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Abstract. It is well known that a polynomial-based approximation scheme applied to a
singularly perturbed equation is not uniformly convergent over the geometric domain of
study. Such scheme results in a numerical solution, say σ which suffers from severe inac-
curacies particularly in the boundary layer. What we say in the current paper is this: when
one uses a grid which is not “too coarse” the resulted solution, even being nonuniformly
convergent may be used in an iterated scheme to get a “good” approximation solution that
is uniformly convergent over the whole geometric domain of study.
In this paper, we use the collocation method as model of polynomial approximation.

We start from a precise localization of the boundary layer then we decompose the domain
of study, say Ω into the boundary layer, say Ωε and its complementary Ω0. Next we go
to the heart of our work which is to make a repeated use of the collocation method. We
show that the second generation of polynomial approximation is convergent and it yields
an improved error bound compared to those usually appearing in the literature.
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1. Introduction. We consider the following family of singularly perturbed initial
value problems (SPIVP) also known as diffusion-convection problems (cf. Gartland
[4, 5]):

Lεu≡ εu(m)+
m−1∑
i=0

aiu(i) = f , a≤ x ≤ b (a < b),

u(i)(a)= γi, γi ∈R, 0≤ i≤m−2,
u(m−1)(a)= γm−1, γm−1 = γm−1ε∈R,

γm−1 = c−1ε−1+c0.

(1.1)

Let us recall that this family of SPIVP is used to describe processes that arise from
such various areas as biochemical kinetics, plasma physics, mechanical and electrical
systems.
Cm(Ω) denotes the space consisting of the functions which, together with their

derivatives up to order m are continuous. Cm(Ω) is equipped with the maximum
norm which reads

‖u‖m,∞ =max
k
sup
x∈Ω

∣∣∣∣ ∂k
∂xk (x)

∣∣∣∣. (1.2)
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If the bound on |Dku(x)| is taken over Ωε (respectively, Ω0) then the correspondent
maximum norm will be written ‖u‖m,∞,ε (respectively, ‖u‖m,∞,0). When m = 0 then
the expression of the maximum norm simplifies over Cm(Ω) in being ‖u‖∞. Same way,
if the domain of reference is Ωε (respectively, Ω0) instead of Ω, then the simplified
expression for the maximum norm turns to be ‖u‖∞,ε (respectively, ‖u‖∞,0).
We focus now on problem (1.1) which is stiff in the sense that its solution exhibits

a boundary layer near the point x = a under the basic hypothesis (1.3) that follows
and that is valid throughout the paper. This basic hypothesis writes

ai ∈ L1(Ω), 0≤ i≤m−1,
am−1(x)≥α> 0, x ∈ Ω̄. (1.3)

It is well known from the classical papers from Lucas and Reddien [7] or de Boor and
Swartz [3] that if u ∈ Cn(Ω) is the solution of an initial value problem (IVP) of order
m (m≤n), then its collocation approximation, say, σ with respect to a uniform grid
constructed with a stepsize h is such that

∥∥u(j)−σ(j)∥∥∞ ≤ hn−m ·∥∥u(n)∥∥∞, 0≤ j ≤m. (1.4)

From Gartland [5, Theorem 1.4, page 635], we know that u solution of problem (1.1)
is such that

∥∥u(j)−σ(j)∥∥∞ ≤ C ·εm−2−j , j ≥ 0 (1.5)

thus if n is taken such that n=m+k, then from inequality (1.4) we get
∥∥u(j)−σ(j)∥∥∞ ≤ ε−(2+k) ·hk, 0≤ j ≤m (1.6)

which implies that the collocation method is not uniformly convergent. It is also
known that the numerical inaccuracies which appear in the boundary layer do not
disappear with a mesh refinement. As reported in the literature, the intuitive expec-
tation that the error should decrease with a mesh refinement falls down when the
mesh size is taken of the same order of magnitude as the parameter ε. To remedy
that inconvenience, some authors have constructed exponentially fitted schemes or
schemes that are based on special meshes (cf. Ascher [1], Ascher and Weiss [2], and
Gartland [4, 5]). Hereafter, for the same goal, we do act in three steps that are:
(1) at first, we do locate precisely the boundary layer Ωε. This leads to decompose,

in “natural way” Ω into Ωε and Ω0 =Ω−Ωε,
(2) next, we apply two times the collocation method with respect to some specific

grids,
(3) at the end, we do show that the second generated collocation approximation is

uniformly convergent over the whole domain Ω and we show that the error is
less than Hr+3 while the best error bounds in the literature are in O(Hr+1).

