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Abstract. We study rational approximations of elements of a special class of meromor-
phic functions which are characterized by their holomorphic behavior near the origin in
balls in CN by means of their rational approximants. We examine two modes of conver-
gence for this class: almost uniform-type convergence analogous to Montessus-type con-
vergence andweaker formof convergence using capacity based on the classical Tchebychev
constant. These methods enable us to generalize and extend key results of Pommeranke
and Gonchar.
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1. Introduction. This paper is an attempt to extend the theoretical basis of ratio-
nal approximation by means of rational approximants in CN to elements of a certain
class of meromorphic functions on the ball BNρ := {z ∈ CN :

∑N
k=1 |zk|2 < ρ}, that

are holomorphic at the origin. This investigation of rational approximants in several
complex variables, which began in the early seventies, offers new insights into the
problem of analytic continuation from the local neighborhoods of holomorphy into
the open connected regions of meromorphy. The local holomorphic expansions from
which one traditionally extracted rational approximants, largely involved polynomial
expansions of multiple degrees and power series expansions not in terms of homoge-
neous polynomials. This approach, although it gave rise to some interesting results
(see [8, 9, 10]) lacked the flexibility of the formulation discussed in this paper. Part of
the advantage gained in the latter formulation, is that one sets up initial definitions
in a relatively simple, almost Padé-like fashion using slice functions. A useful conse-
quence of this is that any investigation of the vertical and diagonal sequences of a
(µ,ν)-rational approximant table, analogous to the Padé table, is easily accessible.
There are two main types of convergence behavior of interest in this paper. The

first is the almost uniform-type (see [8]) associated with vertical sequences analogous
to Montessus-type convergence. The second convergence behavior is the weaker of
the two, and it is given in terms of convergence in capacity. The methods of investiga-
tions of the main diagonal sequences in CN , chiefly use capacity based on the classical
Tchebychev constant (see [1, 2, 12]). Our main result associated with the Tchebychev
constant (transfinite diameter) generalizes a result of Pommeranke [11] and also ex-
tends a result of Gonchar [5].
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We now give a brief description of the contents of this paper. Section 2 introduces
and develops most of the required preliminaries by way of definitions, lemmas, and
propositions. Section 3, considers Montessus-type convergence analogous to that
given in [8] for the polydisc. In Section 4, we discuss convergence in capacity which
gives a considerably sharp version of a result of Gonchar (see [5]), proved using R2N -
Lebesgue measure.
From the contents of [3, 4, 6, 7], the authors take a different tack on Padé approx-

imants and the problems of convergence of de Montessus de Ballore type and hence
prove totally different theorems than our own, represented in this paper.

2. Some preliminaries. We begin this section by developing index sets most suited
for handling expansions expressed in terms of homogeneous polynomials.
Let I := {0,1,2, . . . ,} and IN := I×···×I, N copies. We introduce a partial order in IN

as follows: for each pair α, β∈ IN , α� β�αi ≤ βi, i= 1, . . . ,N . If α= (α1,α2, . . . ,αN),
then we shall write |α| =∑N

j=1αj .
Let ENµ = {α∈ IN : 0≤ |α| ≤ µ} so that it has the following properties:
(1) EN0 := {(0,0, . . . ,0)} ⊂ ENµ , ∀µ ≥ 1.
(2) ENλ ⊂ ENµ , ∀0≤ λ≤ µ.
(3) |ENµ | =

(
N+µ
N

)
, the cardinality of ENµ .

Here it should be noted that λ, µ ∈ I but not in IN whereasα, β∈ IN . We now introduce
the notion of an index set ENµν for µ,ν ∈ I.

Definition 2.1. ENµν ⊂ IN is called an index interpolation set if
(a) ENµ ⊂ ENµν , for each µ, ν ∈ I;
(b) β∈ ENµν ⇒α∈ ENµν , ∀0�α� β;
(c) ∃λµν ∈ I with µ+1≤ λµν ≤ µ+ν , ν ≥ 1 such that

(
N+λµν−1

N

)
≤
∣∣∣ENµν

∣∣∣≤
(
N+λµν
N

)
, (2.1)

where
∣∣ENµν∣∣≤ (N+µN

)
+
(
N+ν
N

)
−1.

