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Abstract. A completion of a Cauchy space is obtained without the T2 restriction on the
space. This completion enjoys the universal property as well. The class of all Cauchy spaces
with a special class of morphisms called s-maps form a subcategory CHY′ of CHY. A com-
pletion functor is defined for this subcategory. The completion subcategory of CHY′ turns
out to be a bireflective subcategory of CHY′. This theory is applied to obtain a characteri-
zation of Cauchy spaces which allow regular completion.
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1. Introduction. The completion of Cauchy spaces is already well known and famil-
iar to most of us. In fact, since Keller [5] introduced the axiomatic definition of Cauchy
spaces a very rich and extensive completion theory has been developed for Cauchy
spaces during the last three decades [2, 3, 7, 10, 12]. It seems that Cauchy space rather
than uniform convergence space is a natural generalization of completion of uniform
space. But the completion theory developed so far is not so general in nature as the
Cauchy spaces considered are T2 Cauchy spaces [3, 6, 7, 8]. So the natural question
arises, “whether a satisfactory completion theory can be developed for a Cauchy space
without the T2-restriction on the space.” This question has been partially answered
in this paper. A completion functor has been constructed for a subcategory of CHY.
This new subcategory is constructed by taking all the Cauchy spaces as objects and
morphisms as certain special type of Cauchy maps which we call s-maps.

2. Preliminaries. The following are some basic definitions and notations which we
will use throughout the paper. A filter on a setX is a nonempty collection of nonempty
subsets of X which is closed under finite intersection and formation of supersets. Let
F(X) be the set of filters on X. If F,G ∈ F(X), then G ≥ F if and only if for each
F ∈ F, ∃G ∈ G such that G ⊆ F . This defines a partial order relation on F(X). If B
is a base [11] of the filter F, then we write F = [B] and F is said to be generated by
B. A filter F ∈ F(X) is said to have a trace on A ⊆ X, if F ∩A �= φ, the empty set,
∀F ∈ F. In this case, FA = [{F ∩A | F ∈ F}] is called the trace of F on A. ẋ = [{x}]
is the filter generated by the singleton set {x} and F∩G = [{F ∪G | F ∈ F, G ∈ G}].
If F ∩G �= φ, ∀F ∈ F and ∀G ∈ G, then F∨G is the filter [{F ∩G | F ∈ F, G ∈ G}]. If
∃F ∈ F and G ∈ G such that F∩G =φ, then we say that F∨G fails to exist.
In 1968, Keller [5] introduced the following axiomatic definition of Cauchy spaces.
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Definition 2.1. A Cauchy structure on X is a subset C ⊆ F(X) satisfying the fol-
lowing conditions:
(c1) ẋ ∈ C, ∀x ∈X.
(c2) F ∈ C, G≥ F imply that G∈ C .
(c3) F,G∈ C and F∨G exists imply that F∩G∈ C .
The pair (X,C) is called a Cauchy space. If C and D are two Cauchy structures on

X and C ⊆ D, then C is finer than D, written C ≥ D. For a Cauchy structure C on X
we define an equivalence relation “∼” by F ∼ G if and only if F∩G∈ C . Let [F] denote
the equivalence class determined by F. Also, there is a convergence structure qc [7]
associated with C in a natural way:

F
qc�������������������������������������������������→ x if and only if F ∼ ẋ. (2.1)

A Cauchy space (X,C) is said to be
• T2 or Hausdorff if and only if x =y , whenever ẋ ∼ ẏ .
•Regular if and only if clqc F ∈ C , whenever F ∈ C , where “clqc ” is the closure operator

for qc .
• Complete if and only if each F ∈ C qc converges.
Note that most of the literature on Cauchy spaces including the completion theory

[3, 6, 7, 8, 10] deals exclusively with T2 Cauchy spaces. The underlying reason for
this is the existence of the unique limits in T2 spaces, which guarantees pleasant
consequences. But the T2 condition is quite restrictive, so our object is to construct a
completion theory for Cauchy spaces in general.
A map f : (X,C) → (Y ,K) is called a Cauchy map, if f(F) ∈ K whenever F ∈ C .