2. Localization of the boundary layer. At first, we set the following definition.

Definition 2.1. A regular function θ is said to be a corrector for problem (1.1) if
(Yq+θ) obeys the boundary conditions of problem (1.1) where Yq is an outer approx-
imation to the solution u of problem (1.1).
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Next we define what we call a threshold of acceptance as follows.

Definition 2.2. We consider η∈ R∗+, η
 ε·η is said to be a threshold of accep-
tance if:

|x| =O(η) then we set x = 0, for x ∈R. (2.1)

We claim the following lemma.

Lemma 2.3. The regular function (boundary layer function) θ defined by

θ(x)= (−1)m−1 ·θa ·εm−2 ·(x−a)m−1 ·exp
(−(x−a)·ε−1) (2.2)

is a corrector for problem (1.1), where

θa =
(
γm−1−εY (m−1)

q (a)
)·((m−1)!)−1 (2.3)

and Yq stands for a qth order regular asymptotic to u.

Proof. We begin by defining a regular (outer) asymptotic expansion Yq of order
q to u. To do so, let us first define some additional linear operators L, Lε, and Iε by
setting:

Lu≡
m−1∑
i=0

aiu(i),

Lε ≡ εu(m)+
m−1∑
i=0

aiu(i) = εu(m)+Lu,

Iεu≡
(
Iε,0u,Iε,1u,. . . , Iε,m−1u

)
,

(2.4)

where

Iε,iu=u(i)(a), 0≤ i≤m−2, Iε,m−1u= εu(m−1)(a), (2.5)

then Yq is given by

Yq =
q∑

i=−1
εiyi, (2.6)

where the q+2 coefficient functions yi are defined by:

Ly−1 = 0, Iy−1 = 0, (2.7a)

Ly0 = f , Iy0 = γ = (γ0, . . . ,γm−2), (2.7b)

Lyi =−y(m)
i−1 , Iyi = 0, 1≤ i≤ q, (2.7c)

set

v =u−Yq (2.8)

it is well known that

Lεv = Lεu−LεYq =−εq+1y(m)
q (2.9)
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by construction we have

v(i)(a)= 0; 0≤ i≤m−2, (2.10a)

εv(m−1)(a)= εu(m−1)(a)−εY (m−1)
q (a)= γm−1−ε

q∑
i=−1

εiy(m−1)
i . (2.10b)

We have

θ(i)(a)= 0, for 0≤ i≤m−2,
θ(m−1)(a)= ((m−1)!)·ε−1 ·θa = ε−1

(
γm−1−ε·Y(m−1)

q (a)
)
.

(2.11)

So it is obvious from (2.10a) and (2.10b) that w = v−θ is such that
w(i)(a)= 0; 0≤ i≤m−2, εw(m−1)(a)= 0. (2.12)

The boundary layer being a neighbourhood of x = a, where the corrector (which
is an exponentially decaying function) is significantly different from zero, we set the
boundary layer to be that subset of Ω, where exp(−(x−a) ·ε−1) is greater than the
threshold of acceptance η. More precisely, we set the following definition.

Definition 2.4. For a given and fixed threshold of acceptance η, setting r =−ε−1,
we define the boundary layer Ωε to be

Ωε =
[
x ∈Ω; exp(r(x−a))> η

]= [x ∈Ω; (x−a) < ε log
(
η−1

)]
(2.13)

we set δε = ε log(η−1) to be the length of the boundary layer.

We set

x̄ε = a+δε (2.14)

and we have

Ωε =]a,x̄ε[. (2.15)

3. The first polynomial approximation

3.1. Construction of a grid. We begin with constructing a nonuniform grid as fol-
lows.
At first, we do realize a discretization of Ωε with a stepsize h such that

h=
(
x̄ε−a

)
Nε

= δε
Nε

, Nε ∈N∗. (3.1)

Thus we obtain inΩεNε+1 grid points. We denote this grid Gh which is determined by

x0 = a, xi = a+ih, 1≤ i≤Nε, xNε = x̄ε. (3.2)

Next we do realize a discretization of Ω0 with a stepsize H such that

H =
(
b− x̄ε

)
N0

, N0 ∈N∗. (3.3)

We obtain a second grid, say, GH . We constitute a nonuniform grid over Ω, say, Gh,H

by merging Gh and GH .
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3.2. Construction of the approximation polynomial. In fact, we make use of the
collocation method to construct the approximation polynomial. The collocation ap-
proximation to problem (1.1), say, σ is defined as follows.
For each interval Ii =]xixi+1[, where xi and xi+1 are two knots of the grid GH,h

both located within GH or Gh at a time; we denote by σIi the restriction of σ to Ii; i.e.,
σIi = σ/Ii. For r ≥mσ is defined by