Definition 2.2. ENµν is called maximal if its cardinality satisfies

∣∣∣ENµν
∣∣∣≥

(
N+µ
N

)
+
(
N+ν
N

)
−1. (2.2)

Remark 2.3. The concept of maximality, as will be determined later, becomes cen-
tral in dealing with the question of normality for rational approximants.
Let �

(
BNρ
)
be the ring of holomorphic functions on BNρ and �er

(
BNρ
)
the ring of

meromorphic functions on BNρ . In particular, let �er1
(
BNρ
)
be the subring of �er

(
BNρ
)

characterised by the following properties:
(P.I) ∀f ∈ �er1

(
BNρ
)
, there exists a neighborhood of the origin in BNρ , where f is

holomorphic.
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(P.II) For each f ∈ �er1
(
BNρ
)
, there is a nonhomogeneous normalized polynomial

q(z) of minimal degree such that in BNρ , the zero set of q(z) denoted by�(q) coincides
with the polar set �(f−1) of f , that is

�
(
f−1

)∩BNρ =�(q)∩BNρ . (2.3)

(P.III) For each f ∈ �er1
(
BNρ
)
and its corresponding minimal polynomial q as in

(P.II), fq ∈ �
(
BNρ
)
.

(P.IV) For f and q as in (P.III) �(fq)∩�(q)∩BNρ = ∅ except possibly at the points
of indeterminacy of f on BNρ .
We shall now introduce the slice function on BNρ . For any g ∈ �

(
BNρ
)
and for each

z ∈ ∂BNρ , let Lz denote the complex line through the origin zero and z. The slice
function of g is determined from

���1×∂BNρ �→ BNρ �→ C, (2.4)

so that (t,z)� tz� g(tz) and we have

gz(t)= g(tz), (2.5)

here���1 = {w ∈ C : |w| < 1}. In the rest of this paper, we shall apply the slice defini-
tions to rational as well as polynomial functions.

Proposition 2.4. Let U be a neighborhood of the origin 0 ∈ CN , where U � BNρ .
Then f ∈ �(U)⇒ fz(t)∈ �(���1), with���1 ⊂ Lz∩U .

For each µ, ν∈I, we let�µν be the class of rational functions of the form Pµ(z)/Qν(z),
where Pµ(z) and Qν(z) are nonhomogeneous polynomials expended in terms of ho-
mogeneous polynomials up to degrees µ and ν , respectively. Furthermore,Qν(0)≠ 0;
Pµ(z) and Qν(z) are relatively prime in CN except at the points of indeterminacy of
Pµ(z)/Qν(z). That is �(Pµ)∩�(Qν)∩BNρ = ∅ except possibly at the points of inde-
terminacy of Pµ/Qν in BNρ .

Definition 2.5. A rational function Pµz(t)/Qµz(t) ∈ �µν is called a rational ap-
proximant to fz(t)∈ �(���1) at 0∈���1, if

dk

dtk
(
Qνz(t)fz(t)−Pµz(t)

)|t=0 = 0, 0≤ k≤ µ, (2.6)

dk

dtk
(
Qνz(t)fz(t)

)|t=0 = 0, µ+1≤ k≤ λµν. (2.7)

Proposition 2.6. Suppose f ∈ �(U), U an open neighborhood of the origin in BNρ
with U � BNρ and let t ∈���1 ⊂ Lz∩U . Then

dk

dtk
fz(t)|t=0 =

∑
|α|=k

(
∂|α|f(ξ)|ξ=0

)
zα, (2.8)

where

∂|α| ≡ ∂α1+···+αN

∂zα11 ···∂zαNN
. (2.9)
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Proof. The result follows from comparing the coefficients of tk in the equal but
separate Taylor expansions of fz(t) in���1 and f(tz) in U .