The map f is a homeomorphism, if f is bijective and f , f−1 are both Cauchy maps.
If A ⊆ X then CA = {G ∈ F(A) | ∃F ∈ C such that G ≥ FA} is a Cauchy structure on A,
called a subspace structure on A. The pair (A,CA) is a subspace of (X,C). The mapping
f : (X,C)→ (Y ,K) is an embedding of (X,C) into (Y ,K), if f : (X,C)→ (f (X),Kf(X))
is a homeomorphism, where Kf(X) is the subspace structure on f(X).

3. Cauchy space completion. Note that throughout this section (X,C) denotes a
Cauchy space (not necessarily T2), unless otherwise stated. A completion of a Cauchy
space (X,C) is a pair ((Y ,K),ϕ) consisting of a complete Cauchy space (Y ,K) and an
embedding ϕ : (X,C)→ (Y ,K) satisfying the condition clqk ϕ(X)= Y .
We construct a completion space ((X̃, C̃),j) of the Cauchy space (X,C) in the fol-

lowing way:

X̃ = {ẋ | x ∈X
}∪{[F] | F ∈ C is qc non-convergent

}
,

j :X �→ X̃ is defined by j(x)= ẋ,

C̃ = {A ∈ F(X̃) | ∃F ∈ C qc convergent such that A ≥ j(F) or ∃ F ∈ C

qc non-convergent such that A ≥ j(F)∩[Ḟ]}.
(3.1)

Definition 3.1. A completion ((Y ,K),ϕ) of a Cauchy space (X,C) is said to be

in standard form, if Y = X̃, ϕ=j, and j(F)
qk������������������������→ [F] for each qc non-convergent filter F

in C .
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This notion of completion was given by Reed [10] for T2 Cauchy spaces. Also, there
is an equivalence relation defined between T2 completions. For a T2 Cauchy space
(Z,D), a T2 completion ((Y1,K1),ϕ1) ≥ ((Y2,K2),ϕ2), if there exists a Cauchy map
h : (Y1,K1)→ (Y2,K2) such that h◦ϕ1 =ϕ2, and the two completions are equivalent,
if each of these two completions is greater than or equal to the other. Note that in
case of equivalence, h is a unique Cauchy homeomorphism.

The same definition leads to an equivalence relation between the non-T2 completions
of a non-T2 Cauchy space (X,C), but it is not a categorical equivalence in the sense
of Preuss [9, Proposition 0.2.4], because, as shown in the following examples, h is not
necessarily a unique Cauchy homeomorphism.

Example 3.2. Let (R,C) be the set of real numbers with the usual Cauchy structure
[1], let Y = R∪{a}, where a �∈ R, and Z = Y ∪{b}, where b �∈ Y . Let H be an ultrafilter
on R finer than the filter generated by the sequence of natural numbers. If F ∈ F(R), let
F′ and F′′ denote the filters generated by F on Y and Z , respectively. Let C′ = C∪{H}
be a Cauchy structure on R. Note that qc′ is the usual topology on R and H is not qc′
convergent.

Let D be the Cauchy structure on Y generated by {F′ | F ∈ C}∪{H∩ȧ} and K be the
Cauchy structure on Z generated by {F′′ | F ∈ C}∪{H∩ ȧ∩ ḃ}. Observe that (Y ,D)
and (Z,K) are equivalent completions of (R,C′), if Reed’s definition of equivalence
described above is generated to non-T2 completions. But they are not Cauchy homeo-
morphic, since (Y ,D) is T2 while (Z,K) is not. Furthermore, the functions establishing
this equivalence are not unique, since h1,h2 : (Y ,D)→ (Z,K) will both work, where

h1(y)=


y, y ∈ R,

a, y �∈ R,

h2(y)=


y, y ∈ R,

b, y �∈ R.

(3.2)

Example 3.3. Let (R,C) and Y be as in Example 3.2. LetD′ be the Cauchy structure
on Y generated by {F : F ∈ C}∪{0̇∩ȧ}. Since (R,C) is complete, it is trivially a comple-
tion of itself. Furthermore, (Y ,D′) is another completion of (R,C) equivalent to (R,C)
in the sense described in the preceding example, but not Cauchy homeomorphic to
(R,C).

Both Examples 3.2 and 3.3 provide the motivation for introducing the following
notion of stable completion to ensure appropriate categorical behavior for our com-
pletion for the whole class of Cauchy spaces.

