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Abstract. We present Kakutani type fixed point theorems for certain semigroups of self
maps by relaxing conditions on the underlying set, family of self maps, and the mappings
themselves in a locally convex space setting.
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1. Introduction. Using a technique of Tarafdar [9], we establish fixed point theo-
rems by utilizing following semigroups under composition of self maps T on a subset
M of a Hausdorff locally convex space
(i) �= CT = {f :M →M | fT = Tf},
(ii) �= {Tn :n∈N∪{0}},
(iii) �= identity map.
In the sequel (E,τ) will be a Hausdorff locally convex topological vector space. A

family {pα : α ∈ I} of seminorms defined on E is said to be an associated family of
seminorms for τ if the family {rU : r > 0}, whereU =⋂ni=1Uαi andUαi = {x : pαi(x) <
1}, forms a base of neighbourhoods of zero for τ . A family {pα :α∈ I} of seminorms
defined on E is called an augmented associated family for τ if {pα : α ∈ I} is an
associated family with the property that the seminorm max{pα,pβ} ∈ {pα :α∈ I} for
any α,β∈ I. The associated and augmented associated families of seminorms shall be
denoted by A(τ) and A∗(τ), respectively. It is well known that given a locally convex
space (E,τ), there always exists a family {pα :α∈ I} of seminorms defined on E such
that {pα :α∈ I} =A∗(τ) (see [7, page 203]).
The following construction will be crucial. Suppose thatM is a τ-bounded subset of
E. For this set M we can select a number λα > 0 for each α ∈ I such that M ⊂ λαUα,
where Uα = {x : pα(x) ≤ 1}. Clearly, B =

⋂
αλαUα is τ-bounded, τ-closed, absolutely

convex, and contains M . The linear span EB of B in E is
⋃∞
n=1nB. The Minkowski

functional of B is a norm ‖·‖B on EB . Thus (EB,‖·‖B) is a normed space with B as its
closed unit ball and supαpα(x/λα)= ‖x‖B for each x ∈ EB .
A self map T on M is said to be
(i) A∗(τ)-nonexpansive if for all x,y ∈M ,

pα(Tx−Ty)≤ pα(x−y) for each pα ∈A∗(τ). (1.1)

(ii) A∗(τ)-asymptotically nonexpansive if for each x,y ∈M ,
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pα
(
Tnx−Tny)≤ knpα(x−y), n= 1,2,3, . . . , for each pα ∈A∗(τ), (1.2)

where {kn} is a fixed sequence of real numbers such that kn→ 1 as n→∞.
In sequel, for simplicity, we shall call A∗(τ)-nonexpansive (A∗(τ)-asymptotically

nonexpansive) maps to be nonexpansive (asymptotically nonexpansive).
Common fixed points of nonexpansive maps and best approximations have been

considered in normed spaces (see [1, 3]). We prove common fixed point theorems for
asymptotically nonexpansive maps in the setting of a locally convex space.

2. Results

Lemma 2.1. LetM be a τ-bounded subset of a Hausdorff locally convex space (E,τ)
and T : M → M be asymptotically nonexpansive map. Then T is asymptotically non-
expansive on M with respect to ‖·‖B .

Proof. By hypothesis for x,y ∈M and n= 1,2,3, . . . ,

pα
(
Tnx−Tny)≤ knpα(x−y) for each pα ∈A∗(τ), (2.1)

where {kn} is a real sequence converging to 1,

sup
α
pα
(
Tnx−Tny
λα

)
≤ kn sup

α
pα
(
x−y
λα

)
,

∥∥Tnx−Tny∥∥B ≤ kn‖x−y‖B,
(2.2)

where {kn} → 1 as n→∞ and is a fixed real sequence. This completes the proof.
Note that (EB,τ) ⊂ (EB,‖ ·‖B) so a set compact in (EB,τ) need not be compact in
(EB,‖ ·‖B) (cf. [8, page 159, problem 3(c)]). To overcome this difficulty we use finite
dimensionality to obtain following generalization of [9, Theorem 2.1].

Theorem 2.2. Let M be a nonempty convex τ-bounded, τ-complete finite dimen-
sional subset of a Hausdorff locally convex space (E,τ). Suppose � is a commutative
semigroup of asymptotically nonexpansive self maps of M . Then there exists a point
a∈M such that

T(a)= a for all T ∈�. (2.3)

Proof. SinceM is τ-complete, it follows that (EB,‖·‖B) is a Banach space andM is
complete in it. A closed, bounded and finite dimensional subset of a normed space is
compact by [2, Theorem on page 10] soM is compact in (EB,‖·‖B). By Lemma 2.1, each
T ∈� is ‖·‖B-asymptotically nonexpansive. Hence � is a commutative semigroup of
asymptotically nonexpansive self maps of a compact convex subset M of the Banach
space (EB,‖·‖B). The family � has a common fixed point by [4, Theorem 3.1].

