x̂i]∈
⋂

i∈I Ai ≠∅. This completes
the proof.

From Theorem 3.5, we have the following equivalent form.
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Theorem 4.3. Let {Xi}i∈I be a family of compact convex spaces and, for each i∈ I,
let Ai and Bi are subsets of X satisfying the following:
(1) for each xi ∈Xi, ∅= coBi(xi)⊂Ai(xi); and
(2) for each y ∈Xi, Bi(y) is open in Xi.

Then we have
⋂

i∈I Ai ≠∅.

Proof. Apply Theorem 3.5 instead of Theorem 3.4 and follow the proof of
Theorem 4.2.

Examples. (1) Fan [12, Théorème 1]: I is finite and Ai = Bi for all i∈ I.
(2) Fan [13, Theorem 1′]: I = {1,2} and Ai = Bi for all i∈ I.
From these results, Fan [13] deduced an analytic formulation, fixed point theorems,

extension theorems of monotone sets, and extension theorems for invariant vector
subspaces.
(3) Ma [37, Theorem 2]: Ai = Bi for all i∈ I.
(4) Chang [9, Theorem 4.2] first obtained Theorem 4.3 with a different proof. She

also obtained a noncompact version of Theorem 4.3 as [9, Theorem 4.3].

5. Quasi equilibrium problems. Theorem 3.3 can be reformulated to the form of
a quasi-equilibrium theorem as follows.

Theorem 5.1. Let {Xi}i∈I be a family of convex sets, each in a t.v.s. Ei, Ki a
nonempty compact subset of Xi, Si : X � Ki a closed map, and fi,gi : X = Xi×Xi → R
u.s.c. functions for each i∈ I. Suppose that for each i∈ I,
(1) gi(x)≤ fi(x) for each x ∈X;
(2) the function Mi, defined on X by

Mi(x)= max
y∈Si(x)

gi
(
xi,y

)
, (5.1)

is l.s.c.; and
(3) for each x ∈X, the set

{
y ∈ Si(x) : fi

(
xi,y

)≥Mi(x)
}
, (5.2)

is convex.
If X is admissible in E, then there exists an x̂ ∈K such that for each i∈ I,

x̂i ∈ Si(x̂), fi
(
x̂i, x̂i

)≥Mi(x̂). (5.3)

Proof. For each i∈ I, define a map Ti :X �Ki by

Ti(x)=
{
y ∈ Si(x) : fi

(
xi,y

)≥Mi(x)
}
, (5.4)

for x ∈X. Note that each Ti(x) is nonempty by (1) since Si(x) is compact and gi(xi,·)
is u.s.c. on Si(x). We show that Gr(Ti) is closed in X×Ki. In fact, let (xα,yα)∈ Gr(Ti)
and (xα,yα)→ (x,y). Then

fi
(
xi,y

)≥ lim
α

fi
(
xi
α,yα

)≥ lim
α

Mi
(
xα
)

≥ lim
α

Mi
(
xα
)≥Mi(x)

(5.5)
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and, since Gr(Si) is closed in X×Ki, yα ∈ Si(xα) implies y ∈ Si(x). Hence (x,y) ∈
Gr(Ti). Now we apply Theorem 3.3. Then there exists an x̂ ∈ K such that x̂i ∈ Ti(x̂)
for each i ∈ I; that is, x̂i ∈ Si(x̂) and fi(x̂i, x̂i) ≥ Mi(x̂). This completes the proof.

Example. Idzik [21, Theorem 7], Marchi and Martínez-Legas [38, Theorem 5.1,
Corollary 5.1]: each Ei is locally convex, fi = gi is continuous, and Si is continuous. In
this case, (2) follows from Berge’s theorem.
If fi = gi = 0, then Theorem 5.1 reduces to Theorem 3.3.
We have another quasi-equilibrium theorem equivalent to Theorem 2.1 by following

the proof of Theorem 5.1.

