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Abstract. Nasef and Noiri (1997) introduced and investigated the class of almost precon-
tinuous functions. In this paper, we further investigate some properties of these functions.
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1. Introduction. Singal and Singal [24] introduced the notion of almost continu-
ity. Feeble continuity was introduced by Maheshwari et al. [8]. As a generalization of
almost continuity and feeble continuity, Maheshwari et al. [7] introduced the notion
of almost feeble continuity. Nasef and Noiri [12] introduced a new class of functions
called almost precontinuous functions. They showed that almost precontinuity is a
generalization of each of almost feeble continuity and almost α-continuity [17].
The purpose of this paper is to investigate some more properties of almost precon-

tinuous functions. It turns out that almost precontinuity is stronger than almost weak
continuity introduced by Jankovĭc [5].

2. Preliminaries. Throughout this paper, (X,τ) and (Y ,σ) (or X and Y ) are always
topological spaces. A set A in a space X is called preopen [11] (respectively, semi-

open [6] and α-open [13]) if A⊂ Ā
◦
(respectively, A⊂ Ā◦ and A⊂ Ā◦◦). The complement

of a preopen set is called preclosed.
The intersection of all preclosed sets containing a subsetA is called the preclosure [2]

of A and is denoted by Pcl(A). The preinterior of A is the union of all preopen sets of
X contained in A. The family of all preopen sets of X will be denoted by PO(X). For a
point x of X, we put PO(X,x) = {U | x ∈ U ∈ PO(X)}. A set A is called regular open
(respectively, regular closed) if A= Ā

◦
(respectively, A= Ā◦).

Definition 2.1. A function f :X → Y is called almost continuous [24] (in the sense
of Singal) at x ∈ X if for every open set V in Y containing f(x), there is an open set
U in X containing x such that f(U)⊂ V̄ ◦. If f is almost continuous at every point of
X, then it is called almost continuous.

Definition 2.2. A function f :X → Y is called almost weakly continuous [5] (briefly
a.w.c.) if f−1(V)⊂ f−1(V̄ )◦ for every open set V of Y .

Remark 2.3. In [20, Theorem 3.1] Popa and Noiri have defined the following point-
wise description of almost weak continuity: a function f : X → Y is a.w.c. if and
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only if for each point x ∈ X and every open set V in Y containing f(x), there
exists U ∈ PO(X,x) such that f(U)⊂ V̄ . The referee has given a global description as
follows: a function f : X → Y is a.w.c. if and only if for each open set V of Y , there
exists U ∈ PO(X) such that f−1(V)⊂U ⊂ f−1(V̄ ).

Definition 2.4. A function f : X → Y is called almost precontinuous [12] (briefly
a.p.c.) at x ∈ X if for each regular open set V ⊂ Y containing f(x), there exists U ∈
PO(X,x) such that f(U) ⊂ V . If f is almost precontinuous at every point of X, then
it is called almost precontinuous.

Definition 2.5. A function f :X → Y is said to beweaklyα-continuous [16] (briefly
w.α.c.) if for each x ∈ X and each open set V ⊂ Y containing f(x), there exists an α-
open set U containing x such that f(U)⊂ V̄ .

Definition 2.6. A function f : X → Y is said to be precontinuous [11] if for every
open set V of Y , the inverse image of V is preopen in X.

Remark 2.7. Between almost precontinuity and precontinuity, we have the follow-
ing relationship: a function f :X → Y is a.p.c. if and only if f :X → Ys is precontinuous,
where Ys denotes the semi-regularization of Y .

Remark 2.8. It easily follows from [20, Theorem 3.1] that precontinuity implies
almost precontinuity and almost precontinuity implies almost weak continuity. How-
ever, the converses are not true as the following examples show.

Example 2.9. Let X = {a,b,c}, τ = {X,∅,{a},{c},{a,c}} and σ = {X,∅,{a},{b},
{a,b},{b,c}}. Define a function f : (X,τ) → (X,σ) as follows: f(a) = f(b) = b and
f(c) = c. Then f is an almost continuous and hence a.p.c. function which is not
precontinuous. Because, there exists {b} ∈ σ such that f−1({b}) ∉ PO(X,τ).