Proposition 2.7. Let f ∈ �(U), U � BNρ and let Pµ(z)/Qν(z)∈�µν . Then
(i) Equation (2.6) holds if and only if

∂|α|
(
Qν(ξ)f(ξ)−Pµ(ξ)

)∣∣
ξ=0 = 0, α∈ ENµ . (2.10)

(ii) Equation (2.7) holds if and only if

∂|α|
(
Qν(ξ)f(ξ)

)∣∣
ξ=0 = 0, α∈ ENµν\ENµ . (2.11)

Proof. The results follow from Proposition 2.6, using the linear independence
of monomial vectors zα := zα11 zα22 ···zαNN , with α := (α1, . . . ,αN), in the right-hand
side of the equation (2.8) that generate the homogeneous subspace {zα : |α| = k} ⊂
C[z1, . . . ,zN], the latter being the algebra of polynomials in CN . Here the two cases are
covered as follows:

(i) |α| = k, 0≤ k≤ µ�α∈ ENµ ,
(ii) |α| = k, µ+1≤ k≤ λµν�α∈ ENµν\ENµ .

When ENµν is maximal, the system of equations produced by (2.11) with the normal-

ization Qν(0)= 1, gives rise to a linear system of maximal rank
(
N+ν
N

)
−1. The latter

equals the number of unknown coefficients ofQν(z). The solution of the linear system
of equations withmaximal rank leads to the uniqueness of the resulting (µ,ν)-rational
approximant with respect to ENµν maximal. We call such (µ,ν)-rational approximants
each with a normalized denominator polynomial, (µ,ν)-unisolvent rational approxi-
mants (in short URA) and denote it by πµν .
The array or table of {πµν}µν of uniquely determined entries is called normal. The

fact that there are many ENµν that are maximal, suggests the following conjecture:
“There are asmanymaximal ENµν index interpolation sets as there are normal tables (all
analogs of a normal Padé-table) associated with a given function holomorphic at zero.”
This situation is very different from the one variable case where there is one and

only one maximal Padé index set giving rise to a single normal Padé table.

Lemma 2.8. Let f ∈�er1
(
BNρ
)
and let qω(z) be its corresponding nonhomogeneous

polynomial of minimal fixed degree ω ∈ I. Suppose πµνz(t) = Pµνz(t)/Qµνz(t) is a
(µ,ν)-URA to fz(t) at t = 0 for each z ∈ ∂BNρ . Then for each integer k with 0≤ k≤ µ,

dk

dtk
(
Qµνz(t)fz(t)qωz(t)−Pµνz(t)qωz(t)

)∣∣∣∣
t=0

= 0. (2.12)

Proof. By direct computation for 0≤ k≤ µ,
dk

dtk
(
Qµνz(t)fz(t)qωz(t)−Pµνz(t)qωz(t)

)∣∣∣∣
t=0

= dk

dtk
(
Qµνz(t)fz(t)qωz(t)

)∣∣∣∣
t=0
− dk

dtk
(
Pµνz(t)qωz(t)

)∣∣∣∣
t=0

=
k∑
l=0

(
k
l

)[
dl

dtl
Qµνz(t)fz(t)− dl

dtl
Pµν(t)

]
dk−l

dtk−l
qωz(t)

∣∣∣∣
t=0
,

(2.13)
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where we have used Leibniz rule. But by (2.6), for 0≤ k≤ µ,

dl

dtl
Qµνz(t)fz(t)

∣∣∣∣
t=0

= dl

dtl
Pµνz(t)

∣∣∣∣
t=0
. (2.14)

The result then follows from (2.13) and (2.14).

Corollary 2.9. Suppose the hypothesis of Lemma 2.8 is satisfied. Then for α∈ ENµ ,

∂|α|
(
Qµν(ξ)f(ξ)qω(ξ)−Pµν(ξ)qω(ξ)

)∣∣
ξ=0 = 0. (2.15)

Proof. This follows from (2.10) and (2.12) of Proposition 2.7.