Theorem 5.2. Let X be an admissible convex subset of a t.v.s. E, f : X×X → R an
u.s.c. function, and S :X �X a compact closed map. Suppose that
(1) the function M defined on X by

M(x)= max
y∈S(x)

f (x,y) for x ∈X, (5.6)

is l.s.c.; and
(2) for each x ∈X, the set

{
y ∈ S(x) : f(x,y)=M(x)

}
(5.7)

is acyclic.
Then there exists an x̂ ∈X such that

x̂ ∈ S(x̂), f (x̂, x̂)=M(x̂). (5.8)

Examples. (1) If f(x,y) = 0 for all x,y ∈ X, then Theorem 5.2 reduces to
Theorem 2.1. If f and S are continuous, then condition (1) holds by Berge’s theorem.
(2) For a locally convex t.v.s. E, particular forms of Theorem 5.2 were obtained by

Takahashi [67, Theorem 4] and Im and Kim [24, Theorem 1]. Those authors applied
their results to best approximation problems and optimization problems, respectively
(see also Park [48] and Park and Chen [56]).

6. Applications to variational inequalities. Theorem 5.2 can be used to give sim-
ple proofs of the variational inequalities of the Hartman-Stampacchia-Browder type
as follows:
(i) Hartman and Stampacchia [16, Lemma 3.1]: let K be a compact convex set in Rn

and B :K→Rn a continuous map. Then there exists a u0 ∈K such that
〈
B
(
u0
)
,v−u0

〉≥ 0 ∀v ∈K. (6.1)

Put X =K, f(x,y)= 〈B(x),−y〉, S(x)=K for x,y ∈K, and apply Theorem 5.2.
(ii) Browder [6, Theorem 3], [7, Theorem 2]: let E be a t.v.s. on which its topological

dual E∗ is equipped with a topology such that the pairing 〈 , 〉 : E∗×E→R is continuous.
Let K be an admissible compact convex subset of E, and T : K → E∗ continuous. Then
there exists a u0 ∈K such that

〈
T
(
u0
)
,v−u0

〉≥ 0 ∀v ∈K. (6.2)

Apply Theorem 5.2 as in (i).
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(iii) Lions and Stampacchia [36], Stampacchia [66], and Mosco [39]: let V be an inner
product space, X a compact convex subset of V , and a : V×V →R a continuous bilinear
form on V . Then for every v′ ∈ V∗, there exists a (unique) vector u∈X such that

a(u,u−w)≤ 〈v′,u−w〉 ∀w ∈X. (6.3)

Put E = V, S(x)=X for x ∈X,

f(u,w)= a(u,−w)−〈v′,−w〉 ∀u,w ∈X, (6.4)

and apply Theorem 5.2.
(iv) Karamardian [27, Lemma 3.2]: let X be an admissible compact convex subset of

a t.v.s. E, F a topological space, g : X → F a function, and ψ : X×F → R a function. If
for each y ∈ F, ψ(·,y) is quasiconvex on X and the function (u,v)� ψ(u,g(v)) is
continuous on X×X, then there exists an x̄ ∈X such that

ψ(x̄,g(x̄))≤ψ(x,g(x̄)) ∀x ∈X. (6.5)

Put S(x)=X, f(x,y)=−ψ(y,g(x)) for x,y ∈X, and apply Theorem 5.2.
Note that Karamardian [27] applied (iv) to obtain a variational inequality (v) below,

Fan’s best approximation theorem, and a solution of the generalized complementarity
theorem [27, Theorem 3.1].
(v) Karamardian [27, Corollary 3.1], Juberg and Karamardian [25, Lemma], Park [45,

Corollary 1.3]: let X be an admissible compact convex subset of a t.v.s. E, F a topological
space, and 〈 , 〉 : F ×E → R a function which is linear in the second variable. Suppose
that g : X → F is a function such that (x,y)� 〈g(x),y〉 is continuous on X×E. Then
there exists an x̄ ∈X such that

〈
g(x̄),y− x̄〉≥ 0 ∀y ∈X. (6.6)

Put S(x)=X, f(x,y)= 〈g(x),−y〉 for x,y ∈X, and apply Theorem 5.2.
(vi) Parida, Sahoo, and Kumar [43, Theorem 3.1], Behera and Panda [1, Theorem 2.2],

Siddiqi, Khaliq, and Ansari [63]: let X be an admissible compact convex subset of a t.v.s.
E on which E∗ is equipped with a topology such that the pairing 〈 , 〉 : E∗ ×E → R is
continuous, T :X → E∗ and θ :X×X → E continuous maps such that
(1) 〈T(y),θ(y,y)〉 ≥ 0 for all y ∈X; and
(2) for each y ∈X, the function 〈Ty,θ(·,y)〉 :X →R is quasiconvex.

