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Abstract. We consider the problem of the transfer of semilocal connectedness from fac-
tors to the product space and vice versa. Some sufficient conditions are given under which
the product of semilocally connected spaces is semilocally connected. Obtained theorems
are not invertible, suitable examples are given.
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1. Introduction and preliminaries. A topological space (Y ,T) is called semilocally
connected if it has an open base consisting of sets V such that Y \ V has a finite
number of components. In contrary to Whyburn [9, page 19], where this notion was
introduced, we do not assume that (Y ,T) is a connected T1-space.
In a topological space (Y ,T)we denote by T∗ the topology given by the subbase {U ∈

T : Y \U is connected}; obviously T∗ ⊂ T . Then we have that (Y ,T∗) is semilocally
connected [4, Theorem 3.1] and (Y ,T) is semilocally connected if and only if T = T∗

[4, Theorem 3.3].
We consider the problem of the transfer of semilocal connectedness from (Y1,T1)

and (Y2,T2) to (Y1×Y2,T1×T2) and vice versa. In Section 2, we formulate some suffi-
cient conditions under which the product of semilocally connected spaces is semilo-
cally connected. Obtained theorems are not invertible, suitable examples are given in
Section 3. In this part, we also show that the semilocal connectedness does not gener-
ally transfer in either direction. Furthermore, for (Y1,T1) and (Y2,T2) the topologies
T∗1 ×T∗2 and (T1×T2)∗ need not be even comparable.
Now let X be a topological space and let F : X → Y be a multivalued map. For a set

W ⊂ Y we will denote F+(W)= {x ∈ X : F(x)⊂W} and F−(W)= {x ∈ X : F(x)∩W ≠
∅}. A multivalued map F : X → Y is said to be upper (lower) s-continuous at a point
x ∈ X if for each open set V ⊂ Y with Y \V connected and F(x) ⊂ V (respectively,
F(X)∩V ≠∅) there exists an open set U ⊂ X such that x ∈ U ⊂ F+(V) (respectively,
x ∈U ⊂ F−(V)). A multivalued map F is called upper (lower) s-continuous if it has this
property at each point [2, 7]. In the case of functions, the upper and lower s-continuity
coincide and mean the s-continuity defined by Kohli in [4].

Theorem 1.1. A function f :X → (Y ,T) is s-continuous if and only if f :X → (Y ,T∗)
is continuous [8, Proposition 9].

As it was shown in [2], Theorem 1.1 for multivalued maps is not true in general.
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The last part of the paper is devoted to s-continuity. If Fj : Xj → Yj , j ∈ J, is a
multivalued map, then

∏
j∈J Fj will denote the product map

∏

j∈J
Fj :

∏

j∈J
Xj �→

∏

j∈J
Yj (1.1)

defined as

∏

j∈J
Fj


({xj

}
j∈J

)
=
∏

j∈J
Fj
(
xj
)
. (1.2)

We will show that the upper s-continuity of a product map implies the upper s-
continuity of factors. Moreover, for maps with connected values, the analogous theo-
rem for the lower s-continuity is true. These results improve the similar theorem for
functions [5, Theorem 2.2], where (Yj,Tj) were assumed connected. Finally, for a mul-
tivalued map F :X → Y we denote by ϕF the graph map, i.e., ϕF :X →X×Y , ϕF(x)=
{x}×F(x). We show that if X is connected, then the upper (lower) s-continuity of ϕF

implies the same property of F . This is an extension of the following theorem.

Theorem 1.2. If f : X → Y is a function from a connected space X into a space Y
such that the graph function is s-continuous, then f is s-continuous [4, Theorem 2.7].

In [4] the problem was raised whether the converse of Theorem 1.2 is true. We will
show that the answer is negative.

2. The semilocal connectedness of product spaces

Theorem 2.1. If (Yi,Ti), i ∈ {1,2, . . . ,n} are topological spaces such that each of
the sets Y1,Y2, . . . ,Yn has a finite number of components, then

T∗1 ×T∗2 ×···×T∗n ⊂
(
T1×T2×···×Tn

)∗. (2.1)

Proof. Each of T∗i has a base B∗i consisting of Ti-open sets which complements
have finite number of components; then

{
U1×U2×···×Un :Ui ∈ B∗i , i= 1,2, . . . ,n} (2.2)

is a base of the topology T∗1 ×T∗2 ×···×T∗n . Since for Ui ∈ B∗i we have

(
Y1×···×Yn

)\(U1×···×Un
)=

n⋃

i=1
Y1×···×Yi−1×

(
Yi \Ui

)×Yi+1×···×Yn (2.3)

and each set on the right-hand side of (2.3) has a finite number of components, we
obtain U1×···×Un ∈ (T1×···×Tn)∗ which completes the proof.