We now prove another fixed point theorem for locally convex spaces by making use
of Jungck and Sessa [6, Theorem 3]; see also [1, Corollary 2.3] and [5, Theorem 1].

Theorem 2.3. Let M be a τ-bounded, τ-sequentially closed and finite dimensional
subset of a Hausdorff locally convex space (E,τ). Suppose that M is starshaped with
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starcentre q ∈ M and T : M → M is nonexpansive. Let � be a family of affine nonex-
pansive self maps of M commuting with T and leaving q fixed. Suppose for each pair
(x,y)∈M2, there exists f = f(x,y) and g = g(x,y) in � such that

pα(Tx−Ty)≤ pα(fx−gy) for all pα ∈A∗(τ). (2.4)

Then there exists a∈M such that

a= T(a)= h(a) for all h∈�. (2.5)

Proof. Since ‖ · ‖B-topology is finer than the relative τ-topology on EB , ‖ · ‖B-
cl(M) ⊂ τ-sequential-cl(M) = M . Therefore, M is ‖ · ‖B-closed in the normed space
(EB,‖·‖B). As above,M is a compact subset of (EB,‖·‖B). Moreover, T and each h∈�

is nonexpansive in (E,τ), which by Lemma 2.1 implies that T and each h∈� is ‖·‖B-
nonexpansive—so certainly ‖·‖B-continuous. And from (2.4) we obtain for x,y ∈M ,

sup
α
pα
(
Tx−Ty
λα

)
≤ sup

α
pα
(
fx−gy
λα

)
. (2.6)

Thus

‖Tx−Ty‖B ≤ ‖fx−gy‖B for x,y ∈M. (2.7)

A comparison of our hypothesis with that of [6, Theorem 3] tells us that we can now
apply [6, Theorem 3] toM as a subset of (EB,‖·‖B) to conclude that there exists a∈M
such that a= T(a)= h(a) for all h∈�.

Corollary 2.4. Let M be a τ-bounded, τ-sequentially closed, and finite dimen-
sional subset of a Hausdorff locally convex space (E,τ). Assume M is starshaped with
starcentre q ∈ M . Suppose T ,I : M → M are nonexpansive, I is affine and leaving q
fixed and TI = IT . Suppose for x,y ∈ M , there exist n = n(x,y), m = m(x,y) in
N0 = {0,1,2, . . .} such that

pα(Tx−Ty)≤ pα
(
Imx−Iny) for each pα ∈A∗(τ). (2.8)

Then T and I have a common fixed point.

Proof. Let � = {In : n ∈ N0} (I0x = x). For each n, In is affine, TIn = InT and
In :M →M since I has these properties. Further (2.8) assures that � and its members
satisfy (2.4) and the hypotheses of Theorem 2.3; consequently, the conclusion of the
corollary follows.

Corollary 2.5. LetM be a τ-bounded, τ-closed finite dimensional starshaped sub-
set of a Hausdorff locally convex space (E,τ) and T a nonexpansive self map of M .
Then T has a fixed point.

Finally, we consider an application of Corollary 2.4 to best approximation theory. A
related result for normed spaces was given in [6, Theorem 4]. For any x̄ ∈ E, C ⊆ E
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and pα ∈A∗(τ), let

dpα(x̄,C)= inf
{
pα(y− x̄) :y ∈ C

}
(2.9)

and let

D = {y ∈ C : pα(y− x̄)= dpα(x̄,C) for all pα ∈A∗(τ)}. (2.10)

Theorem 2.6. Let T and I be self maps of a Hausdorff locally convex space (E,τ)
and let C ⊆ E be such that T : ∂C → C . Let T and I leave x̄ ∈ E fixed and satisfy (2.8)
for all x,y ∈ D∪{x̄}. Suppose I is nonexpansive and affine, T is nonexpansive on D,
IT = TI on D, and D is nonempty τ-bounded, τ-sequentially closed, finite dimensional
and starshaped with respect to q. If I leaves q invariant and I(D)⊆D, then there exists
a∈D such that a= I(a)= T(a).

Proof. Let y ∈ D. Then Iny ∈ D for n ∈ N0 since I(D) ⊆ D. By definition of D,
y ∈ ∂C and since T : ∂C → C , it follows that Ty ∈ C . By (2.8), for each pα ∈A∗(τ),

pα(Ty− x̄)= pα(Ty−Tx̄)≤ pα
(
Iny−Imx̄) (2.11)

for some n,m∈N0. As Imx̄ = x̄, we get

pα(Ty− x̄)≤ pα
(
Iny− x̄) for all pα ∈A∗(τ). (2.12)

Again since Ty ∈ C and Iny ∈ D, the definition of D further implies that Ty ∈ D.
Consequently, T ,I : D → D and the conditions of Corollary 2.4 are satisfied. Hence
there exists a∈D such that a= I(a)= T(a).
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