Then there exists an x0 ∈X such that
〈
T
(
x0
)
,θ
(
y,x0

)〉≥ 0 ∀y ∈X. (6.7)

Put S(x)=X, f(x,y)=−〈T(x),θ(y,x)〉 for x,y ∈X, and apply Theorem 5.2.

Remarks. (1) Note that the statements (ii)–(vi) are more general than the original
ones.
(2) In the frame of the KKM theory, some of (i)–(vi) can be obtained without as-

suming the admissibility. However, in this section, we want to show the applicability
of Theorem 2.1.
(3) In [59], using the Idzik fixed point theorem [23], different versions of results of

this section were given.
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7. More variational inequalities. From Theorem 3.4 we have the following.

Theorem 7.1. Let X be a convex subset of a t.v.s. E, K a nonempty compact subset
of X, and S,T :X �K a map such that
(1) for each x ∈X, coS(x)⊂ T(x); and
(2) {IntS−(y)}y∈K covers X.

If coK is admissible in E, then T has a fixed point.

Remark. Theorem 7.1 for S = T is due to Ben-El-Mechaiekh et al. [3, Theorem 3.2]
whenever E is locally convex. Ben-El-Mechaiekh [2] raised a question whether the local
convexity can be eliminated. Later, Kim and Tan [30], Zhang [74], Chang and Zhang [8]
used Theorem 7.1 for S = T for a locally convex t.v.s. to obtain a type of variational
inequalities.

From Theorem 7.1, we deduce the following equilibrium theorem.

Theorem 7.2. Let X be a convex subset of a t.v.s., p,q :X×X →R functions, and K
a nonempty compact subset of X. Suppose that
(1) q(x,x)≤ 0 for all x ∈K;
(2) for each y ∈K, {x ∈X : p(x,y) > 0} is open in X;
(3) for each x ∈X, {y ∈K : q(x,y) > 0} ⊃ co{y ∈K : p(x,y) > 0}; and
(4) p(x,y)≤ 0 for all x ∈X and y ∈X\K.
If coK is admissible, then there exists an x0 ∈X such that

p
(
x0,y

)≤ 0 ∀y ∈X. (7.1)

Proof. Suppose that for each x ∈ X, there exists a y ∈ K such that p(x,y) > 0
and hence q(x,y) > 0 by (3). Define S,T :X �K by

S(x)= {y ∈K : p(x,y) > 0}, T (x)= {y ∈K : q(x,y) > 0} (7.2)

for each x ∈X. Then
(i) for each x ∈X, coS(x)⊂ T(x) by (3); and
(ii) for eachx ∈X, there exists ay ∈K such thaty ∈ S(x) orx ∈ S−(y)= {x ∈X :

p(x,y) > 0}. Since S−(y) is open in X by (2), X is covered by {IntS−(y)}y∈K .
Therefore, by Theorem 7.1, T has a fixed point x̂ ∈X; that is, x̂ ∈ T(x̂). Hence, x̂ ∈K
and q(x̂, x̂) > 0. This contradicts (1). Therefore, there exists an x0 ∈X such that

p
(
x0,y

)≤ 0 ∀y ∈K. (7.3)

However, this inequality holds for all y ∈X because of (4).

Let K be the real field R or the complex field C. In order to obtain variational in-
equalities related to multimaps, we need the following simple consequence of Berge’s
theorem.

Lemma 7.3. Let E be a t.v.s. overK, X a nonempty subset of E, F a topological space,
T : X � F an u.s.c. map with compact values, and 〈 , 〉 : F×E →K a function such that
for each y ∈ E, (f ,x)� Re〈f ,x−y〉 is l.s.c. on F×X. Then for each y ∈ E, the function
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x � �→ inf
f∈T(x)

Re〈f ,x−y〉 (7.4)

is l.s.c. on X.

Remark. Lemma 7.3 was recently given by Park and Chen [57, Lemma 2]. From
Lemma 7.3, we deduce the following.