Example 2.10. Let X = {a,b,c,d} and τ = {X,∅,{b},{c},{a,b},{b,c},{a,b,c},
{b,c,d}}. Define a function f : (X,τ)→ (X,τ) as follows: f(a)= c, f (b)= d, f(c)=
b, and f(d)= a. Then f is a.w.c. However, f is not a.p.c. because there exists a regular
open set {c} of (X,τ) such that f−1({c}) ∉ PO(X,τ).
Recall that a filter base � is called δ-convergent [25] (respectively, p-convergent [4])

to a point x in X if for any open set U containing x (respectively, any U ∈ PO(X,x)),
there exists B ∈� such that B ⊂ Ū◦ (respectively, B ⊂U ).

3. Some properties. In [9], Mashhour et al. introduced the following notion.

Definition 3.1. A function f : X → Y is called M-preopen if the image of each
preopen set is preopen.

We have the following result.

Theorem 3.2. If f :X → Y is M-preopen a.w.c., then f is a.p.c.

Proof. Suppose that x ∈ X and V is any open set containing f(x). Since f is
a.w.c., then there exists U ∈ PO(X,x) such that f(U)⊂ V̄ [20, Theorem 3.1]. Since f is
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M-preopen, f(U) is preopen in Y and hence f(U) ⊂ f(U)◦ ⊂ V̄ ◦ = V̄ ◦. It follows that
f(U)⊂ V̄ ◦. Hence f is a.p.c.
Recall that a space X is called submaximal if every dense subset of X is open in X. It

is shown in [22, Theorem 4] that a space X is submaximal if and only if every preopen
set of X is open in X.

Theorem 3.3. If a function f : X → Y is a.p.c., then for each point x ∈ Xand each
filter base � in X p-converging to x, the filter base f(�) is δ-convergent to f(x). If X
is submaximal, then the converse also holds.

Proof. Suppose that x belongs to X and � is any filter base in X p-converging to
x. By the almost precontinuity of f , for any regular open set V in Y containing f(x),
there exists U ∈ PO(X,x) such that f(U) ⊂ V . But � is p-convergent to x in X, then
there exists B ∈� such that B ⊂ U . It follows that f(B)⊂ V . This means that f(�) is
δ-convergent to f(x).
Now suppose that X is submaximal. Let x be a point in X and V any regular open

set containing f(x). Since X is submaximal, every preopen set of X is open [22, The-
orem 4]. If we set � = PO(X,x), then � will be a filter base which p-converges to x.
So there exists U in � such that f(U)⊂ V . This completes the proof.
The following corollary is suggested by the referee.

Corollary 3.4. Let X be a submaximal space. Then a function f : X → Y is a.p.c.
if and only if f :X → Ys is continuous.

Definition 3.5. A space X is called pre-T2 [18] if for every pair of distinct points
x and y in X, there exist preopen sets U and V containing x and y , respectively, such
that U∩V =∅.

Theorem 3.6. If f :X → Y is an a.p.c. injection and Y is Hausdorff, then X is pre-T2.

Proof. Since f : X → Y is a.p.c. injective, f : X → Ys is a precontinuous injection
and Ys is Hausdorff. Let x and y be any distinct points of X. Since f is injective,
f(x)≠ f(y) and hence there exist disjoint open setsV andW of Ys such that f(x)∈ V
and f(y) ∈ W . Therefore, we obtain f−1(V) ∈ PO(X,x), f−1(W) ∈ PO(X,y), and
f−1(V)∩f−1(W)=∅. This shows that X is pre-T2.
Recall that a space X is called a door space if every subset of X is either open

or closed. Reilly and Vamanamurthy proved the following result in [22, Theo-
rem 2].

Lemma 3.7. If X is a door space, then every preopen set in X is open.

Theorem 3.8. Let f ,g : X → Y be functions, Y Hausdorff and X a door space. If f
and g are a.p.c. functions, then the set E = {x ∈X | f(x)= g(x)} is closed in X.

Proof. Let x ∈X−E. It follows that f(x)≠ g(x). Since Y is Hausdorff, then there
exist open sets V1 and V2 in Y such that f(x)∈ V1, g(x)∈ V2, and V1∩V2 =∅. Since
V1 and V2 are disjoint, we obtain V̄ ◦1 ∩ V̄ ◦2 = ∅. Since f and g are a.p.c., there exist
preopen sets U1 and U2 in X containing x such that f(U1) ⊂ V̄ ◦1 and g(U2) ⊂ V̄ ◦2 . Put
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U = U1 ∩U2, so, by Lemma 3.7, U is an open set in X containing x. Thus we have
f(U)∩g(U)=∅. It follows that x ∉ Ē. Hence Ē ⊂ E and E is closed in X.