3. Montessus-type convergence. One of the key results in this section is Lemma 3.4
which establishes an inequality that is central to all the proofs of convergence.
As in the hypothesis of Lemma 2.8, we shall assume f ∈ �er1

(
BNρ
)
and let qω(z)

be its corresponding nonhomogeneous normalized polynomial of minimal degreeω,
for which the characterizing properties (P.I)–(P.IV) given in Section 2 hold.
Take πµ,ν(z)= Pµν(z)/Qµν(z) to be a (µ,ν)-URA to f at z = 0 and let

Hµνω(z)=Qµν(z)f(z)qω(z)−Pµν(z)qω(z). (3.1)

Then Hµνω ∈ �
(
BNρ
)
for each µ, ν , ω∈ I, with ω fixed.

Theorem 3.1. Hµνω→ 0 compactly in BNρ as µ→∞.

To prove Theorem 3.1, we first need to introduce some notation and some lemmata.
Let C

(
B̄Nρ
)
be the space of functions continuous on B̄Nρ and set �C

(
B̄Nρ
) ≡ �

(
BNρ
)∩

C
(
B̄Nρ
)
to be the space of those functions that are holomorphic in BNρ and continuous

on B̄Nρ .

Lemma 3.2. Let ρ′ < ρ so that BNρ′ � BNρ . Then Hµνω(z)∈ �C
(
B̄Nρ′

)
and has a power

series expansion given in BNρ by

Hµνω(z)=
∞∑

k=µ+ω+1

1
k!
dkt
dtk

(
Qµνz(t)fz(t)qωz(t)

)∣∣∣∣
t=0
. (3.2)

Proof. Take ρ′ >
√
N and 0< ε < (ρ−ρ′)/2. Let���1+ε := {τ ∈ C : |τ|< 1+ε}. With

the above choice of ρ′, choose a unit polydisc���N
1 � BNρ′ so that (1+ε)���N

1 � BNρ′ . Then
for z ∈���N

1 with τz ∈ BNρ′ , where τ ∈���1, Cauchy’s integral formula yields

Hµνω(z)= 1
2πi

∫
∂���1+ε

Hµνωz(t)
1−t dt, (3.3)

where z ∈ BNρ′ . But 1/(1− t) =
∑∞
k=0 1/tk is absolutely and uniformly convergent in

∂���1+ε, so (3.3) gives

Hµνω(z)=
∞∑
k=0

1
2πi

∫
∂���1+ε

Hµνωz(t)
tk+1

dt =
∞∑
k=0

1
k!
dk

dtk
(
Hµνωz(t)

)∣∣∣∣
t=0
. (3.4)
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This series is compactly convergent in BNρ′ . Using the expression (3.1) for Hµνω(z), it
is immediate that

Hµνω(z)=
∞∑
k=0

1
k!
dk

dtk
(
Qµνzfz(t)qωz(t)

)∣∣∣∣
t=0
−
µ+ω∑
k=0

1
k!
dk

dtk
(
Pµνz(t)qωz(t)

)∣∣∣∣
t=0
, (3.5a)

where we have used Lemma 2.8 to yield

Hµνω(z)=
∞∑

k=µ+1

1
k!
dk

dtk
(
Qµνz(t)fz(t)qωz(t)

)∣∣∣∣
t=0
−

µ+ω∑
k=µ+1

1
k!
dk

dtk
(
Pµνz(t)qωz(t)

)∣∣∣∣
t=0
.

(3.5b)

The proof then follows from Claim 3.3.

Claim 3.3. For µ+1≤ k≤ µ+ω,
dk

dtk
(
Pµνz(t)qωz(t)

)∣∣∣∣
t=0

= dk

dtk
(
Qµνz(t)fz(t)qωz(t)

)∣∣∣∣
t=0
. (3.6)

Proof. This is immediate from direct computation, using Leibniz rule as follows:

dk

dtk
(
Pµνz(t)qωz(t)

)∣∣∣∣
t=0

=
min(k,µ)∑
l=0

(
k
l

)
dl

dtl
Pµνz(t)

dk−l

dtk−l
qωz(t)

∣∣∣∣
t=0

=
µ∑
l=0

(
k
l

)
dl

dtl
Pµνz(t)

dtk−l

dtk−l
qωz(t)

∣∣∣∣
t=0
.