Lemma 7.4. Let E be a t.v.s. over K, F a vector space over K, and 〈 , 〉 : F ×E → K
a bilinear function. Let X be a nonempty bounded subset of E such that, for each z ∈
F, y � 〈z,y〉 is continuous on X. Suppose that F has the η(F,E)-topology; that is, the
topology of uniform convergence on bounded subsets of E, and T : X � F is u.s.c. with
compact values. Then for each y ∈ E, the function

x � �→ inf
f∈T(x)

Re〈f ,x−y〉 (7.5)

is l.s.c. on X.

Proof. As in Kum [33, Lemma B], the pairing 〈 , 〉 : F ×X → K is continuous.
Therefore, by Lemma 7.3, the proof is completed.

Remarks. (1) Note that if F = E∗, the topological dual of E, then y � 〈z,y〉 is
obviously continuous for each z ∈ E∗.
(2) Particular forms of Lemma 7.4 were due to Browder [6, Lemma 1], Shih and Tan

[62, Lemma 1], Kim and Tan [30, Lemma 2], and Chang and Zhang [8, Lemma 2] with
proofs more lengthy than ours.

The following is the main result of Section 7.

Theorem 7.5. Let X be a bounded convex subset of a t.v.s. E over K, K a nonempty
compact subset of X, F a vector space over K with the η(F,E)-topology, and 〈 , 〉 :
F×E→K a bilinear function such that, for each z ∈ F, y � 〈z,y〉 is continuous on X.
Let T : X � F be an u.s.c. map with compact values, and α : X×X → R a function such
that
(1) for each x ∈X, α(x,x)= 0, α(x,·) is concave, and α(·,x) is l.s.c.; and
(2) for each x ∈X and y ∈X\K,

inf
f∈T(x)

Re〈f ,x−y〉+α(x,y)≤ 0. (7.6)

If coK is admissible, then there exists an x0 ∈X such that

inf
f∈T(x0)

Re
〈
f ,x0−y

〉+α(x0,y
)≤ 0 ∀y ∈X. (7.7)

Moreover, the set of all solutions x0 is a closed subset of X. Further if T(x0) is convex
and α(x0,·) is linear, then there exists an f0 ∈ T(x0) such that

Re
〈
f0,x0−y

〉+α(x0,y
)≤ 0 ∀y ∈X. (7.8)

Proof. We use Theorem 7.2 with p = q. Let

p(x,y)= inf
f∈T(x)

Re〈f ,x−y〉+α(x,y). (7.9)
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Then we have the following:
(i) p(x,x)= 0 by the property of 〈 , 〉 and (1).
(ii) For each y ∈K, {x ∈X : p(x,y) > 0} is open in X since x� p(x,y) is l.s.c. on

X by Lemma 7.4 and (1).
(iii) For each x ∈X, {y ∈K : p(x,y) > 0} is convex in K. In fact, for any y1,y2 ∈K

satisfying p(x,y1) > 0 and p(x,y2) > 0, let y = ty1+ (1− t)y2 for some t ∈ (0,1).
Then

p(x,y)= inf
f∈T(x)

Re
〈
f ,x−(ty1+(1−t)y2

)〉+α(x,ty1+(1−t)y2
)

≥ t inf
f∈T(x)

Re
〈
f ,x−y1

〉+(1−t) inf
f∈T(x)

Re
〈
f ,x−y2

〉+tα(x,y1
)+(1−t)α(x,y2

)

= tp
(
x,y1

)+(1−t)p(x,y2
)
> 0.

(7.10)

Note that y ∈K by (2).
(iv) For each y ∈X\K and x ∈X, we have p(x,y)≤ 0 by (2).
Therefore by Theorem 7.2, there exists an x0 ∈X such that

p
(
x0,y

)≤ 0 ∀y ∈X. (7.11)

Moreover, the set of all solutions x0 is
⋂
y∈X

{x ∈X : p(x,y)≤ 0}, (7.12)

which is the intersection of nonempty closed sets by (ii).
To prove the final assertion, suppose that T(x0) is convex andα(x0,·) is linear onX.