Lemma 3.9 (Popa and Noiri [20]). If A is an α-open set of a space X and B ∈ PO(X),
then A∩B ∈ PO(X).

Theorem 3.10. Let f ,g : X → Y be functions and Y Hausdorff. If f is w.α.c. and g
is a.p.c., then the set E = {x ∈X | f(x)= g(x)} is preclosed in X.

Proof. Suppose that x ∉ E. Then f(x) ≠ g(x). Since Y is Hausdorff, there exist
open sets V andW of Y such that f(x)∈ V, g(x)∈W , and V∩W =∅; hence V̄∩W̄ ◦ =
∅. Since f is w.α.c., there exists an α-open set U containing x such that f(U) ⊂ V̄ .
Since g is a.p.c., there exists G ∈ PO(X,x) such that g(G) ⊂ W̄ ◦. Put O = U∩G, then
O ∈ PO(X,x) by Lemma 3.9 and O ∩ E = ∅. Therefore, we obtain x ∉ Pcl(E). This
shows that E is preclosed in X.

Corollary 3.11 (Popa [19]). Let f ,g : X → Y be functions and Y Hausdorff. If f is
continuous and g is precontinuous, then the set E = {x ∈X | f(x)= g(x)} is preclosed
in X.

Theorem 3.12. Let f : X1 → Y and g : X2 → Y be two a.p.c. functions. If Y is a
Hausdorff space, then the set {(x1 ×x2) ∈ X1 ×X2 | f(x1) = g(x2)} is preclosed in
X1×X2.

Proof. Let (x1,x2) ∉ E. Then f(x1) ≠ g(x2). Since Y is Hausdorff, there exist
disjoint open neighborhoods V and W of f(x1) and g(x2), respectively. Since V and
W are disjoint, we have V̄ ◦∩W̄ ◦ =∅. Since f andg are a.p.c., there existU ∈ PO(X1,x1)
and G ∈ PO(X2,x2) such that f(U) ⊂ V̄ ◦ and g(G) ⊂ W̄ ◦, respectively. Put O = U ×
G, then (x1,x2) ∈ O, O is preopen in X1×X2 and O∩E = ∅. Therefore, we obtain
(x1,x2)∈ Pcl(E). This shows that E is preclosed in X1×X2.

Corollary 3.13. If Y is Hausdorff and f :X → Y is an a.p.c. function, then the set
E = {(x,y) | f(x)= f(y)} is preclosed in X×X.

Proof. By setting X =X1 =X2 and g = f in Theorem 3.12, the result follows.

Corollary 3.14 (Mashhour et al. [11]). If f : X → Y is a precontinuous function
and Y is Hausdorff, then the set {(x,y) | f(x)= f(y)} is preclosed in X×X.

Corollary 3.15 (Popa [19]). Let f : X1 → Y and g : X2 → Y be two precontinuous
functions. If Y is a Hausdorff space, then the set {(x,y) | f(x)= g(y)} is preclosed in
X1×X2.
We introduce the following concept.

Definition 3.16. For a function f : X → Y , the graph G(f) = {(x,f (x)) | x ∈ X}
is called strongly almost preclosed if for each (x,y) ∈ X×Y −G(f), there exist U ∈
PO(X,x) and a regular open set V containing y such that (U×V)∩G(f)=∅.

Lemma 3.17. A function f : X → Y has the strongly almost preclosed graph if and
only if for each x ∈ X and y ∈ Y such that f(x) ≠ y , there exist U ∈ PO(X,x) and a
regular open set V containing y such that f(U)∩V =∅.
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Proof. It is an immediate consequence of the above definition.

Theorem 3.18. If f : X → Y is a.w.c. and Y is Hausdorff, then G(f) is strongly
almost preclosed.

Proof. Suppose that (x,y) is any point of X×Y −G(f). Then y ≠ f(x). But Y is
Hausdorff and hence there exist open setsG1 andG2 in Y such thaty ∈G1, f (x)∈G2,
and G1∩G2 =∅. Since G1 and G2 are disjoint, we obtain Ḡ◦1∩Ḡ2 =∅. And since f is
a.w.c., then there exists U ∈ PO(X,x) such that f(U) ⊂ Ḡ2. Hence, f(U)∩ Ḡ◦1 =∅. It
follows from Lemma 3.17 that G(f) is strongly almost preclosed.