Definition 3.4. A completion ((Y ,K),ϕ) of (X,C) is said to be stable if whenever
z ∈ Y\ϕ(x) and ϕ(F)

qk��������������������������������������������������→ z for some F ∈ C , it follows that z is the unique limit of
ϕ(F) in Y .

Definition 3.5. A stable completion κ1 = ((Y1,K1),ϕ1) of a Cauchy space (X,C)
is said to be finer than another stable completion κ2 = ((Y2,K2),ϕ2), if there exists a
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Cauchy map h : (Y1,K1)→ (Y2,K2) such that the following diagram commutes:

(X,C)
ϕ2 ��

ϕ1

��

(
Y2,K2

)

(
Y1,K1

)
.

h

������������
(3.3)

If κ1 is finer than κ2, we write κ1 ≥ κ2 and κ2 ≥ κ1. If κ1 ≥ κ2, then we say that the two
completions κ1 and κ2 are equivalent.

Observe that by taking stable completions in defining the equivalence relation, we
get the unique limit of filters which converge to points in Y1\ϕ1(X) and Y2\ϕ2(X).
This ensures that h is a unique Cauchy homeomorphism.

Proposition 3.6. ((X̃, C̃),j) is the finest stable completion of (X,C) in standard
form.

Proof. It is easy to see that j is injective and C̃ satisfies (c1) and (c2) of Defini-
tion 2.1. To prove (c3) let A,B ∈ C̃ and A∨B exist. We consider the following three
cases to show that A∩B∈ C̃

(1) A ≥ j(F) and B≥ j(g), where F,g ∈ C are both qc convergent,
(2) A ≥ j(F)∩ [Ḟ], where F is qc non-convergent, and B ≥ j(g), where g is qc con-

vergent,
(3) A ≥ j(F)∩[Ḟ] and B≥ j(g)∩[ġ], where both F and g are qc non-convergent.

Proof of (1) is easy and (3) can be proved the same way as (1) and (2), so we prove
only (2).
In case (2), A∨B exists implies j(F)∨j(g) exists or j(g)∨[Ḟ] exists. Since the latter

is an impossibility, j(F)∨ j(g) exists. This implies that the qc non-convergent filter
F∩g ∈ C and since A∩B≥ j(F∩g)∩[F∩̇g], A∩B∈ C̃ . We conclude that C̃ is a Cauchy
structure on X̃.
It is routine to show that ((X̃, C̃),j) is a completion of (X,C) in standard form. To

prove that this is also a stable completion, let F ∈ C be qc non-convergent. If there
exists [g] �= [F] ∈ X̃\j(X) such that j(F)

qc̃�����������������������→ [g], then [Ḟ]∩ [ġ] ∈ C̃ . This implies that
there exists a qc non-convergent H∈ C such that [Ḟ]∩[ġ]≥ j(H)∩[Ḣ]. So [F]= [H]=
[g], which lead to a contradiction. Next, let F ∈ C be qc convergent. If j(F)

qc̃�����������������������→ [g],
where [g] ∈ X̃\j(X), then j(F)∩ [ġ] ∈ C̃ . If j(F)∩ [ġ] ≥ j(T), for some convergent
filter T ∈ C , then [g] = ẋ, for some x ∈ X which leads to a contradiction. If, on the
other hand, j(F)∩[ġ]≥ j(L)∩[L̇], where L is qc non-convergent, then F ≥ L. But since
this implies that Lqc converges, we have a contradiction. This proves that (X̃, C̃) is a
stable completion. Also it can be easily shown that it is the finest stable completion
in standard form.
This completes the proof of Proposition 3.6.

We call ((X̃, C̃),j) the Wyler completion of (X,C)

Corollary 3.7. If (X,C) is a T2 Cauchy space, then ((X̃, C̃),j) is a T2 completion
of (X,C).
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In fact, in this case if we identify ẋ with its equivalence class [ẋ], then the Wyler
completion coincides with ((X∗,C∗),j) in [10]. Henceforth, we will refer to the com-
pletion ((X∗,C∗),j) as the T2-Wyler completion of a T2 Cauchy space (X,C).

Proposition 3.8. Any stable completion ((Y ,K),ϕ) of a Cauchy space (X,C) is
equivalent to one in standard form.