(3.7)

From (2.6) (cf. (2.14)) we get for 0≤ l≤ µ,
dl

dtl
Pµνz(t)

∣∣∣∣
t=0

= dl

dtl
(
Qµνz(t)fz(t)

)∣∣∣∣
t=0
. (3.8)

This completes the proof of the claim.

The proof of Lemma 3.2 is thus an immediate consequence of this claim together
with (3.5b).

Lemma 3.4. Given K compact in BNρ , there is a ρ′ (cf. Lemma 3.2) such that K ⊂
BNρ′ � BNρ . Then with ε > 0 as in the proof of Lemma 3.2,

∥∥Hµνω(z)∥∥K ≤ M
ε(1+ε)µ , (3.9)

where ‖‖K := supK | | and

M := max
t∈∂���1+ε

{
max
z∈B̄Nρ′

(∣∣Qµνz(t)fz(t)qωz(t)
∣∣)}. (3.10)

Proof. Following the set up of the preceding lemma, with z ∈ BNρ′ , and using
Cauchy’s estimate we obtain

|Hµνω(z)| ≤
∞∑

k=µ+ω+1

1
2π

∫
∂���1+ε

|Qµνz(t)fz(t)qωz(t)|
|t|k+1 |dt|

≤
∞∑

k=µ+1

M
(1+ε)k ≤

M
ε(1+ε)µ ,

(3.11)
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where M is as stated in the lemma. Hence for z ∈ K the desired inequality follows.

Proof of Theorem 3.1. This is obtained immediately from the inequality (3.9)
on letting µ→∞ while ε remains positive.

Theorem 3.5 (Montessus-type). Let ν ∈ I be fixed. Suppose f ∈�er1
(
BNρ
)
, i.e., f is

characterized by the four properties (P.I)–(P.IV). Suppose
{
πµν(z)

}
µ is a “column” se-

quence of a (µ,ν)-URA table to f at the origin z = 0, with its polar set on BNρ determined
by �(π−1µν )∩BNρ which is closed in BNρ . Then as µ→∞, (modulo the sets of indeterminacy
of f and πµν )

(i) �(π−1µν )∩BNρ →�(f−1)∩BNρ ,
(ii) πµν(z)→ f(z) compactly in BNρ \�(f−1).

Proof. Recall that πµν(z) = Pµν(z)\Qµν(z). Without loss of generality, we shall
assume that both Qµν and qν have been normalized in the same manner.
To prove (i), let K be any compact subset of BNρ such that there is a ρ′, satisfying

1 < ρ′ < ρ with K ⊂ BNρ′ � BNρ . Now since Qµν ’s are normalized, {Qµν}µ is a uni-
formly bounded sequence in K and therefore, it contains a subsequence {Qµjν}j that
converges uniformly to, say, Sν , in K. From Theorem 3.1, we know that Hµν(z) =
Qµν(z)f(z)qν(z)−Pµν(z)qν(z)→ 0 uniformly on K, and so the uniform convergence
of the subsequence {Qµjν(z)}j induces the uniform convergence of a similar sub-
sequence {Pµjν(z)}j of {Pµν(z)}µ to a limit, say, T(z) on K. Thus from the limit of
Hµν(z)→ 0, we get

Sν(z)f(z)qν(z)= T(z)qν(z). (3.12)

Claim 3.6. �(Sν)∩BNρ =�(qν)∩BNρ except possibly at the points of indeterminacy
of f on BNρ .