σ ∈�(m+r ,m+r +1)= [v ∈ Cm+r (Ω), vIi ∈ Pm+r
]
, (3.4)

Pm+r denotes the set of polynomials of degree at mostm+r . Thus we have

σIi(x)=
m+r∑
i=0

αijxi, αij ∈R. (3.5)

The coefficients αij (0 ≤ j ≤m+ r) are determined by solving the following linear
system:

LεσIi
(
tij
)= f

(
tij
)
, 1≤ j ≤ r ,

σ (ν)
Ii

(
xi
)= σ(ν)

Ii−1
(
xi
)
, 0≤ ν ≤m.

(3.6)

Each tij (1≤ j ≤ r) denotes a collocation point within Ii if u∈ Cm+r+1(Ω). Then from
(1.4), we extract the following relation:

∥∥u(j)−σ(j)∥∥∞ ≤ C ·∆r+1 ·∥∥u(m+r+1)∥∥∞, 0≤ j ≤m, (3.7)

where C is a constant independent of ε and ∆ is such that ∆= h∈Ωε and ∆=H ∈Ω0.
The determination of σ allows us to set up the following problem:

Lv =
m−1∑
i=0

aivi = f −εσ(m) ∈Ω,

vi(a)= γi, 0≤ i≤m−2,
(3.8)

where γi ∈R. We set

w =u−v. (3.9)

From now on we suppose that h is taken such that

h≤K ·(ε·H)1+1/(r+1), (3.10)

where K = (b− x̄ε)−1 · log(η−1). Inequality (3.10) may be written as follows:

hr+1 ≤Kr+1(ε·H)r+2. (3.11)

Now we are ready to claim the following lemma.

Lemma 3.1. We assume that (3.10) holds true and u,v,∈ Cm+r+1(Ω) with r ≥ 1.
Then we have that
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(i) σ , the collocation solution to u, satisfies

sup
x∈Ωε

∣∣u(j)−σ(j)∣∣≤ C ·ε−1 ·Hr+2, sup
x∈Ω0

∣∣u(j)−σ(j)∣∣≤ C ·Hr+1, (3.12)

(ii) w satisfies

‖w‖∞ ≤ C ·ε·Hr+1, (3.13)

where C represents various constants that are independent of ε,h, and H.

Proof. Applied to problem (1.1) considered under the hypotheses of Lemma 3.1;
relation (3.7) results in (3.12). In addition, w is such that

Lw =
m−1∑
i=0

aiwi =−ε(u(m)−σ(m))= g ∈Ω,

wi(a)= 0, 0≤ i≤m−2.
(3.14)

Using the Green’s function, w can be written as follows:

w(x)=
∫ b
a
G(x,t)g(t)dt, (3.15)

where

g = ε
(
u(m)−σ(m)). (3.16)

Then from (3.12) we pull that

∣∣g(x)∣∣≤ C ·Hr+2 for x ∈Ωε,∣∣g(x)∣∣≤ C ·ε·Hr+1 for x ∈Ω0.
(3.17)

Hence, from the equality

w(x)=
∫ x̄ε
a
G(x,t)g(t)dt+

∫ b
x̄ε
G(x,t)g(t)dt (3.18)

and taking account of the continuity of function G, equation (3.18) leads to

∣∣w(x)
∣∣≤ C ·ε·Hr+2+C ·ε·Hr+1, x ∈Ω, (3.19)

that is (3.13), where C represents various constants independent of ε. This ends the
proof.

Remark 3.2. N0 represents the number of subintervals within the grid GH while
Nε is that within the grid Gh. N0 and Nε are such that if r the number of collocation
points goes to infinity, then Nε tends to N such that N =N0.

Proof. Nε = δ ·h−1, where h = K · (ε ·H)1+1/(r+1) and K = (b− x̄ε)−1 · log(η−1)
then we get Nε = (b−x̄ε)·H−1−1/(r+1); so, for ε fixed, when r goes to infinity then Nε,
obviously, goes to N = (b− x̄ε)·H−1 that is N0.
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4. The collocation method iterated. Within this section, we focus especially on v
solution of (3.7). Let us consider the collocation approximation to v , we construct as
follows: we add nε (respectively, n0) new collocation points to those of Gh (respec-
tively,GH ) to get a new gridNGh (respectively,NGH ). Next wemerge these two grids to
get one nonuniform grid, say, NGh,H covering all of Ω. Let us denote s the collocation
approximation to v with respect to the grid NGh,H . We claim the following lemma.