We define a function g : T(x0)×X →R by

g(f ,y)= Re〈f ,x0−y
〉+α(x0,y

)
for (f ,y)∈ T(x0)×X. (7.13)

Then g is linear in f ∈ T(x0) and in y ∈X. Note that for a given y ∈X, f � g(f ,y) is
continuous on F with the η(F,E)-topology. Therefore, by the Kneser minimax theorem
[32], we have

inf
f∈T(x0)

sup
y∈X

g(f ,y)= sup
y∈X

min
f∈T(x0)

g(f ,y). (7.14)

Since the right-hand side of (7.14) is less than or equal to zero by the first conclusion,
we have

inf
f∈T(x0)

sup
y∈X

g(f ,y)≤ 0. (7.15)

Since f � supy∈X g(f ,y) is l.s.c. and Tx0 is compact, there exists an f0 ∈ T(x0) such
that supy∈X g(f0,y)≤ 0. This completes the proof.

Remarks. (1) For a locally convex t.v.s. E, Theorem 7.5 reduces to Chang and Zhang
[8, Theorem 1] and Zhang [74, Theorem 3].
(2) In case E is locally convex, F = E∗, and α = 0, Theorem 7.5 reduces to Kim and

Tan [30, Theorem 1], which extends Browder [7, Theorem 6].
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(3) Note that in some cases we can choose a topology on F different from η(F,E)
and the assumption on the boundedness of X can be removed from Theorem 7.5. For
example, if we choose the topology σ(F,E) (see [57]) or in the case of a normed vector
space E and F = E∗ (see [30, Theorem3]), we need not to assume the boundedness ofX.

For a subset X of a t.v.s. E, the inward set IX(x) of X at x ∈ E is defined by

IX(x)= {x+r(y−x) : r > 0, y ∈X}, (7.16)

and ĪX(x) denotes its closure.
For a locally convex t.v.s. E, F = E∗, and α = 0, we have the following from

Theorem 7.5 [58].

Theorem 7.6. Let X be a bounded convex subset of a locally convex t.v.s. E, K a
nonempty compact subset of X, and T : X → E∗ a continuous map, where E∗ has the
η(E∗,E)-topology. Suppose that for each x ∈X and y ∈X\K, we have

Re〈T(x),x−y〉 ≤ 0. (7.17)

Then there exists an x0 ∈X such that

Re
〈
T
(
x0
)
,x0−y

〉≤ 0 ∀y ∈ ĪX
(
x0
)
. (7.18)

Moreover, the set of all solutions x0 is a closed subset of X.

Remarks. (1) Theorem 7.6 is due to Park and Kang [58, Corollary] and strengthens
[30, Corollary 2].
(2) In [58], Theorem 7.6 was used to obtain a far-reaching generalization of fixed

point theorems of Kim and Tan [30].

8. The Nash type equilibrium theorems. From the intersection Theorem 4.3, we
can deduce the following equivalent form of a generalized Fan type minimax theorem.

Theorem 8.1. Let {Xi}i∈I be a family of compact convex spaces and, for each i∈ I,
let fi,gi :X =Xi×Xi→R functions satisfying
(1) gi(x)≤ fi(x) for each x ∈X;
(2) for each xi ∈Xi, xi� fi(xi,xi) is quasiconcave on Xi; and
(3) for each xi ∈Xi, xi� gi(xi,xi) is l.s.c. on Xi.

Let {ti}i∈I be a family of real numbers. Then either
(a) there exists an i∈ I and an xi ∈Xi such that

gi
(
xi,xi

)≤ ti ∀xi ∈Xi; (8.1)

or (b) there exists an x ∈X such that

fi(x) > ti ∀i∈ I. (8.2)

Proof. Suppose that (a) does not hold; that is, for any i∈ I and any xi ∈Xi, there
exists an xi ∈Xi such that gi(xi,xi) > ti. Let

Ai =
{
x ∈X : fi(x) > ti

}
, Bi =

{
x ∈X : gi(x) > ti

}
(8.3)
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for each i∈ I. Then
(4) for each xi ∈Xi, ∅= Bi(xi)⊂Ai(xi);
(5) for each xi ∈Xi, Ai(xi) is convex; and
(6) for each y ∈Xi, Bi(y) is open in Xi.

Therefore, by Theorem 4.3, there exists an x ∈⋂i∈I Ai. This is equivalent to (b).

Examples. (1) Fan [12, Theorem 2], [13, Theorem 3]: I is finite and fi = gi for all
i ∈ I. From this, Fan [12, 13] deduced Sion’s minimax theorem [65], the Tychonoff
fixed point theorem, solutions to systems of convex inequalities, extremum problems
for matrices, and a theorem of Hardy-Littlewood-Pólya.
(2) Ma [37, Theorem 3]: fi = gi for all i∈ I.