Proof. Take any point b ∈ �(qν) ∩ BNρ with b not in the set of points of in-
determinacy of f . Then qν(b) = 0 makes T(b)qν(b) = 0 and from (3.12) we de-
duce that Sν(b)f(b)qν(b) = 0. But from property (P.IV) of f ∈ �er1

(
BNρ
)
, we have

�(fqν)∩�(qν)∩BNρ = ∅, so that f(b)qν(b) ≠ 0 ⇒ Sν(b) = 0, i.e., b ∈ �(Sν)∩BNρ
modulo any points of indeterminacy. Therefore, �(qν)∩BNρ ⊂ �(Sν)∩BNρ . Now start
with b ∈ �(Sν)∩ BNρ , with b not in the set of points of indeterminacy of f , then
Sν(b) = 0, and hence Sν(b)f(b)qν(b) = 0. Once again from (3.12), we deduce that
T(b)qν(b) = 0. From the relative primeness condition of Pµν and Qµν for all µ,ν ∈ I
we get �(Qµjν)∩�(Pµjν)∩BNρ =∅, except at points of indeterminacy of πµjν for all j
with ν ∈ I fixed. Thus we must have �(Sν)∩�(T)∩BNρ =∅, except at points of inde-
terminacy of f . This implies that T(b) ≠ 0. Therefore, qν(b) = 0, i.e., b ∈ �(qν)∩BNρ
modulo the points of indeterminacy of f and so �(Sν)∩BNρ ⊂ �(qν)∩BNρ . This com-
pletes the proof of the claim.

Proof of Theorem 3.5 continued. Now every subsequence {Qµjν(z)}j is con-
strained by (3.12) to converge to Sν . Hence the sequence {Qµν(z)}µ converges uni-
formly in BNρ to Sν . This implies that

�
(
Qµν

)∩BNρ �→�(Sν)∩BBρ. (3.13)
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By the claim, the desired result follows for (i).
To prove (ii), we return to Lemma 3.4, which says that in any compact set K ⊂ BNρ′ �

BNρ , 0< ρ′ < ρ and 0< ε < (ρ−ρ′)/2,

‖Qµν(z)f(z)qν(z)−Pµν(z)qν(z)‖K ≤ M
ε(1+ε)µ . (3.14)

Since Qµν(z)→ qν(z) uniformly on K as µ →∞, given η > 0 and an η-neighborhood
�(�(qν),η) of �(qν)∩BNρ , there exists µ0 such that for µ > µ0 implies that(

�
(
Qµν

)∪�
(
qν
))∩BNρ ⊂�

(
�
(
qν
)
,η
)
. (3.15)

Thus ∃δ > 0, ∀z ∈K\�(�(qν),η) such that ‖Qµν(z)qν(z)‖> δ, ∀µ > µ0.
Finally, from (3.14), we obtain

‖f(z)−πµν(z)‖K\�(�(qν ),η) ≤
M

εδ(1+ε)µ . (3.16)

Then letting η → 0 first followed by µ → ∞ leads to the desired result from (3.16).

4. Convergence in capacity. In this final section of the paper, we consider diag-
onal sequences {πµµ}µ of (µ,µ)-sequences of URA’s to f at zero for f ∈ �er1

(
BNρ
)
.

Here convergence is considered in terms of capacity and not in terms of uniform con-
vergence. This is done because there is a significant growth in the polar set of πµµ for
sufficiently large values of µ, which tend to thwart uniform convergence on compact
subsets of BNρ , except in a small neighborhood of the origin zero.
For any integer d ≥ 1, let �d(CN) be the class of polynomials Pd(z) =

∑
|α|≤daαzα,

with normalization max|α|≤d{|aα|} = 1, so that on the unit ball BNρ , ‖P̃d‖B̄Nρ ≥ 1, where
P̃d is a homogeneous polynomial of degree d. Let K ⊂ BNρ with ρ > 1, be compact. Then
we can find a ρ′ such that 1< ρ′ < ρ and K ⊂ BNρ′ � BNρ . The Tchebychev constant for
a compact set K may be defined from (see [1, 2])

Md(K)= inf
�d

{‖pd‖K : pd ∈�d
(
CN
)}
, (4.1)

as a capacity of K by

T(K) := inf
d

{
Md(K)