Proof. Define h : (Y ,K)→ (X̃, C̃) as follows

h(y)=


[F], if y ∈ Y\ϕ(X), ϕ(F)

qk����������������������������������������������������������→y,

ẋ, if y =ϕ(x).
(3.4)

Note that such a non-convergent filter F ∈ C exists, since ((Y ,K),ϕ) is a completion
of (X,C). Since this is also a stable completion, it follows that h is well defined and
bijective.
Let C̃k be the Cauchy structure on X̃ generated by {h(A) | A ∈ K}. Clearly, the dia-

gram

(X,C)
j ��

ϕ

��

(
X̃, C̃k

)

(Y ,K)
h

�����������
(3.5)

commutes and ((X̃, C̃k),j) is a completion of (X,C) in standard form.
Also, it can be shown by [9, Propositions 1.2.2.5, 1.2.2.4, and 0.2.7] that h is a Cauchy

homeomorphism and therefore, the two completion ((Y ,K),ϕ) and ((X̃, C̃k),j) are
equivalent. This proves Proposition 3.8.

In view of Proposition 3.8 all stable completions are equivalent to completions in
standard form.

Definition 3.9. A Cauchy map f : (X,C) → (Y ,D) between two Cauchy spaces
(X,C) and (Y ,D) is said to be an s-map if and only if the following condition is
satisfied: F ∈ C converges to at most one point in X implies that f(F)∈D converges
to at most one point in Y .
It is easy to see that the embedding map in any stable completion is an s-map,

in particular, the map j in the Wyler completion ((X̃, C̃),j) is an s-map. In fact, any
Cauchy map with a T2 codomain is an s-map. Also, the identity map on any Cauchy
space is an s-map and composition of two s-maps is an s-map. So the class of all
Cauchy spaces together with the s-maps as morphisms forms a category, which we
call CHY′. Henceforth, the term Cauchy category will be used to denote a category C
in which the object are Cauchy spaces and the morphisms are s-maps. In this sense,
CHY′ and T2 CHY are Cauchy categories.
Note that every Cauchy map is not necessarily an s-map, for instance, any function

from a nontrivial T2 Cauchy space or an incomplete Cauchy space into an indiscrete
Cauchy space containing at least two points is a Cauchy map, but not an s-map. There-
fore, CHY′ is not a full subcategory of CHY. Furthermore, since there is no s-map from
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(R,C) (where R and C are as in Example 3.2) onto a Cauchy space with only two el-
ements, it follows that CHY′ is not closed under the formation of final structure [4]
and therefore, it is not a topological category.
But the category CHY′ has other nice properties a few of which we will discuss

subsequently. Fric and Kent [3] have shown that any Cauchymap on a T2 Cauchy space
can be uniquely extended to its T2 Wyler completion. The next proposition shows that
the Wyler completion ((X̃, C̃),j) also enjoys this extension property with respect to
the s-maps.

Proposition 3.10. Let f : (X,C)→ (Y ,K) be an s-map between two Cauchy spaces
(X,C) and (Y ,K). Then f has a unique extension f̃ : (X̃, C̃)→ (Ỹ , K̃) which is also an
s-map and the following diagram commutes:

(X,C)
f ��

jX
��

(X,K)

jY
��(

X̃, C̃
)

f̃
�� (Ỹ , K̃).

(3.6)

Proof. f̃ : (X̃, C̃)→ (Ỹ , K̃) is defined by

f̃ (ẋ)= f ˙(x), ∀x ∈X,

f̃ ([F])=


[f (F)], if f(F)qk non-convergent,

ẏ, if f(F)
qk��������������������������������������������������→y.

(3.7)

Since f is an s-map, it follow that f̃ is a well-defined Cauchy map for which the
above diagram commutes. To prove that f̃ is an s-map it suffices to show that f̃ (A)qk̃
converges to only one element in Ỹ , whenever A ∈ C̃qc̃ converges to only one element
in X̃. If A ≥ jX(F) for some F ∈ C , then jX(F)qc̃ converges to only one point in X̃,
which in turn implies that Fqc converges to only one point in X. Since f and jY are
s-maps, f̃ (A) ≥ f̃ ◦ jX(F) = jY ◦f(F)qk̃ converges to only one element. On the other
hand, if A ≥ jX(g)∩[ġ], where g ∈ C is qc non-convergent, then it suffices to show that
f̃ ◦jX(g)∩ f̃ ([ġ])qk̃ converges to only one point. Note that

f̃ ◦jX(g)∩ f̃
(
[ġ]
)=



jY ◦f(g)∩jY

(
ẏ
)
, if f(g)

qk��������������������������������������������������→y,

jY ◦f(g)∩
[
f(Ḟ)

]
, if f(g) is qk non-convergent.

