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ABSTRACT. The domain %(6) of a closed *-derivation 6 in C(K) (K : a compact Hausdorff
space) is a generalization of the space C (110,17 of differentiable functions on [0,1]. In
this paper, a problem proposed by Jarosz (1985) is studied in the context of derivations
instead of CV[0,1].
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Let K; and K> be two compact Hausdorff spaces. C(K;) denotes a space of all com-
plex valued continuous functions on K; (i = 1,2). Let T be a surjective linear isom-
etry from C(K;) to C(K3). Then the Banach-Stone theorem states that there exist
a homeomorphism T from K, to K; and a function w in C(K,) with |[w(y)| =1
(¥ € K2) such that

Tf(y)=w)f(t(y)) for feC(Ki), y K. (1)

That is, the existence of a surjective linear isometry between C(K;) and C(K>,) implies
that K; and K, are homeomorphic. Amir [1] and Cambern [2] extended this theorem
from this viewpoint as follows.

THEOREM 1 (see [1, 2]). Ifthereis a surjective linear isomorphismT : C(K;) — C(K>»)
such that || T|| |IT7!|| < 2, then K, and K> are homeomorphic.

Let X be a compact subset of the real line R and C'V(X) be the space of continu-
ously differentiable functions on X with the X-norm defined by || flls = Supyex | f(x) ]+
Supyex Lf'(x)].

In [4], Jarosz proposed the following question: “Is there a positive € such that for
any compact subsets X,Y of the real line R and any linear isomorphism T : C'V (X) —
COY), ITINT | < & implies that X and Y are homeomorphic?”

In [5], Jun and Lee obtained some partial answers for this question.

THEOREM 2 (see [5]). Let X and Y be compact subset of R and X C [a,b] andY C
[c,d]. If T is a linear isomorphism between C'(X) and C'(Y) which satisfies
@) if f'(t) =0, then (Tf)" =0,
i Ifgl <ITfTgll <Q+e?lfgll,
i) [IFI < ITfI < @+a)fl,
(iv) € <min{1/49,1/2(b—a+1),1/2(c—d+1)},
then X and Y are homeomorphic.
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THEOREM 3 [5]. Let X and Y be compact subsets of R and X c UL [ai,b;] (a; <
b; <ai.1) andmax;{|b;—a;|} <k andYCUA,-"i1 [cj,d;](cj<dj<cjs1) andmax;{|d;j—
cjl} < k. If T is a linear map from C'(X) onto C'(Y) which satisfies

(i) f'(t)=0ifandonlyif (Tf) =0,

A I <ITAI < @+a)lfl,

(iii) k < (4—+/10)/6 and & < 6k®> -8k +1,
then X and Y are homeomorphic.

In this paper, we consider this problem from another viewpoint. To the end, we
recall a closed *-derivation.

Let K be a compact Hausdorff space and C(K) denotes the space of all complex val-
ued continuous functions on K with the supremum norm || - ||«. A closed *-derivation
6 in C(K) is a linear mapping in C(K) satisfying the following conditions:

(1) The domain %(6) of 6 is a norm dense subalgebra of C(K).

(2)6(fg) =6(Hg+f6(g)(f,g9 €D(d)).

) If fn € W), fu— f,and 6(fn) — g implies f € B(6) and 6(f) = g (i.e., § is
closed as a linear operator).

4) f € D(6) implies f* € @(5) and 6(f*) = §(f)*, where f* means the complex
conjugate of f.

The differentiation d/dt on the space CY([0,1]) of continuously differentiable
functions on [0,1] is a typical example of closed sx-derivations. For any closed
*-derivation 6 in C(K), we may regard the domain %(6) of § as a generalization
of the Banach space CV([0,1]). Moreover, if 3(5) = C(K), § is bounded and hence
6 =0.

Properties of the domains of closed x-derivations have been studied by many
authors.

We summarize useful properties of closed x-derivations which is used later fre-
quently without references.

PROPERTY 4 [7]. For f(= f*) € 9(5) and h € CV ([~ fllew, .fllc]), R(f)(= ho
f)ed(d) and 6(h(f)) =h'(f)6(f), where h’ means the derivative of h.

PROPERTY 5 [7]. If f € @(5) is a constant in a neighborhood of x € K, then
o(f)(x) =0.