}1/d = lim
d→∞

{
Md(K)

}1/d. (4.2)

Lemma 4.1. Let 0< δ< 1 be given. Let gσ(z)∈�d(CN). Suppose the compact set K
is defined by K := {z ∈ CN : |gσ(z)| ≤ δσ}. Then, there exists a c1 > 0 such that

T(K) < c1δ. (4.3)

Proof. From [12] we know that for each d ≥ 1, there is a Tchebychev polynomial
p∗d ∈ �d(CN), such that ‖p∗d‖ =Md(K). With respect to σ > 0, σ ∈ I, following [12],
we can find numbers τ and r with 0≤ r < τ , σ satisfying σ = kτ+r , so that gσ(z)=
zr (p∗τ (z))k. Thus

‖gσ(z)‖K = sup|zr ||p∗τ (z)|k ≤ δσ . (4.4)
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Now let L= sup(z1,...,zN)∈K |zr |> 0, and take c1 =max(1/L,1). Then{
Mτ(K)

}1/τ = ‖p∗τ ‖1/τK ≤ c1δ. (4.5)

Hence from the definition of T(K), the desired result follows.

Theorem 4.2. Let 0 < δ < 1 be given. Suppose f ∈ �er1
(
BNρ
)
, i.e., there is a nor-

malized nonhomogeneous polynomial qσ(z) of degree σ , such that �(f−1)∩BNρ =
�(qσ )∩BNρ . Suppose, {πµµ}µ , is a diagonal (µ,µ)-sequence of URA’s to f at zero. Let

Kµ :=
{
z ∈ BNρ : |f(z)−πµµ(z)| ≥ δ−µ

}
. (4.6)

Then there exist µ0 and a constant c0 such that for µ > µ0 we have

T
(
Kµ
)≤ c0δ. (4.7)

Proof. From Lemma 3.4, the inequality that was obtained in relation to (µ,ν)-URA
sequences also holds for diagonal URA-sequences in the ball BNρ′ . That is to say,

∥∥Hµµσ (z)∥∥≤ M
ε(1+ε)µ , (4.8)

where 0 < ε < (ρ−ρ′)/2 as before and M is defined in Lemma 3.4. Note that in the
inequality (3.9), σ replaces ω. Now from the inequality (4.8), we obtain

|f(z)−πµµ(z)| ≤ M
ε(1+ε)µ|Qµµ(z)qσ (z)| . (4.9)

Now recall that Qµµ(0) ≠ 0 and from the definition of f , it remains holomorphic
at zero and so qσ(0) ≠ 0. Thus in some small neighborhood BNη of the origin, with
0 < η� 1, so that BNη � BN1 , the latter being the unit ball, there exist δ ∈ (0,1) and
µ1 ∈ I such that |qσ(z)Qµµ(z)|> δ, for µ > µ1 and

∣∣f(z)−πµµ(z)∣∣≤ M
εδ(1+ε)µ , z ∈ BNη . (4.10)

However, for z ∈ BNρ′ � BN1 � BNη , |f(z)−πµµ(z)| ≥ δ−µ , leads to
∣∣Qµµ(z)qσ (z)

∣∣≤ (M
δε

)(
δ
1+ε

)µ
. (4.11)

Thus we get

limsup
µ �→∞

|Qµµ(z)|1/µ ≤ δ
1+ε < δ. (4.12)

Now givenψ> 0, there exists µ0 ∈ I, with µ0 > µ1, such that µ > µ0⇒ |Qµµ|< (δ+ψ)µ .
Following the definition of Kµ , we find that for µ > µ0,

Kµ ⊂
{
z ∈ BNρ : |Qµµ(z)| ≤ (δ+ψ)µ

}
. (4.13)

Then by Lemma 4.1, there exists a constant c0 such that when µ > µ0, we obtain

T
(
Kµ
)≤ c0(δ+ψ), (4.14)

since ψ is positive and arbitrary, the result follows.
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