(3.8)

Since f and jY are s-maps, it follows that jY ◦f(F) can converge to at most one point.
This shows that f̃ is an s-map.
If f̄ : (X̃, C̃)→ (Ỹ , K̃) be another s-map which makes the above diagram commute,

then obviously f̄ ◦ jX(x) = f̃ ◦ jX(x), ∀x ∈ X. So it remains to show that f̄ ([F]) =
f̃ ([F]), for each qc non-convergent filter F ∈ C . Since jX(F)

qc̃�����������������������→ [F], and both f̄ , f̃ are

s-map it follows that f̄ ◦jX(F)
qk̃������������������������→ f̄ ([F]) and f̃ ◦jX(F)

qk̃������������������������→ f̃ ([F]). Hence jY ◦f(F)
qk̃������������������������→

f̄ ([F]), f̃ ([F]). But F ∈ C is qc non-convergent and f ,jY are s-maps imply that jY ◦f(F)
converges to only one point. Therefore, f̄ ([F])= f̃ ([F]).
This completes the proof of Proposition 3.10.
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Now we can define a functor on the category CHY′ exactly the same as the T2 Wyler
completion functor defined in [8]. Let CH̃Y′ be the subcategory of CHY′ consisting of
all complete objects in CHY′. We define W̃ : CHY′ → CH̃Y′ as follows:
(1) W̃(X,C)= (X̃, C̃), for all objects (X,C) in CHY′.
(2) W̃(f )= f̃ , for allmorphisms f in CHY′, where f̃ is the same as in Proposition 3.10.
Proposition 3.11. W̃ defined as above is a covariant functor.

Proof. It follows from Proposition 3.10 that W̃(f ) = f̃ is a morphism in CH̃Y′,
whenever f is a morphism in CHY′. Also, since ĨX(ẋ) = IX(ẋ) = ẋ = IX̃(ẋ), ∀ẋ ∈ X̃
and ĨX(F)= [IX(F)]= [F]= IX̃([F]), ∀[F]∈ X̃. This shows that W̃(IX)= Iw̃(X).
Next we show that W̃ preserves the composition of s-maps. Let f : (X,C)→ (Y ,K)

and g : (Y ,K) → (Z,S). It is easy to see that W̃(f ◦ g)(jX(X)) = (f̃ ◦ g̃)(jX(X)) =
(W̃(f )◦W̃(g))(jX(X)). We show that f ◦̃g([F])= f̃ ◦g̃([F]), whenever [F]∈ X̃\jX(X).
Note that

f ◦̃g([F])=


[
f ◦g(F)], if f ◦g(F) is qs non-convergent,
ż, if f ◦g(F) qs�����������������������������������������������→ z.

(3.9)

Since F is qc non-convergent and g is an s-map, g(F)qk converges to at most one point
in Y . So

g̃([F])=


[
g(F)

]
, if g(F) is qk non-convergent,

ẏ, if g(F)
qk��������������������������������������������������→y.

(3.10)

Therefore, it follows that

f̃ ◦ g̃([F])=


f̃
[
g(F)

]
, if g(F) is qk non-convergent,

f̃
(
ẏ
)
, if g(F)

qk��������������������������������������������������→y.
(3.11)

If g(F)
qk������������������������→y , then f ◦g(F) qs���������������������→ f(y). Since F is qc non-convergent and f ◦g is an s-map,

f(y)= z, which shows that f ◦̃g(F)= f̃ ◦ g̃(F) whenever f ◦g(F) is qs convergent. On
the other hand, if g(F) is qk non-convergent, then f ◦g(F) converges to at most one
point. Observe that

f̃
(
[g(F)]

)=


[
f ◦g(F)], if f ◦g(F) is qs non-convergent,
ṫ, if f ◦g(F) qs�����������������������������������������������→ t.