PROPERTY 6 [7]. Let J; and J, be disjoint closed subsets of K. Then there is a func-
tion f € @(6) such that

f=0 onJj;, f=1 onJ,, O=<f=<1). (2)
Now, for any fixed point x € K, we define a linear functional n, od on %(5) by
Nxo0(f):=6(f)(x) (f€B()). (3)
Let K(6) be the set of x € K such that ny o6 #0, i.e.,
K()={x€K:nyo5+0}={xeK:3f €D(5) such that 5(f)(x) =+ 0}. 4)

Then K (6) is an open subset of K.



SMALL BOUND ISOMORPHISMS OF THE DOMAIN ... 317
Throughout this paper, the norm || || in @(6) is given by
1A= 1l +16( )l (f €DS)). (5)

Then we note that for xo € K(6), the norm of a linear functional 1, o6 is 1 (see [6]).
In [6], we obtained the following result.

THEOREM 7. LetK; be a compact Hausdorff space and let §; be a closed *-derivation
inC(K;) (i=1,2). Let T be a surjective linear isometry between%(61) and%(52). Then,
there exist a homeomorphism T fromK; to K, w; € ker(6,) and a continuous function
wy on K»(82) such that T(K2(62)) = K1(81), lwi1(¥)| =1 forall y e K>, lw2(y)| =1
forall y € K>(62),

(TH) =wi ) f(T(y) for feB(d:1), ¥ €Kz,

6
5:(T) () = w2381 (f) (1()) for f €D(31), ¥ € Ka(52). ©

In this paper, we consider Jarosz’s problem in the same context as this theorem.

We use the following notation, for a Banach space B, B* denotes the conjugate space
of B. B; and B denote the closed unit balls of B and B*, respectively. T denotes the
unit circle {z € C: |z| = 1} in the complex plane.

We shall prove the following theorem.

THEOREM 8. Let K; be a compact Hausdorff space satisfying the first countable
axiom, and let 6; be a closed *-derivation in C(K;) (i = 1,2). If there exist a linear
isomorphism T of B(51) onto B(5») with |T|||IT || <2 and T, T~! are bounded un-
der the uniform norm, then K;(61) and K»(6»2) are homeomorphic. Moreover, if the
range R (6;) contains 1 (i = 1,2), then K, and K, are homeomorphic.

The proof of this theorem is done along the line in [3].

Let K be a compact Hausdorff space satisfying the first countable axiom and let §
be a closed *-derivation in C(K).

The following two lemmas will be used in the rest of the paper.

LEMMA 9. For xo € K(6), an open neighborhood U of xo and € (0 < € < 1), there
exists a function f € %(5) such that

Ifl=<1,  Ifle<e  flxo) =0,

f=6(f)=0 onK\U, 1>|8(f)(x0)|>1-¢. )

PROOF. We take an open neighborhood V of x, such that V ¢ U and take a function
g € 9(5) such that

0<g=<l, g(xo)=1, g=0 onK\V. (8)

Then, g = 6(g) = 0 on K\U. Since x¢ € K(6), there is a function g.(= gf) € 9(5)
such that

[1gell <1, 1—g=||nxod||—€< |5(ge)(x0)]. 9)
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For c: :=min{(1—[|6(gs)lle)/(1+[16(g) =), €}, there is a function h € C (0[ || g¢l w0,
lgellw]) such that

Ihlle <ce,  h(ge(x0)) =0, h'(ge(x0)) =1,  [I'lls =1. (10

Then f:= h(g:)g € @(6) has all required properties in Lemma 9. O

LEMMA 10. For xo € K(6) and € (0 < £ < 1), there exists a sequence {f,} C D(5)
such that

1
Wl Iallo <30 Falxo) =0, )

%izgloé(fn)(x)=0 (x =x0), 1> |6(fn)(x0)] >1-¢,

and dy, 1= 6(fn) (xo) is independent of n.

PROOF. Since K satisfies the first countable axiom, there is a family {U, } of open
neighborhood of x¢ such that U;;; € U; and N} Uy, = {Xo}. Then there exists a family
{V.} of open neighborhood of x( such that V,, c U,,, and there is g,, € @(5) such that

gn(xp)=1, 0<gn<1, gn=0 onK\V,. (12)

Then g, = 6(gn) = 0 on K\U,. Since Xy is in K(9), there is a function g, (= g¥) € 9(5)
such that

||g£||<1v 1_5=||nxo°5H_E< \5(95)(9(0”- (13)

For each ¢, := min{(1 - [[6(ge)ll)/ (1 + 16(gn)ll=),1/n}, there is a function h, €
C'([-llgello, 1gell]) such that

hnlle < cn, hn(gs(xo)) =0, hfn(gs(XO)) =1, Hh,n”w =1. (14)

Then every f, := hy(g:)gn € D(6) has the properties required in Lemma 10. O

Let W be the compact Hausdorff space W = K x K x T with the product topology. For
f €a(0), we define f € C(W) by

flx,x',z)=zf(x)+5(f)(x), (15)

for (x,x’,z) € W. Then we have ||f||00 =1fIl.