Theorem 2.2. Let {(Yj,Tj) : j ∈ J} be a family of connected topological spaces; then

∏

j∈J
T∗j ⊂


∏

j∈J
Tj



∗

. (2.4)



SEMILOCAL CONNECTEDNESS OF PRODUCT SPACES . . . 259

Proof. Let ≺ be a well order on the set J and let β be the order type of (J,≺); then
the set J can be presented as a transfinite sequence

j0,j1, . . . ,jα, . . . , α < β,
∏

j∈J
T∗j =

∏

α≺β
T∗jα . (2.5)

We denote by B∗jα the base of the topology T∗jα which consists of Tjα -open sets which
complements have a finite number of components. Then the base of

∏
α≺β T∗jα is com-

posed of the sets

∏
α≺α1

Yjα×Ujα1 ×
∏

α1≺α≺α2

Yjα×Ujα2 ×···×
∏

αn−1≺α≺αn

Yjα×Ujαn ×
∏

αn≺α≺β
Yjα , (2.6)

where n= 1,2, . . . , 0≺α1 ≺α2 ≺ ··· ≺αn ≺ β and

Ujαk
∈ B∗jαk

for k∈ {1,2, . . . ,n}. (2.7)

But the complements of such sets have finite numbers of components, so these sets
belong to (

∏
α≺β Tjα)∗ and this completes the proof.

As a consequence of above theorems we have the following.

Corollary 2.3. (a) Let (Yi,Ti), i ∈ {1,2, . . . ,n}, be semilocally connected spaces
such that each of the sets Yi has a finite number of components. Then the space (Y1×
···×Yn,T1×···×Tn) is semilocally connected.
(b) Let {(Yj,Tj) : j ∈ J} be a family of connected and semilocally connected spaces.

Then the space (
∏

j∈J Yj,
∏

j∈J Tj) is semilocally connected.

3. Examples. We establish some notions and notation that will be used to construct
some examples. For a subset A of a topological space (Y ,T) we denote by ClT A and
IntT A the closure and the interior of A, respectively.
Let P be an ideal of subsets of Y and let

DP(A)= {x ∈ Y :U∩A �∈ P for each neighbourhood U of x}. (3.1)

If an ideal P has the property
(1) A∈ P �A∩DP(A)=∅�DP(A)=∅, then the family

T(P)= {U \H :U ∈ T , H ∈ P} (3.2)

is a topology on Y ; evidently T ⊂ T(P) (see [3]). Then we also have:
(2) A set M ⊂ Y is T(P)-closed if and only if it is of the form M = B∪H, where B is

T -closed and H ∈ P .
(3) The condition T ∩P = {∅} is equivalent to DP(Y)= Y (see [1]).
(4) If T ∩P = {∅}, then ClT W = ClT(P)W for each set W ∈ T(P) (see [3]).
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Lemma 3.1. Let (Y ,T) be a topological space and let P be an ideal of subsets of Y
which satisfies (1) and T ∩P = {∅}. Then
(a) The space (Y ,T) is connected if and only if (Y ,T(P)) is connected.
(b) (T(P))∗ = T∗.

Proof. Since T ⊂ T(P) the connectedness of (Y ,T(P)) implies that (Y ,T) is con-
nected. Conversely, suppose that (Y ,T(Y)) is not connected. Then there exists an
open-closed set A in (Y ,T(P)) such that ∅ ≠ A ≠ Y . It follows from (4) that A =
ClT(P)A= ClT A, so A is T -closed. On the other hand, A is T(P)-closed, thus as a con-
sequence of (4) we have A = IntT(P)A = IntT A; i.e., the set A is T -open. Hence (Y ,T)
is not connected and (a) is proved.
Now let us observe that any set H ∈ P consisting of at least two points is not T(P)-

connected. Let E be a closed connected subset of (Y ,T(P)). Then it can be presented
in the form E = B∪H, where B is T -closed, H ∈ P and B∩H =∅, so—by the connect-
edness of E—we have H = ∅. Thus E is T -closed and in the consequence it is also
T -connected. So we have shown (T(P))∗ ⊂ T∗.
Finally, we suppose that M is a connected closed subset of (Y ,T) which is not

T(P)-connected. Then it is of the form
⋃

Ej , where the Ej are pairwise disjoint T(P)-
connected and T(P)-closed. But as it was shown in the previous part of this proof,
Ej are T -connected and T -closed, which is impossible. ThusM is T(P)-connected and
the proof is completed.