(3.12)

Since f ◦g(F) converges to at most one point, t = z. Therefore, f̃ ◦ g̃([F])= f ◦̃g([F]),
i.e., W̃(f ◦g)= f̃ ◦ g̃. This proves Proposition 3.11.
The following lemma describes a condition for the epimorphisms in the category

CHY′.
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Lemma 3.12. Let (X,C) and (Y ,K) be in CHY′. A morphism f : (X,C) → (Y ,K) is
an epimorphism if there exists a qc non-convergent filter F ∈ C such that f(F)

qk������������������������→ y ,
whenever y ∈ Y\f(X).

Proof. Let α : (Y ,K)→ (Z,S) and β : (Y ,K)→ (T ,U) be two s-maps such that α◦
f = β◦f . For each y ∈ Y\f(X), there exists a qc non-convergent filter F ∈ C such that

f(F)
qk������������������������→y . α and β are s-maps imply that α◦f(F) qs���������������������→α(y) only and β◦f(F) qu�����������������������������→ β(y)

only. But, since α◦f(F)= β◦f(F) and α◦f is an s-map, it follows that α(y)= β(y).
Therefore, α= β, which implies that f is an epimorphism.

Note that the embeddingmap j in theWyler completion ((X̃, C̃),j) of a Cauchy space
(X,C) is an epimorphism.

Proposition 3.13. In the Cauchy category CHY′ Wyler completion is the finest com-
pletion of a Cauchy space.

Proof. Let (X,C) be a Cauchy space and κ = ((Y ,K),ψ) be a completion of (X,C)
in the category CHY′, i.e., ψ and ψ−1 are s-maps. We show that the Wyler completion
is finer than κ.
Define a map h : (X̃, C̃) → (Y ,K) as h(ẋ) = ψ(x), ∀x ∈ X and for each qc non-

convergent filter F ∈ C , h([F]) = y , where ψ(F)
qk������������������������→ y . Since ψ is an s-map, h is well

defined. Also the following diagram commutes:

(X,C)
ψ ��

j
��

(Y ,K)

(
X̃, C̃

)
.

h

�����������
(3.13)

Next we show that h is an s-map. It is routine to show that h is a Cauchy map. Let
A ∈ C̃ converge to only one point. If A ≥ j(F), then F qc converges to only one point.
Since ψ is an s-map, ψ(F) qk converges to only one point. Therefore, h(A) converges
to only one point. If A ≥ j(g)∩[ġ], where g is qc non-convergent, thenψ(g) converges
to at most one point, say y . But, since h([g])=y , h(A)≥ h◦j(g)∩h([ġ]) converges
only to y . This shows that h is an s-map. Therefore, Wyler completion is finer than k
in CHY′. This completes the proof of Proposition 3.13.

From Lemma 3.12 and Proposition 3.13, we obtain the following property of the
subcategory CH̃Y′.

Proposition 3.14. CH̃Y′ is an epireflective subcategory of CHY′.

For a Cauchy category A, let Ã denote the full subcategory of all complete objects in
A. A Cauchy categoryA is said to be aCauchy completion category, if there is a reflector
[9] R : A → Ã such that for each object (X,C) in A, (R(X,C),ϕx) is a completion of
(X,C), where the embedding map ϕX is a morphism in A. The reflector R is unique
up to equivalence and is called a completion functor. In view of Proposition 3.14, CHY′

is a Cauchy completion category and W̃ is a completion functor, called the Wyler
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completion functor. Any subcategory of CHY′ which admits a completion functor is
called a completion subcategory of CHY′. Note that by taking s-maps as morphisms
a completion functor could be defined on the Cauchy space unlike the completion
functors in [3, 8], which were restricted to T2 CHY and its subcategories.
Kent and Richardson [8], have constructed completion for T3 Cauchy space. An at-

tempt has been made to construct a regular completion of a Cauchy space. In fact, in
the next proposition we show that the following condition is a necessary and sufficient
condition for a Cauchy space (X,C) to have a regular completion:
(∗) F �∈ C implies that there exists a complete regular Cauchy space (Y ,K) and an

s-map f : (X,C)→ (Y ,K) such that f(F) �∈K.
Note that any complete regular Cauchy space preserves this property.

Lemma 3.15. A Cauchy space (X,C) has a regular, stable completion if and only if
((X̃,r C̃),j) is a regular completion of (X,C).