Remarks. (1) We obtained Theorem 8.1 from Theorem 4.3. As was pointed out by
Fan [12] for his case, we can deduce Theorem 4.3 from Theorem 8.1 by considering
the characteristic functions of the sets Ai and Bi.
(2) The conclusion of Theorem 8.1 can be stated as follows: if

min
xi∈Xi

sup
xi∈Xi

gi
(
xi,xi

)
> ti ∀i∈ I, (8.4)

then (b) holds (see Fan [12, 13]).

From Theorem 4.3, we also obtain the following generalization of the Nash-Ma type
equilibrium theorems.

Theorem 8.2. Let {Xi} be a family of compact convex spaces and, for each i ∈ I,
let fi,gi :X =Xi×Xi→R be functions such that
(1) gi(x)≤ fi(x) for each x ∈X;
(2) for each xi ∈Xi, xi� fi(xi,xi) is quasiconcave on Xi;
(3) for each xi ∈Xi, xi� gi(xi,xi) is u.s.c. on Xi; and
(4) for each xi ∈Xi, xi� gi(xi,xi) is l.s.c. on Xi.

Then there exists a point x̂ ∈X such that

fi(x̂)≥ max
yi∈Xi

gi
(
x̂i,yi

) ∀i∈ I. (8.5)

Proof. For any ε > 0, we define

Aε,i =
{
x ∈X : fi(x) > max

yi∈Xi
gi
(
xi,yi

)−ε},

Bε,i =
{
x ∈X : gi(x) > max

yi∈Xi
gi
(
xi,yi

)−ε} (8.6)

for each i. Then
(1) for each xi ∈Xi, Bε,i(xi)⊂Aε,i(xi);
(2) for each xi ∈Xi, Aε,i(xi) is convex;
(3) for each xi ∈ Xi, Bε,i(xi) = ∅ since xi � gi(xi,xi) is u.s.c. on the compact

space Xi; and
(4) for each xi ∈Xi, Bε,i(xi) is open since xi� gi(xi,xi) is l.s.c. on Xi.
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Therefore, by applying Theorem 4.3, we have

⋂

i∈I
Aε,i ≠∅ ∀ε > 0. (8.7)

Since X is compact, there exists an x̂ ∈X such that fi(x̂)≥maxyi∈Xi gi(x̂i,yi) for all
i∈ I.

Examples. (1) In case of fi = gi and for a finite I, Theorem 8.2 reduces to Tan et al.
[68, Theorem 2.1].
(2) From Theorem 8.2, we obtain the following generalization of the Nash equilib-

rium theorem due to Ma [37, Theorem 4].

Theorem 8.3. Let {Xi}i∈I be a family of compact convex spaces and, for each i∈ I,
let fi : X → R be a continuous function such that for each xi ∈ Xi, xi � fi(xi,xi) is
quasiconcave on Xi. Then there exists a point x̂ ∈X such that

fi(x̂)= max
yi∈Xi

fi
(
x̂i,yi

) ∀i∈ I. (8.8)

Examples. (1) Nash [41, Theorem 1]: I is finite and Xi are subsets of Euclidean
spaces.
(2) Nikaido and Isoda [42, Theorem 3.2]: I is finite.
(3) Fan [13, Theorem 4]: I is finite.

Remark. In view of Theorem 8.2, the continuity of fi in Theorem 8.3 can be weak-
ened to component-wise u.s.c. and l.s.c., as Sion [65] generalized von Neumann’s min-
imax theorem [70].
Particular forms of results in this section can also be seen in Browder [7].

9. The Tarafdar type equilibrium theorems. In this section, we apply Theorem 3.4
to the existence of equilibrium points and maximal elements of an abstract economy.
An abstract economy Γ = (Xi,Ai,Bi,Pi)i∈I consists of an index set I of agents, a

choice set Xi in a t.v.s. Ei, constraint correspondences Ai,Bi : X =
∏

i∈I Xi � Xi, and
a preference correspondence Pi : X � Xi for each i ∈ I. An equilibrium point x =
{xi}i∈I ∈ X is the one satisfying xi ∈ Bi(x) and Ai(x)∩Pi(x) =∅ for each i ∈ I. We
say that x ∈X is a maximal point of the game (Xi,Pi)i∈I if Pi(x)=∅ for each i∈ I.