PROOF OF THEOREM 7. Let W; =K; xK; xT and S; = {f € C(Wy); f € 9(5;)}
(i=1,2).
Define a linear isomorphism T of $; onto S» by

T(F):=T() (Fes). (16)

Then T is well defined since f — f is a linear isomorphism.

We may assume that |T-!|| =1 and 1 < ||T|| < 2. Then we have ||T-!|| = [T 1| =1
and ||T| = |IT| < 2. For (Y0, Yi» 20) € Wa, let ® be a norm-preserving extension of
T*L( . zp) to C(W1), where L ) denotes the linear functional defined by

Y0, ¥ Y0, Y0 20
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L(yoyyé,z())(f) = f(yo,yé,zo) (f € S»). Then, from the Riesz representation theorem,

there exists a regular Borel measure p>0 >0 20 on W, such that ||u>0 Y0 20| = || @] =
IT*Lyy,v5.20) Il < ITI <2 and

®(h) :JW hdp>e Y020 (e C(Wy)). (17)
1

Hence we have

2o(Tf) (o) + 62T 1) () J (%", 2) dp?o ¥ 20
(18)
J (2f(x)+61(f)(x")) du>o >0 20

for f € B(561). O

In the following, we identify ® and u”°- Yor 20,

uxO’xf)'ZO, where (xo,x(,20) € W1, is also defined in a similar way. Then we have
o020 < 1.

The following lemma shows that for xo € K;(61), uy'y’*Z(Kl X {xo} X T), where
(v,»',z) € W, depends on y’ only, that is, uy'y"Z(Kl X {xo} X T) is independent of
¥, z, and any choice of norm-preserving extension of T*L(y,yr,z).

LEMMA 11. (1) For xo € K1(61) ande (0 <& < 1), let {fn} CD(51) be a sequence in
Lemma 10. Then for (v,y’,z) € W»,

n—oo

w2 (Ko x xod <) = (22 ) i T(7a) (,9/,2)
. (19)

N— o0

_ (dL) lim &5 (T (fa)) (/).

(2) For yp € K2(62) and € (0 < e < 1), let {gn} CD(52) be a sequence in Lemma 10.
Then for (x,x’,z) € Wy,

P 0l xT) = () Im ) (e 2)
20

Nn—oo
) (20)
- () pmaur @) ).
PROOF. (1) Let uy'y"z be a norm-preserving extension of T*L@,ygz).
lim T(fn) (v,y',2) = limJ Fndp?>'? = J lim f, dp>>' =
n—oo n—oo W1 Wl n—oo (21)

= J Ay A% = dy "7 (K1 X {x0} XT).
Ky x{xo}xT

From the uniform boundedness of T,

i 7() (v,,2) = lim (2(Tfu) () +32(Tfu) (') = lim 82 (T) (). (22)
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Thus, we have
Ao "% (K X {x0} X T) = 1im 82 (T fn) (3) 23)

which implies that for x¢ € K; (81), u¥Y"# (K x {x0} X T) depends on v’ € K, only.

The statement (2) is also shown by the same argument as above.

Now, let M; be any real number with (1 <)||T|| < 2M; < 2. Let K» := {yeky:Ix e
K; such that |u??>#(K; X {x} XT)| > M; for every z € T and every norm-preserving
extension p>? of T*L(y .2 }. Since [|u> 2| = |T*Ly.y2) |l < ITIl < 2M, for y €
K>, there can be at most one x € K; with the property in the definition of K. Thus
the map p; of K> to K, is well defined by p; (v) := x if x is related to y as above.