Lemma 4.1. For ε > 0 fixed, we assume that the hypotheses of Lemma 3.1 hold true.
Then for the choices nε = r and n0 = 1, the following estimates hold true for 0 ≤ j ≤
m−1,

sup
x∈Ωε

∣∣v(j)−s(j)∣∣≤ C ·ε·H2(r+2), sup
x∈Ω0

∣∣v(j)−s(j)∣∣≤ C ·Hr+3. (4.1)

Proof. Inequalities (4.1) are what (1.4) turns to be under the hypotheses of Lemma
4.1 and when v is the solution of an (m− 1)-order differential equation and v is
supposed to lie on Cm+2r+1(Ωε) (respectively, Cm+r+2Ω0).

All the preceding results constitute a pavement to the following statement.

Theorem 4.2. For ε > 0 fixed, we suppose that u and v are sufficiently regular.
Under hypothesis (3.10), the following estimate holds true:

∥∥u(i)−s(i)∥∥≤ C ·max(ε·Hr+1,Hr+3), 0≤ i≤m−1, (4.2)

where C stands for a constant independent of ε.

Proof. We start from the following obvious triangle inequality:

∥∥u(i)−s(i)∥∥∞ ≤
∥∥u(i)−v(i)∥∥∞+

∥∥v(i)−s(i)∥∥∞. (4.3)

As a consequence of (3.13), we have

u(i)(x)−v(i)(x)= ε·Hr+1 ·q(i)(x), 0≤ i≤m+r +1, (4.4)

which implies that

∥∥u(i)−v(i)∥∥∞ ≤ C ·ε·Hr+1 (4.5)

in addition Lemma 4.1 implies that

∥∥v(i)−s(i)∥∥∞ ≤ C ·Hr+3. (4.6)

Altogether, relations (4.5) and (4.6) result in Theorem 4.2.

To end this paper, we have put our theoretical claims to the test by carrying out
some interesting numerical experiments.

5. Numerical tests. As test problems, we consider a class of those that we draw
from Kadalbajoo and Rao [6] which is well known to be reluctant to the classical
numerical methods and which numerical treatment exhibits most of the troubles we
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have spoken of. This class is defined as follows:

εu
′′ +u′ −u= 0, 0≤ x ≤ 1,

u(0)=α,

u(1)= β

(5.1)

for which the exact solution u is given by

u(x)= (α−β·exp(−1))·exp
(
− x
ε

)
+β·exp(−1)·exp(x)+O(ε). (5.2)

All experiments displayed in Table 5.1 have confirmed the theoretical statements.
Even our schemes seem to work when we take Nε = N0 = N for r enough large but
not too much. For small values of r , the numerical results can be slightly altered.
Such situation is under consideration in the experience numbered 2 which outputs
are shown in Table 5.1.
Hereunder, the numbering coding and the denomination present as follows: Nb de-

notes the serial number of the numerical test, XEB measures the thickness of the
boundary layer, NEPS denotes the number of the discretization points within Ωε and
N0 denotes those within Ω0, E−q stands for 10q, GNEPS represents in percentage the
gain in terms of error bound obtained by our scheme within Ωε when passing from
the first use of the collocation method to its second use, GNO is defined similarly to
GNEPS with respect to Ω0, v1 denotes the numerical approximation to u generated
by the first application of the collocation method and v2 denotes the approximation
solution obtained from its second application. We also use the following notations to
display the outcomes of the numerical experiments:

‖v‖∞ =max
x∈Ω̄

|v(x)|, ‖v‖∞,ε =max
x∈Ω̄ε

|v(x)|, ‖v‖∞,0 =max
x∈Ω̄0

|v(x)| (5.3)

thus

GNEPS= ‖u−v1‖∞,ε−‖u−v2‖∞,ε‖u−v1‖∞,ε ·100,

GNO= ‖u−v1‖∞,ε−‖u−v2‖∞,0‖u−v1‖∞,0 ·100.
(5.4)

The output of the numerical experiments are displayed in Table 5.1.

Table 5.1.

Nb XEB EPS NEPS N0 GNEPS GNO

1 1.15∗E−2 E−3 10 3 53 28

2 1.15∗E−2 E−3 10 10 53 −0.92
3 1.15∗E−3 E−4 60 10 19 19

4 1.15∗E−3 E−4 20 10 58 57

5 1.15∗E−4 E−5 30 10 38 38

6 1.38∗E−4 E−5 120 100 12 12

7 1.38∗E−5 E−6 60 20 23 23
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