Theorem 9.1. Let Γ = (Xi,Ai,Bi,Pi)i∈I be an abstract economy such that, for each
i∈ I,
(1) Xi is a convex subset of a t.v.s. Ei and Ki is a nonempty compact subset of Xi;
(2) for each x ∈X, coAi(x)⊂ Bi(x)⊂Ki;
(3) D = coK ⊂⋃y∈Ki Int(A

−
i (y)∩(P−i (y)∪Fi)), where Fi = {x ∈X :Ai(x)∩Pi(x)=

∅}; and
(4) for each x = {xi}i∈I ∈X, xi ∉ coPi(x).

If D is admissible, Γ has an equilibrium point in K.

Proof. Let

Gi =
{
x ∈X :Ai(x)∩Pi(x)≠∅

} ∀i∈ I. (9.1)
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For each i∈ I, we define two maps Si,Ti :X �Ki by

Si(x)=


Ai(x)∩coPi(x) if x ∈Gi,

Ai(x) if x ∈ Fi,

Ti(x)=


Bi(x)∩coPi(x) if x ∈Gi,

Bi(x) if x ∈ Fi.

(9.2)

Then for each i∈ I and x ∈X, we have ∅= coSi(x)⊂ Ti(x); and for each y ∈Ki, we
have

S−i (y)=
[(
A−i (y)∩

(
coPi

)−(y))∩Gi
]∪[A−i (y)∩Fi

]

⊃ [(A−i (y)∩P−i (y)
)∩Gi

]∪[A−i (y)∩Fi
]

= [A−i (y)∩P−i (y)
]∪[A−i (y)∩Fi

]

=A−i (y)∩
(
P−i (y)∪Fi

)
,

(9.3)

which implies D = coK ⊂⋃y∈Ki IntS
−
i (y) by (3). Therefore, all of the requirements of

Theorem 3.4 are satisfied. Hence, there exists an x̄ ∈ K such that x̄i ∈ Ti(x̄) for each
i ∈ I. By (4), x̄i ∉ coPi(x̄). Therefore, x̄i ∈ Bi(x̄) for each i ∈ I by the definition of Ti
and hence Ai(x̄)∩Pi(x̄)=∅. This shows that x̄ is an equilibrium point of Γ .

Remark. We followed the proof of Tarafdar [69, Theorem 3.1]. If all of Ei’s are
locally convex, then Theorem 9.1 reduces to Ding et al. [10, Theorem 5] and Husain
and Tarafdar [20, Theorem 3.1].

Theorem 9.2. Let Γ = (Xi,Pi)i∈I be a qualitative game such that, for each i∈ I,
(1) Xi is a convex subset of a t.v.s. Ei, and Ki is a nonempty compact convex subset

of Xi;
(2) K ⊂⋃y∈Ki IntX(P

−
i (y)∪Fi), where Fi = {x ∈X : Pi(x)=∅}; and

(3) for each x = {xi}i∈I ∈X, xi ∉ coPi(x).
If coK is admissible, then Γ has a maximal element in K.

Proof. For each i ∈ I, define a map Ai : X � Ki by Ai(x) = Ki for x ∈ X. Now we
can apply Theorem 9.1 with Ai = Bi, and the conclusion follows.

Remark. If each Ei is locally convex, then Theorem 9.2 reduces to Husain and
Tarafdar [20, Theorem 3.2].

10. The Yannelis-Prabhakar type equilibrium theorems. In this section, we point
out that some modifications or generalizations of the Yannelis-Prabhakar type equi-
librium theorems [73] can also be obtained in the frame of our method in this paper
for not-necessarily locally convex t.v.s.
We list some of them as follows.

Theorem 10.1. Let Γ = (Xi,Ai,Pi)i∈I be an abstract economy such that, for each
i∈ I,
(1) Xi is a convex subset of a t.v.s. Ei and Ki is a nonempty compact subset of Xi;
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(2) for each x ∈ X, there exists a nonempty subset Bi(x) such that coBi(x) ⊂
Ai(x)⊂Ki;

(3) Āi :X �Ki defined by Āi(x)=Ai(x) for x ∈X is a closed map;
(4) P̄i :X �Xi is a closed correspondence, where Pi(x) is (possibly empty) convex for

each x ∈X;
(5) the set Wi = {x ∈ X : Bi(x)∩ Pi(x) ≠ ∅} is a (possibly empty) closed proper

subset of X; and
(6) for each x ∈Wi, xi ∉ P̄i(x).