Next, we set My := 1/(2M;). Let K; := {x € K; : dy € K, such that |u*** (K, X
{¥} xT)| > M> for every z € T and for every norm-preserving extension p**"? of
(T™Y)*Lixx.}. Since |pX*2|| = [(T 1) *Lixxll < IT7|| <1, for x € K;, there can
be at most one y € K, with the property in the definition of K;. Thus, the map p» of
K1 to K is well defined by p» (x) := v if y is related to x as above. O

The following lemma shows that K; contains sufficiently many elements (hence, is
nonempty).

LEMMA 12. (1) For xo € K1(81), there exists yo € Ko nK»(82) such that p1 (o) = Xo.
(2) For yy € K2(82), there exists xo € Ky NK;1(81) such that p,(xg) = Vo.

PROOF. (1) For xo € K1(61) and 0 < € < 1 — Mj, there exists a family {f,,} € 9(51)
in Lemma 10 such that

Wl <1 Uall< s falxo) =0,
71[15{)1051(fn)(x)=0 (Vx =x0), 1-€<|dy]| <1,

(24)

where dy, = 81(fn) (x0). If limy—o |T(fn)(1,5",2)| < M; for every (v,¥',z) € Wa,
then
l-e< |dx0 | = }LII?O |fn(X0) +5l(fn)(xo) \ =7111£1;1° |fn(X0sX0;1) |

= lim | (T_l)*L(X(),X(),l)(T(fH)) |

n—oo

= lim

n—oo

< JWZ lim | T(f) (v,¥',2) | d|p¥oxol |

n—oo

J T(fu) (>, z)duoxot (25)
w2

=< M1||[JXO‘X0’1|| =< Ml.

This contradicts with 1 — & > M;.
Hence there exists (10, Y(,20) € W2 such that

lim | T (fn) (0, ¥4, 20) | > Mi. (26)

n—oo
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Then, from Lemma 11 we have for arbitrary z € T and any norm-preserving exten-
sion pY00% of T*L,

Y0,X0:2)?
My < lim | T (fu) (v0, 55, 20) | = lim 82 (T f) (75) |
= lim | T () (59, ¥9:20) | = [ dopt?070% (Ky X {0} X T) | (27)

< | u0Y07 (Ky x {x0} xT)|.

Thus, ¥, € K2 nK2(62) and p; () = xo.
(2) For yo € K2(62) and 0 < € < 1 — My||T||, we take a family {g,} C 9(J2) in
Lemma 10. The remainder of the proof is completed by the same way as above. [

Now, we state another important lemma which holds without the first countability
axiom.

LEMMA 13. Ifxo € K| and p>(xo) € K2(52), then xo € K1 (51).

PROOF. Let y*0-X0:1 he a norm-preserving extension of (T-1) *L(xg,x0,1)- SiNCE pxoxol
is regular, Since for all € such that 0 < € < Ma/(M> +3 + ||T!|l») there is an open
neighborhood U, of p»(xg) such that

| X0l | (Ko x (Ue\{p2(x0)}) XT) <&. (28)

For &,U, and p2(xy), we take a function f € @(5,) in Lemma 9, then

Ifll<1, |Iflle<g  flp2(x0)) =0,

29)
f=0620f)=0 onKx\Ue, 1> |62(f)(p2(x0))|>1-¢. (
Since
j zf (y)dpXoXol | < | flle luroxol| < g,
Kox{p2(x0)}xT
6 d X0,X0,1
Jsz{pz(m)}xT 2(f) (p2 (XO)) H (30)
= [62(f) (p2(x0)) [0 0 || (K2 X {p2 (x0)} X T) |
> (I—E)Mz,
we have
J fapxoolt| > J 82(f) (p2(xo)) dproxo!
Ko x{p2(x0)}xT Ko x{p2(x0)}xT
_ 31)

zf () dpXoxo!

Jsz{pz(Xo)}XT
>(1-&)M,—¢&>0.

From this and

faproxoll < |||, |uXo*ol | (Ko x (Ue\{p2(x0)}) XxT) <&, (32)

JKZX(Us\{,Dz(Xo)})XT
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we have
J fduX(),XO,l > J fd“XO,Xo,l
Ko xUexT Ko x{p2(x0)}XT
_ J F dy<oxo.1 (33)
Ko x(Ue\{p2(x0)})XT
>(1-¢&)My,—2&>0.
Since
J ~d x0,X0,1 | _ J Zf(y)d[.lxo’xo’l
Kpx(Kx\Ue)XT Ko x(Kx\Ug)XT (34)
< 1 f oo |00l || < g,
we get
[(T71F) (x0,x0,1) | = [ (T™1) " Lixguo) () | = UW fdpxoxol
2
> J fduxo,xo,l _ J fduxo,xo,l (35)
Ko xUgXxT Ko x (K2 \Ug)XT
>(1—&)M>—3e>0.
Thus
[81(T71 () (x0) | = [T7H(f) (x0,%0,1) =T~ (f) (x0) |
> |T7! (XO,XO, ) =T () (x0) | (36)
> (1—5)M2—35—€||T’l||w >0,
that is, xo € K1 (61). This completes the proof. O

LEMMA 14. If vy € K2 nK»(82), then p1(»o) € K1 nK1(81) and p2(p1(20)) = Yo.

