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TΩ-SEQUENCES IN ABELIAN GROUPS
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Abstract. A sequence in an abelian group is called a T -sequence if there exists a Hausdorff
group topology in which the sequence converges to zero. This paper describes the funda-
mental system for the finest group topology in which this sequence converges to zero.
A sequence is a TΩ-sequence if there exist uncountably many different Hausdorff group
topologies in which the sequence converges to zero. The paper develops a condition which
insures that a sequence is a TΩ-sequence and examples of TΩ-sequences are given.
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1. Introduction. LetG be an abelian group and let 〈an〉∞n=1 be a nontrivial sequence
in G. If 0 is the identity element in G, we can ask what is the finest group topology
on G such that 〈an〉∞n=1 converges to zero? In the terminology of [2], we are placing
the topology of a nonconstant sequence on the subspace {an}∞n=1∪{0} ⊆G and find-
ing the associated Graev topology. When this topology is Hausdorff, Zelenyuk, and
Protasov [4] say that 〈an〉∞n=1 is a T -sequence. The purpose of this paper will be to ex-
tend some of the results of Zelenyuk and Protasov concerning T -sequences in specific
abelian groups. We will develop a fundamental system approach to defining group
topologies and use this approach to consider the cardinality of the set of Hausdorff
group topologies in which a specific sequence converges to zero. This extends results
found in [1].
We assume as additional hypothesis throughout this paper that G is an abelian

group and that each sequence under consideration is a one-to-one function from the
natural numbers N into G. Also the notations Z,Q, R, and S1 will denote the integers,
rationals, real, and the circle group, respectively. The subgroup of S1 which is the set
of solutions of the form k/pn, where k∈ Z, p is prime and n∈N, we will denote it as
Z(p∞).

2. Fundamental systems generated by sequences. Since G is abelian it is possible
to define various fundamental systems in a subgroup and use them as a fundamental
system for the entire group. We shall use the terms of the sequence 〈an〉∞n=1 to define
such a fundamental system for the subgroup generated by {an}∞n=1. Let T(n)= {0}∪
{ak}∞k=n∪{−ak}∞k=n, where −ak denotes the inverse of ak in G, and let ζ denote the
collection of all increasing sequences in N. Then for C,D ∈ ζ we define U(C,D) =
{g1+g2+···+gk | gi ∈ ciT(di) for i∈ {1,2, . . . ,k}; k∈N}.

Proposition 2.1. �= {U(C,D) | C,D ∈ ζ} is a fundamental system for G.
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Proof. Suppose that U(C,D) and U(C′,D′) are elements of �. For each i ∈ N let
c′′ =min{ci,c′i} and d′′ =max{di,d′i}. Define C′′ = 〈c′′i 〉∞i=1 and D′′ = 〈d′′i 〉∞i=1. Clearly,
both C′′,D′′ ∈ ζ. Since c1T(n)⊆ c2T(n)whenever c1 ≤ c2 and T(n)⊆ T(m)whenever
m ≤ n, we have that c′′i T (d

′′
i ) ⊆ ciT(di)∩ c′iT (d′i). Therefore we have U(C′′,D′′) ⊆

U(C,D)∩U(C′,D′).
Now suppose x ∈ U(C,D). Then x = g1+g2+···+gk for some k ∈ N and each

gi ∈ ciT(di) for i ∈ {1,2, . . . ,k}. If C′ = 〈ck+1,ck+2, . . .〉 and D′ = 〈dk+1,dk+2, . . .〉 then
x+U(C′,D′)⊆U(C,D).
Let U(C,D)∈�. For each i∈N we define

c′i =




c2i
2

if c2i is even,

c2i−1
2

if c2i is odd.
(2.1)

If C′ = 〈c′i〉 then C′ ∈ ζ since C ∈ ζ. Also we have that 2c′ ≤ c2i for all i ∈ N. De-
fine D′ = 〈d2i〉. Then for each i ∈ N we have that 2c′iT (d2i) ⊆ c2iT (d2i) and hence
2U(C′,D′)⊆U(C,D).
Finally, we note that since U(C,D)−1 =U(C,D), � is a fundamental system.

Proposition 2.2. The group topology generated by � is the finest group topology
on G for which 〈an〉∞n=1 converges to zero.

Proof. Let τ be any group topology on G for which the sequence 〈an〉∞n=1 con-
verges to zero and let 0∈W ∈ τ . We inductively define a sequence of open sets in τ ,
say V1,V2, . . . , with 0∈ Vi for all i, 2V1 ⊆W , and in general (n+1)Vn ⊆ Vn−1 for n≥ 2.
We also may assume that each Vi is symmetric.
For any k ∈ N we have that V1+2V2+···+kVk ⊆ W . Since 〈an〉∞n=1 converges to

zero in τ , we can find a tail of the sequence in Vi. We choose di ∈N so that T(di)⊆ Vi
and di >max{d1, . . . ,di−1}. Then we have that kT(di)⊆ kVk and for D = 〈di〉, we have
that U(N,D)⊆W .
The technique used in Proposition 2.1 can be used to show that various subcollec-

tions of � are also fundamental systems for G. For example if D = 〈di〉 ∈ ζ and for
k ∈ N, Dk = 〈dki〉, then �′ = {U(C,Dk) | C ∈ ζ, k ∈ N} will also form a fundamental
system.