Recall that a subset A of a space X is said to be strongly compact relative to X [9]
(respectively, N-closed relative to X [1]) if every cover of A by preopen (respectively,
regular open) sets of X has a finite subcover.

Definition 3.19. A space X is called strongly compact [10] (respectively, nearly
compact [23]) if every preopen (respectively, regular open) cover of X has a finite
subcover.

Theorem 3.20. If f :X → Y is a.p.c. and K is a strongly compact relative to X, then
f(K) is N-closed relative to Y .

Proof. Let {Gα | α ∈ A} be any cover of f(K) by regular open sets of Y . Then,
{f−1(Gα) | α ∈ A} is a cover of K by preopen sets of X [12, Theorem 3.1]. Since
K is strongly compact relative to X, there exists a finite subset A◦ of A such that
K ⊂ ∪{f−1(Gα) | α ∈ A◦}. Therefore, we obtain f(K) ⊂ ∪{Gα | α ∈ A◦}. This shows
that f(K) is N-closed relative to Y .

Corollary 3.21. If f :X → Y is an a.p.c. surjection and X is strongly compact, then
Y is nearly compact.

Definition 3.22. A function f : X → Y is said to be δ-continuous [14] if for each
x ∈ X and each open set V of Y containing f(x), there exists an open set U in X
containing x such that f(Ū◦)⊂ V̄ ◦.

Theorem 3.23. If f :X → Y is a.p.c. and g : Y → Z is δ-continuous, then g◦f :X → Z
is a.p.c.

Proof. The proof is obvious and is omitted.

Theorem 3.24. If f :X → Y is an M-preopen surjection and g : Y → Z is a function
such that g◦f :X → Z is a.p.c., then g is a.p.c.

Proof. Let y ∈ Y and x ∈ X such that f(x) = y . Let G be a regular open set
containing (g◦f)(x). Then there exists U ∈ PO(X,x) such that g(f(U))⊂G. Since f
isM-preopen, f(U)∈ PO(Y ,y) such that g(f(U))⊂G. This shows that g is a.p.c. aty .

Theorem 3.25. If f :X → Y is a.p.c. and A is a semi-open set of X, then the restric-
tion f |A :A→ Y is a.p.c.

Proof. Let V be any regular open set of Y . Since f is a.p.c., the inverse image
of V is preopen in X [12, Theorem 3.1] and (f | A)−1(V) = A∩ f−1(V). Since A is
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semi-open in X, it follows from [11, Lemma 2.1] that A∩f−1(V)∈ PO(A). Therefore,
f |A is a.p.c.

Remark 3.26. It should be noted that every restriction of an a.p.c. function is not
necessarily a.p.c. In [15, proof of Theorem 6.2.5], it is pointed out that there is a
precontinuous function whose restriction to a not semi-open set is not even a.w.c.
It might also be noted that neither is almost precontinuity for a function f : X → Y
preserved by restriction of the codomain to f(X). The following example is due to
referee.

Example 3.27. Let f :Q→ R be the inclusion map of the rationals into the reals.
Let the domain have the usual subspace topology and let the nonempty open sets in
the codomain have the form P∪A, where P =R−Q is the set of irrationals and where
A⊆Q. Then Rs is indiscrete so that f is a.p.c. Yet, f(Q) is a discrete subspace of R so
that f :Q→ f(Q) is not a.p.c. since not every subset of the domain space is preopen.

Theorem 3.28. Let f :X → Y be a function and x ∈X. If there exists U ∈ PO(X,x)
such that the restriction of f to U is a.p.c. at x, then f is a.p.c. at x.

Proof. Suppose that V2 is any regular open set containing f(x). Since f | U is
a.p.c. at x, there exists V1 ∈ PO(U,x) such that f(V1) = (f | U)(V1) ⊂ V2. Since U ∈
PO(X,x), it follows from [11, Lemma 2.2] that V1 ∈ PO(X,x). This shows clearly that
f is a.p.c. at x.

Definition 3.29. Let A⊂X. The preboundary pFr(A) of A is defined by pFr(A)=
Pcl(A)∩Pcl(X−A).