PROOF. Let p1(vg) = xo (0o € K2 NK2(82)). If xo € Ky and p2(xg) = yo, then
Xo € K1(87) from Lemma 13. Hence, suppose that either xq is not in K; or x¢ € K;
and p2(xg) # ¥o. Then there exists zy € T such that |u*0:X0:20 (K, X {yo} X T)| < M>.

Let P := sup{|u**?(Ky X {yo} X T)|;(x,x,z) € W1}(< 1). Since yy € K2(52), we
have P = sup{\u"v""z(Kz X {yo} xT)|;(x,x",z) € W1} by Lemma 11. Since P > M,
by Lemma 12 and O < ||T|| — M; < M, there exists (x1,x1,21) € Wi such that

| X021 (K X {0} X T) | > max {My, (IIT||—My)P/M}. (37)
Then, for arbitrary z € T and any norm-preserving extension py*1-*1.z,
| X102 (Ko X {30} XT) | > My, (38)

by Lemma 11. Thus, x; € K1, p2(x1) = o, and x1 # xo. Therefore, x; € K;(51) by
Lemma 13. Since x; # X, there exist y;(+ 1) € K> nK>(8,) such that p; (1) =x1
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by Lemma 12. For yy € K>(d2) and € (0 < € < 1), there exists a family {gn} C D(52)
in Lemma 10. Then, since y; # yo,

0 = lim (z1gn (¥1) +62(gn) (1)) = lim gn (¥1,51,21)

:ylllzlolo T*L(ylythl)(Til (gn)) :7111_1'1;10 W Tﬁl(gn)duyllyl‘21 (39)
= lim T=1(gn) du”r>121 + lim T-1(gin) du> 1121,
=00 JKy s oo I XT n=o0 J gy x(K1\{x1})XT

Now, by Lemma 11,

lim T1(Gn)dp?12121

n—o Jle{Xl}XT

_ J lim T () dp?1 121
K

1 X{x] }XT n=®

Ay 12 (Ko X {0} X T) dp2r-2141

Jle{xl}xT (40)

o ¥1XTP (K X {0} X T) dp2 1171

Jle{Xl}XT
= | dyy ¥V (Ko X {0} X T)p?121%1 (K X {x1} X T) |

ITIl-M,)P

> |dyo|'( M, My = |dy, |P(IT||—M;y).

On the other hand,

lim FL(gn) dp?r o
n—o le(Kl\{xl})xT

J lim T (gy) dp>r>141
Kix(Kp\{x})xT n=

- (41)

dyo ux,x’,z (K2 X {¥o} ><T) dprrryz

.[le(Kl\{xlbe
< |dy, | P|p> 71 | (Ky % (Ki\ {x1}) X T)

= dyy [P0 | (Ky Ky XT)~ [0 | (Ky (1) T)
< |dyy |PUITI = |p? 12121 | (Kyx{x1} X T)) < | dy | P(ITII = My).

This contradicts to

0= lim T (gn) du? 1% + lim T (gn) dur>121, (42)

n—o JK;x{x1}xT n= JKyx(K1\{x1})xT
Thus xo € K1 and yo = p2(x0) = p2(p1(10)). O

By Lemmas 12 and 14, we have K;(81) € p; (K2 nK2(52)) € Ky nKy(81) € K1(87)
and K»(82) < p2(K1 NK1(81)) = p2(K1(81)) = p2(p1(K2 NK2(82))) = Ko NK2(52) <
K2(82). Thus, K;(61) < K1,K1(81) = p1(K2 nK2(52)), and K2(52) = K2 N K2(52) < Ko.
Therefore, p1(K2(62)) = K1(61) and p2(K1(81)) = K2(52). Since p2(p1(y)) = y for
v € K2(6») from Lemma 14, p; is injective on K> (52 ). Moreover, we have p; (p2(x)) =
x for x € K;(61) and hence p; is injective on K (51).
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LEMMA 15. p; is continuous on K;(6;) (i=1,2).