TΩ-sequences. Shelah [3] constructs an example of a nonabelian group that admits
only the discrete and indiscrete topologies as group topologies. Certainly, the constant
identity sequence in Shelah’s group will be a T -sequence which converges in a unique
Hausdorff group topology. On the other hand, the sparse sequences in Q described
in [1] are shown to converge to the identity in uncountably many different Hausdorff
group topologies. We will call any such sequence a TΩ-sequence. As we shall see in
this section, many sequences in abelian groups are actually TΩ-sequences.
Our search for TΩ-sequences will require that we focus our attention on various sub-

collections of the fundamental system described in Proposition 2.1. To refine our no-
tation we define for D = 〈dn〉 ∈ ζ, U(〈dn〉)=

{∑n
i=1gi | gi ∈ T(di) for i∈ {1,2, . . . ,n}

and n ∈ N} and �D = {U(〈dkn〉) | k ∈ N}. Using techniques similar to those used in
Proposition 2.1, it can be shown that �D is a fundamental system for G.
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We will also focus on a subcollection of ζ. For each c ∈ R with c > 2 we define
cn = [nc], the greatest integer in nc . Clearly C = 〈cn〉∞n=1 ∈ ζ.

Lemma 2.3. If c,d are real numbers with 2 < c < d and if k ∈ N then we can find
Nk ∈N such that form≥Nk, ckm+m<dm.

Proof. We can find Nk ∈ N such that for m ≥ Nk we have that kc + 2 < md−c .
Hence [(km)c]+m< [md] and thus ckm+m<dm for allm>Nk.

Definition 2.4. Let S⊆G. Forn∈N and g ∈Gwe say that g has ann-factorization
in S if and only if there exits {s1, . . . ,sn} ⊆ S − {0} with g = s1 + s2 + ··· + sn. The
factorization is favorable if and only if −si �∈ {s1,s2, . . . ,si−1,si+1, . . . ,sn}.

Proposition 2.5. Let 〈an〉∞n=1 be a sequence in G and S = {∑n
i=1gi | gi ∈ T(i) for

1≤ i≤n and n∈N}. If
(1) every element of S has only finitely many favorable factorizations in S;
(2) if a =∑m

i=nai for some n,m ∈ N, then a has no other favorable factorizations
in S;

then the sequence 〈an〉∞n=1 is a TΩ-sequence.
Proof. For any sequence D = 〈dn〉∞n=1 ∈ ζ we have that U(〈dn〉∞n=1)⊆ S. So by (1)

we have that for every g ∈ S there exists a k∈N such that no favorable factorization of
g in S has a factor in T(k). Hence g �∈U(〈dkn〉∞n=1) and thus �D generates a Hausdorff
group topology.
Now choose C = 〈cn〉∞n=1 and D = 〈dn〉∞n=1 in ζ with the property that for each k∈N

there exists Nk ∈N such that ckm+m<dm for allm≥Nk. Suppose that U(〈dn〉∞n=1)
is open in the topology generated by�c . Then there exists a k such that U(〈ckn〉∞n=1)⊆
U(〈dn〉∞n=1). We have that a=

∑Nk
i=1ackNk+i ∈U(〈ckn〉∞n=1). But by (2) and the fact that

ckNk +Nk < bNk , we must conclude that a �∈ U(〈dn〉∞n=1). Hence the group topology
generated by �c is different from the group topology �D . By Lemma 2.3 we can find
uncountably many different Hausdorff group topologies on G with the property that
〈an〉∞n=1 converges to zero.

Example 2.6. Let 〈pn〉∞n=1 be the sequence of powers of the prime p in Z. 〈pn〉∞n=1
is a TΩ- sequence.

Example 2.7. Let k∈N and let 〈an〉∞n=1 be an increasing sequence in Z satisfying
the inequality an+1/an > n/k for all n. For n > 2k we have that

∑m
i=1an+i < an+m+1

for eachm∈N. Hence 〈an〉∞n=1 is a TΩ-sequence.
Example 2.8. Let Z ∈ Z(p∞). The order of Z is pn if Z is a pn-root of unity but

not a pn−1-root of unity. We denote the order of Z by O(Z). Now if O(Z) = pm and
O(w)= pn andm<n we have that O(Zw)= pn. Let 〈Zn〉∞n=1 be a sequence in Z(p∞)
satisfying

O
(
Zpn+i

)≥ pn+1O
(
Zpn+i−1

)
for all n∈N and for 0≤ i < p. (2.2)

By Proposition 2.5, 〈Zn〉∞n=1 is a TΩ-sequence.
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Example 2.9. Consider R as the direct sum of uncountably many copies of Q. If
〈rn〉∞n=1 is any sequence of linearly independent real numbers, then 〈rn〉∞n=1 is a TΩ-
sequence.

We end this paper with a question. Does there exist a nontrivial sequence in a group
G which is a T -sequence, but not a TΩ-sequence?
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