Proof. (⇒) Let ((Y ,D),ϕ) be a regular, stable completion of (X,C). Then by
Proposition 3.8, ((Y ,D),ϕ) is equivalent to a regular, stable completion ((X̃,D′),j)
in standard form. By Proposition 3.6, D′ ≤ C̃ and hence D′ ≤ r C̃ . Since (X̃,D′) and
(X̃, C̃) are both completion of (X,C), so is ((X̃,r C̃),j).
(⇐) Let ((X̃,r C̃),j) be a regular completion of (X,C). We show that this is also a

stable completion. Let z = [g] ∈ X̃\j(X) and assume j(F)
qrc̃���������������������������������������������→ z, where F ∈ C . If F qc

converges, then j(F∩g) = j(F)∩j(g) ∈ r C̃ , which implies that F∩g ∈ C , a contradic-
tion since g is not qc convergent. If F is not qc convergent and [F] �= [g] then j(F)qrc̃
converges to [F] and [g], whence j(F∩g) ∈ r C̃ . This implies that F∩g ∈ C , which is
again a contradiction. Thus, [F] = [g] is the unique limit of j(F) in (X̃,r C̃), and the
completion ((X̃,r C̃),j) is stable.

Proposition 3.16. A Cauchy space (X,C) has a regular stable completion if and
only if (X,C) satisfies the condition (∗).

Proof. (⇐) Assume the condition (∗). By Lemma 3.15, we need only to show
that ((X̃,r C̃),j) is a completion of (X,C). It is routine to show that j is an injec-
tive Cauchy map for which X̃ = clqrc̃ j(X) and (X̃,r C̃) is complete [6]. So it remains
only to show that j−1 is a Cauchymap. If not, ∃H∈ r C̃ such that j−1H �∈ C . By (∗) there
exists a complete regular Cauchy space (Y ,K) and s-map f : (X,C)→ (Y ,K) such that
f(j−1H) �∈ K. Let f̃ : (X̃, C̃)→ (Y ,K) be the s-extension of f , to the Wyler completion,
as in Proposition 3.10. Since (Y ,K) is regular, f̃ : (X̃,r C̃) → (Y ,K) is also a Cauchy
map. So H ∈ r C̃ implies that f̃ (H) ∈ K. But since f(j−1(H)) ≥ f̃ (H), f (j−1(H)) ∈ K,
a contradiction. Thus j−1 is a Cauchy map, so ((X̃,r C̃),j) is a regular completion
of (X,C).
(⇒) By Lemma 3.15, ((X̃,r C̃),j) is a regular stable completion of (X,C). If F �∈ C ,

then j(F) �∈ r C̃ , since j−1 is a Cauchy map. Also, since this completion is stable, j is
an s-map. So (X,C) satisfies (∗). This completes the proof of Proposition 3.16.
Note that if the inverse of an injective Cauchy map is a Cauchy map then it is also an

s-map. So j−1 in the completion ((X̃,r C̃),j) is an s-map. Hence we have the following
corollary.
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Corollary 3.17. If (X,C) and (Y ,K) are two Cauchy spaces satisfying (∗) and
f : (X,C)→ (Y ,K) is an s-map, then f̃ : (X̃,r C̃)→ (Ỹ ,r K̃) is also an s-map, where f̃ is
as in Proposition 3.10.

Let SCHY′ and RCHY′ be the full subcategories of CHY′ consisting of Cauchy spaces
satisfying (∗) and regular Cauchy spaces, respectively. Since every complete regular
Cauchy space is in SCHY′, SC̃HY′ = RC̃HY′. Define a functor S : SCHY′ → SC̃HY′ as
follows: S(X,C) = (X̃,r C̃) and S(f) = f̃ . Proof of the following proposition is now
immediate.

Proposition 3.18. We have that S is a completion functor and SCHY′ is a comple-
tion subcategory of CHY′.

There can be many applications of this theory in the completion of linear Cauchy
spaces and Cauchy groups. Fric, Kent and Richardson have studied these spaces with
the T2 restriction on the underlying spaces. However, if we develop this theory with-
out the T2 restriction, we can generalize several problems in functional analysis. Of
course, in those cases we have to look at linear s-maps and stable completions with
compatible algebraic structures. The categorical properties like Cartesian closedness
of the subcategory CHY′ of CHY also remain to be investigated.
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