PrROOF. We show that p; is continuous. Suppose that p; is discontinuous at yy €
K»2(92). Then there exists a sequence {y,} C K2(d2) such that y, — yg € K2(52),
but x, := p1(yy,) is not converge to p; (o) = Xp. There exists an open neighborhood
V1(C K1(671)) of x¢ such that for every ng there is n(= ng) with x,, outside V;. Since
p>0.yo.l js regular, for € (0 <& < (2M; —||TIl)/(IT|l +2M; +10)) there exists an open

neighborhood U, (C V1) of x¢ such that
|[Jy0’y0’l | (K] X (U]\{Xo}) XT) <§&, U] C V].

For x¢,U1, and &, by Lemma 9, there exists a function f € %(6;) such that

lfr<1, Iflle <& f(x0) =0,
1> |61(f)(X0)| >1-g¢, f:61(f):0 on K \Uj.

Since

Zf () duroYol | < || fllwl|p>o0l|| < 26,

Jle{Xo}XT

51(f) (x0) dp>o 0t | = |51 (f) (x0) | |00 | (Ky X {x0} X T) |

J’K1><{X0}><T
> (1-€)My,

we have

Fdprorol| > (1—e)M; —2¢ > ¢.

JKl X{x0}xT

From (46) and

Ffaporol | <||f|l, |u20¥ol | (K x (Ur\{xo}) xT) <&,

J'K1><(U1\{X()})><T

we have

Fdurorol| > Fdp>ovol

J’K1><U1><T JK]X{XO}XT

fduyo,yoyl

IK1><(U1\{Xo})xT
>(1-&)M; —3&>2¢

fduyoryorl Zf(x)duy()ry()rl

IKIX(KI\Ul)xT JKIX(KI\Ul)xT

< 1 f oo |[p?00t]| < 26.

(43)

(44)

(45)

(46)

(47)

(48)
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Thus

00300 | = [T L ()] = UW Fayoror
1

J Fdp>oyol
Ky xUp xT

>(1—-¢&)M; —5&>0.

> fdp>oyol (49)

JK] X (K1 \Up)XT

Now, since y, — ¥y in K», then (v, ¥n,1) = (¥0,Y0,1) in W,. There exists ng such
that Vn(> no) implies | T(f) (¥n, ¥n,1)| > (1 —€)M; —5¢&. Fix ny (= no) such that x,,, =
p1(Yn,) lies outside V. Since p?n1-m 'l is regular, there exists an open neighborhood
Uz(C K1) of xy, such that

| pm Yl (K x (U \ Dy ) XT) <6, TinTz = . (50)

For xy,,U>, and ¢, we take g(€ 9(61)) in Lemma 9 such that

gl <1, lglle <& g(xn,) =0, 1)
1> [61(g)(xn) | >1-¢, g=061(9)=0 onKi\U..
By the same way as above, we have
J gaprmmel| > (1-e)M; —3e> 0,
Ky xUpxT
I Gdprmynl| = J' zg(x)dp>m -yl (52)
K1 x(K1\U2)XT K1 x(K1\U2)XT
<Gl llp?mrmt)) < 2¢.
Then
|T(g)(yn1’yn1ll)~ = |T*L(J'n1'yn1,l)(g) | = ‘JW gdp>rrm!
1
> J gduynpyrn,l _ J ~duynl,ynl,1 (53)
Ky xUpxT K1 x(K1\Up)XT

>(1—-¢&)M;—5&>0.

Thus, if we choose a complex number Ay € T such that T(f)(ynl,ynl,l) and Ap
(T(3))(Vny»Yn,,1) have equal arguments, then

Ilf +20gl| = max {|| f]

gllo} +max{[|s1 (Nl 01D} <1+&  (54)

00

This is a contradiction. Therefore, p; is continuous on K>(d2). A similar argument
shows that p, is continuous on K; (d2). O

From Lemma 15, it follows that K;(d;) and K»(d,) are homeomorphic. Thus, all
proofs of Theorem are completed.
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REMARK 16. There is not a nonzero closed *-derivation in C(D) (D is the Cantor
set). However, we can obtain similar results for C! (X) (X : a compact subset of R) by
the same way as above.
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