If X is admissible in E, then Γ has an equilibrium choice x̂ ∈K; more precisely, for each
i∈ I,

x̂i ∈ Āi(x̂), Bi(x̂)∩Pi(x̂)=∅. (10.1)

Proof. Just follow the proof of Kim et al. [28] or Kim [29] using Theorem 2.1
instead of Himmelberg’s.

Example. If each Ei is locally convex, then Theorem 10.1 reduces to Kim et al. [28]
and Kim [29].

Theorem 10.2. Let Γ = (Xi,Ai,Pi)i∈I be an abstract economy such that, for each
i∈ I, conditions (1)–(3) of Theorem 10.1 and the following hold.
(4) for each y ∈Ki, B−i (y) is open in X;
(5) for each y ∈Xi, P−i (y) is open in X;
(6) for each x ∈X, xi ∉ coPi(x); and
(7) the set {x ∈X : coBi(x)∩coPi(x)=∅} is paracompact.

If X is admissible in E, then Γ has an equilibrium choice x̂ ∈ K as in the conclusion of
Theorem 10.1.

Proof. Just follow the proof of Ding et al. [10, Theorem 4] using Theorem 2.1
instead of Himmelberg’s.

Example. If each Ei is locally convex, then Theorem 10.2 reduces to Ding et al. [10,
Theorem 4].

From Theorem 10.2, we immediately have the following.

Theorem 10.3. Let Γ = (Xi,Ai,Pi)i∈I be an abstract economy, where I is countable,
such that, for each i∈ I, the following hold.
(1) Xi is a nonempty compact convex subset of a t.v.s. Ei;
(2) Ai(x) is convex for all x ∈X;
(3) the map Āi :X �Xi defined by Āi(x)=Ai(x) for all x ∈X is closed;
(4) for each y ∈Xi, A−i (y) is open in X;
(5) for each y ∈Xi, P−i (y) is open in X (P may have empty values); and
(6) xi ∉ coPi(x) for all x ∈X.

If Xi is metrizable for each i∈ I and if X is admissible in E, then Γ has an equilibrium
choice x̂ ∈X; that is, x̂i ∈ Āi(x) and Pi(x̂)∩Ai(x̂)=∅.

Example. If each Ei is locally convex, then Theorem 10.3 reduces to Yannelis and
Prabhakar [73, Theorem 6.1].
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Remarks. (1) If Xi is not metrizable and X is not admissible, then we may not have
an equilibrium in Theorem 10.3. But, even in this case, we have an equilibrium choice
for certain “subeconomy.”
Since X is compact, from (2) and (3), there exists a continuous selection fi : X → Ki

of Ai :X �Xi, by Lemma 3.1, where Ki is a polytope in Xi. Note that Ki is metrizable.
Now define A′i, P

′
i :K �Ki by

A′i(x)=Ai(x)∩Ki, P ′i (x)= Pi(x)∩Ki, for x ∈K. (10.2)

Note that A′i(x) is nonempty since fi(x) ∈ Ai(x)∩Ki = A′i(x). It is clear that the
“subeconomy” Γ ′ = (Ki,A′i,P

′
i )i∈I satisfies all of the requirements (1)–(6) replacing

(X,Xi,Ai,Pi) by (K,Ki,A′i,P
′
i ). Moreover, X is admissible as a subset of a locally con-

vex t.v.s. as in the proof of Theorem 3.5. Therefore, there exists an x̂ ∈ K ⊂ X such
that

x̂i ∈ Ā′i(x)⊂ Āi(x), P ′i (x̂)∩A′i(x̂)=∅, ∀i∈ I. (10.3)

(2) In [49], different versions of Theorems 8.1, 8.2, 8.3, 9.1, 9.2, 10.1, 10.2, and 10.3
were given by using the Idzik fixed point theorem [56].
(3) Finally, for further applications of Theorem 2.1, the reader may consult [52,

54, 44].
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