Let us remark that in this lemma the assumption T ∩P = {∅} is essential. For in-
stance, let (R,T) be the space of real numbers with the natural topology and let P con-
sist of all subsets of R. Then (1) is satisfied and T∩P = T . Furthermore, T∗ = T , T(P)
is the discrete topology, (T(P))∗ is the cofinite topology, so T∗ ≠ (T(P))∗.

Example 3.2. Let Y = ⋃∞n=0[2n,2n+ 1] and let T be the natural topology in Y
induced from the real line. Since (Y ,T) and (Y ,T∗) have the same classes of connected
closed sets, the set [0,1] is T∗-connected and T∗-closed. Thus

W =
∞⋃

n,k=1

(
[2n,2n+1]×[2k,2k+1]) (3.3)

belongs to T∗×T∗. For each set V ∈ T∗×T∗ such that Y ×Y \V has a finite number
of components, the condition

(Y ×Y \V)∪([2n,2n+1]×[2k,2k+1])≠∅ (3.4)

holds for a finite number of sets [2n,2n+1]×[2k,2k+1] only. Hence V �⊂W which
means W ∉ (T∗×T∗)∗ and in the consequence T∗×T∗ ≠ (T∗×T∗)∗. This example
shows that
• the product of semilocally connected spaces need not have this property;
• the assumptions in Theorem 2.1 and Corollary 2.3(a) are essential.

Example 3.3. Let (R,T) be the space of real numbers with the natural topology and
let P be the ideal of Lebesgue measure zero sets. Then (1) is satisfied and T∩P = {∅}.
The family B = {(a,b)\H : a,b ∈ R, a < b, H ∈ P} is a base of the topology T(P). Let
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U,V ∈ B; we fix points x0 ∈ R\U and y0 ∈ R\W . Then we have

R×R\U×W =
⋃

a∈R\U

({a}×R
)∪

⋃

b∈R\W

(
R×{b}),

({x0}×R
)∩(R×{b})≠∅,

(
R×{y0}

)∩({a}×R
)
≠∅,

(3.5)

for each a,b ∈ R and all sets {a}×R, R×{b} are connected in (R×R,T(P)×T(P)).
Thus

({x0}×R
)∪

⋃

b∈R\W

(
R×{b}),

⋃

a∈R\U

({a}×R
)∪(R×{y0}

)
, (3.6)

are T(P)×T(P)-connected sets containing ({x0}×R)∪ (R×{y0}), so their union is
T(P)×T(P)-connected. This gives that U×V ∈ (T(P)×T(P))∗ and (T(P)×T(P))∗ =
T(P)×T(P). But according to Lemma 3.1 (T(P))∗ = T∗ = T �= T(P). So we have shown
that the semilocal connectedness of the product does not imply this property of fac-
tors even then if all spaces are connected; thus Corollary 2.3 is not invertible.

Example 3.4. Let (Y1,T ) be the set of real numbers with the natural topology and
P the ideal of Lebesgue measure zero sets. We put

Y2 =
∞⋃

n=0
[2n,2n+1] (3.7)

and we denote by T2 the natural topology on Y2 induced from the real line. Then
following Lemma 3.1, we have (T(P))∗ = T . The family

{
Y2 \{p} : p ∈ Y2

}∪{Y2 \[a,b] : 2n≤ a< b ≤ 2n+1, n= 0,1,2, . . .} (3.8)

is a subbase for T∗2 . Let {wn :n= 1,2, . . .} be the set of all rational numbers from the
interval [0,1] and let

B =



∞⋃

n=1
{wn}×[0,1]


∪([0,1]×{1}). (3.9)

The set B is connected and closed in (Y1×Y2,T (P)×T2), so

U = Y1×Y2 \B ∈
(
T(P)×T2

)∗. (3.10)

We fix a point p ∈ U with coordinates x,y ∈ (0,1). The neighbourhood base of p in
(Y1×Y2, (T(P))∗×T∗2 ) consists of sets

(a,b)×

Y2 \




k⋃

j=1

[
cj,dj

]∪{x1,x2, . . . ,xm
}



, (3.11)

where a < x < b, k,m ∈ {1,2, . . .}, 2nj ≤ cj < dj ≤ 2nj + 1 for j ∈ {1,2, . . . ,k};
x1,x2, . . . , xm ∈ Y2 and

y �∈
k⋃

j=1

[
cj,dj

]∪{x1,x2, . . . ,xm
}
, (3.12)
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but none of these neighbourhoods is contained in U . Hence we obtain U �∈ (T(P))∗×
T∗2 and in the consequence

(
T(P)×T2

)∗ �⊂ (T(P)
)∗×T∗2 . (3.13)

Now we put

V = Y1×Y2 \
∞⋃

n=0
[2n,2n+1]×[2n,2n+1]. (3.14)