Theorem 3.30. The set of all points x ofX at which f :X → Y is not a.p.c. is identical
with the union of the preboundaries of the inverse images of regular open subsets of Y
containing f(x).

Proof. If f is not a.p.c. at x ∈X, then there exists a regular open set V containing
f(x) such that for every U ∈ PO(X,x), f (U)∩ (Y − V) ≠ ∅. This means that for
every U ∈ PO(X,x), we must have U ∩ (X−f−1(V)) ≠ ∅. Hence, it follows from [2,
Lemma 2.2] that x ∈ Pcl(X−f−1(V)). But x ∈ f−1(V) and hence x ∈ Pcl(f−1(V)). This
means that x belongs to the preboundary of f−1(V). Suppose that x belongs to the
preboundary of f−1(V1) for some regular open subset V1 of Y such that f(x) ∈ V1.
Suppose that f is a.p.c. at x. Then there exists U ∈ PO(X,x) such that f(U) ⊂ V1.
Then, we have: x ∈U ⊂ f−1(f (U))⊂ f−1(V1). This shows that x is a preinterior point
of f−1(V1). Therefore, we have x ∉ Pcl(X−f−1(V1)) and x �∈ pFr(f−1(V1)). But this is
a contradiction. This means that f is not a.p.c.

Recall that a subset A of a space X is said to be H-set [25] or quasi H-closed relative
to X [21] if for every cover {Ui | i ∈ I} of A by open sets of X, there exists a finite
subset I0 of I such that A⊂∪{Ūi | i∈ I0}.

Theorem 3.31. If f : X → Y is a.w.c. and K is strongly compact relative to X, then
f(K) is quasi H-closed relative to Y .

Proof. The proof is similar to the one of Theorem 3.20.
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Recall that a function f :X → Y is called r -preopen [3] if the image of a preopen set
in X is open in Y .

Theorem 3.32. Let f :X → Y be an a.w.c. bijection. If X is strongly compact and Y
is Hausdorff, then f is r -preopen.

Proof. Suppose that U is a preopen subset of X. Then X−U is preclosed subset
of the strongly compact space X. This means that X−U is strongly compact relative
to X. By Theorem 3.31, f(X−U) is quasi H-closed relative to Y . Since f is bijective,
we have f(X−U)= Y −f(U), where Y −f(U) is quasi H-closed relative to Y . Since Y
is Hausdorff, therefore Y −f(U) is closed in Y . Hence f(U) is open in Y .

Corollary 3.33. Let f : X → Y be an a.p.c. bijection. If X is strongly compact and
Y is Hausdorff, then f is r -preopen.

Proof. Since every a.p.c. function is a.w.c., hence the proof follows from Theo-
rem 3.32.

Definition 3.34. Let E and F be any two subsets of X. E and F are called strongly
p-separated if there exist disjoint preopen sets U and V such that E ⊂U and F ⊂ V .

Definition 3.35. A function f : X → Y is said to be strongly preclosed [18] if the
image of a preclosed set in X is preclosed in Y .

Definition 3.36. A space X is called strongly prenormal [18] if for disjoint pre-
closed subsets E and F of X, there exist disjoint preopen sets U and V such that E ⊂U
and F ⊂ V .

Theorem 3.37. If f is an a.p.c., strongly preclosed function of strongly pre-normal
spaceX onto a space Y , then any two disjoint regular closed subsets of Y can be strongly
p-separated.

Proof. Let F and D be two disjoint regular closed subsets of Y . Then f−1(F)
and f−1(D) are disjoint, preclosed subsets of the strongly prenormal space X and
therefore there exist preopen sets U and W such that U ∩W = ∅, f−1(F) ⊂ U , and
f−1(D)⊂W . Suppose that

P1 =
{
y | f−1(y)⊂U}, P2 =

{
y | f−1(y)⊂W}. (3.1)

Since f is strongly preclosed, then P1 and P2 are preopen sets. Then we have

F ⊂ P1, D ⊂ P2, P1∩P2 =∅. (3.2)

Nowwe obtain the following results whose proofs are omitted since they are straight-
forward.
Recall that a space X is said to be extremally disconnected if the closure of each open

set of X is open in X.

Theorem 3.38. If f : X → Y is a.w.c. and Y is extremally disconnected, then f is
a.p.c.
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