For a fixed r ∈ (0,1/2) the set V can be presented in the form

V = (−∞,0)×Y2∪
∞⋃

n=0
(2n+1,2n+2)×Y2

∪
∞⋃

n=0


(2n−r ,2n+1+r)×

∞⋃

k=0,k�=n

[2k,2k+1]

,

(3.15)

so V ∈ (T(P))∗ × T∗2 . Let p ∈ V and let W be a (T(P)× T2)∗-neighbourhood of p.
Then at most a finite number of sets Y1× [2n,2n+1] are not contained in W , while
(Y1 × Y2 \ V)∩ (Y1 × [2n,2n+ 1]) ≠ ∅ for each n ∈ {0,1,2, . . .}. Thus W �⊂ V and
V �∈ (T(P)×T2)∗. So we have shown (T(P))∗×T∗2 �⊂ (T(P)×T2)∗.

4. s-continuity of maps on product spaces

Theorem 4.1. Let {Xj : j ∈ J} and {Yj : j ∈ J} be two families of topological spaces
and let Fj :Xj → Yj be a multivalued map, j ∈ J. If

∏
j∈J Fj is upper s-continuous, then

each of Fj is upper s-continuous.

Proof. We fix i∈ J and letMi be a connected closed subset of Yi with F−i (Mi)≠∅.
For each j ∈ J, j ≠ i, we choose a component Mj of Yj such that F−j (Mj) ≠∅. Then∏

j∈J Mj is a connected closed subset of
∏

j∈J Yj , so
(∏

j∈J Fj
)−(∏

j∈J Mj
)
is closed.

Since we have

∏

j∈J
Fj



−
∏

j∈J
Mj


=

∏

j∈J
F−j
(
Mj
)= Cl


∏

j∈J
F−j
(
Mj
)

=

∏

j∈J
Cl
(
F−j
(
Mj
))

, (4.1)

and all factors are nonempty this implies that F−i (Mi) is closed and the proof is
completed.

Theorem 4.2. Let {Xj : j ∈ J} and {Yj : j ∈ J} be two families of topological spaces
and let Fj :Xj → Yj be a multivalued map with connected values for j ∈ J. If

∏
j∈J Fj is

lower s-continuous, then each Fj is lower s-continuous.

Proof. Let i ∈ J be fixed and let Mi be a connected closed set with F+i (Mi) ≠∅.
For each j ∈ J, j �= i, we choose a component Mj of Yj such that F+j (Mj) ≠∅. Now
using arguments analogous to those in the proof of Theorem 4.1 we obtain F+i (Mi) is
closed which completes the proof.

Each of the above theorems implies the following.
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Corollary 4.3. Let {Xj : j ∈ J}, {Yj : j ∈ J} be families of topological spaces and
fj : Xj → Yj be a function for j ∈ J. If the function

∏
j∈J fj is s-continuous, then each

fj is s-continuous.

Under additional assumptions that all Yj are connected this corollary makes
[5, Theorem 2.2].
Let us remark that the above corollary and theorems are not invertible.

Example 4.4. Let (R,T) and P be such as in Example 3.3 and let f : (R,T) →
(R,T(P)) be the function given by f(x) = x for x ∈ R. According to Lemma 3.1
the function f is s-continuous. Let us put W = (a,b)\H, where a,b ∈ R, a < b and
H ∈ P . Following Example 3.3 the topology T(P)×T(P) is semilocally connected so
W×W ∈ (T(P)×T(P))∗. But (f×f)−1(W×W) �∈ T×T , hence f×f is not s-continuous.

Theorem 4.5. Assume that X has a finite number of components and let F :X → Y
be a multivalued map with values in a topological space Y .
(a) If the graph map ϕF is upper s-continuous, then F is upper s-continuous.
(b) If ϕF is lower s-continuous and Fhas connected values, then F is lower s-continuous.

Proof. Let M ⊂ Y be a connected closed set with F−(M)≠∅. Under assumptions
we have

X×M =
n⋃

k=1

(
Mk×M

)
, (4.2)

where Mk are components of X. Then we have

F−(M)=ϕ−
F (X×M)=

n⋃

k=1
ϕ−

F
(
Mk×M

)
. (4.3)

Since Mk×M are connected closed subsets of X×Y , the set F−(M) is closed; hence F
is upper s-continuous.
For the lower s-continuity the proof is analogous.

If X is connected Theorem 4.5 gives [4, Theorem 2.7], for usual functions. In [4]
problem of validity of the inverse to this theorem is stated. The answer is negative.
For instance, under notation of Example 4.4, the function f is s-continuous butϕ−1

f
(W ×W)=W �∈ T ; thus ϕf is not s-continuous.
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