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Abstract. The domain �(δ) of a closed ∗-derivation δ in C(K) (K : a compact Hausdorff
space) is a generalization of the space C(1)[0,1] of differentiable functions on [0,1]. In
this paper, a problem proposed by Jarosz (1985) is studied in the context of derivations
instead of C(1)[0,1].
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Let K1 and K2 be two compact Hausdorff spaces. C(Ki) denotes a space of all com-
plex valued continuous functions on Ki (i = 1,2). Let T be a surjective linear isom-
etry from C(K1) to C(K2). Then the Banach-Stone theorem states that there exist
a homeomorphism τ from K2 to K1 and a function w in C(K2) with |w(y)| = 1
(y ∈K2) such that

Tf(y)=w(y)f (τ(y)) for f ∈ C(K1), y ∈K2. (1)

That is, the existence of a surjective linear isometry between C(K1) and C(K2) implies
that K1 and K2 are homeomorphic. Amir [1] and Cambern [2] extended this theorem
from this viewpoint as follows.

Theorem 1 (see [1, 2]). If there is a surjective linear isomorphism T : C(K1)→C(K2)
such that ‖T‖‖T−1‖< 2, then K1 and K2 are homeomorphic.
Let X be a compact subset of the real line R and C(1)(X) be the space of continu-

ously differentiable functions on X with the Σ-norm defined by ‖f‖Σ = supx∈X |f(x)|+
supx∈X |f ′(x)|.
In [4], Jarosz proposed the following question: “Is there a positive ε such that for

any compact subsets X,Y of the real line R and any linear isomorphism T : C(1)(X)→
C(1)(Y), ‖T‖‖T−1‖< ε implies that X and Y are homeomorphic?”

In [5], Jun and Lee obtained some partial answers for this question.

Theorem 2 (see [5]). Let X and Y be compact subset of R and X ⊂ [a,b] and Y ⊂
[c,d]. If T is a linear isomorphism between C1(X) and C1(Y) which satisfies

(i) if f ′(t)≡ 0, then (Tf)′ ≡ 0,
(ii) ‖fg‖ ≤ ‖TfTg‖ ≤ (1+ε)2‖fg‖,
(iii) ‖f‖ ≤ ‖Tf‖ ≤ (1+ε)‖f‖,
(iv) ε <min{1/49,1/2(b−a+1),1/2(c−d+1)},

then X and Y are homeomorphic.
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Theorem 3 [5]. Let X and Y be compact subsets of R and X ⊂ ⋃n
i=1[ai,bi] (ai <

bi < ai+1) andmaxi{|bi−ai|}< k andY ⊂
⋃m
j=1[cj,dj] (cj < dj < cj+1) andmaxi{|dj−

cj|}< k. If T is a linear map from C1(X) onto C1(Y) which satisfies
(i) f ′(t)≡ 0 if and only if (Tf)′ ≡ 0,
(ii) ‖f‖ ≤ ‖Tf‖ ≤ (1+ε)‖f‖,
(iii) k < (4−√10)/6 and ε < 6k2−8k+1,

then X and Y are homeomorphic.

In this paper, we consider this problem from another viewpoint. To the end, we
recall a closed ∗-derivation.
Let K be a compact Hausdorff space and C(K) denotes the space of all complex val-

ued continuous functions on K with the supremum norm ‖·‖∞. A closed ∗-derivation
δ in C(K) is a linear mapping in C(K) satisfying the following conditions:
(1) The domain �(δ) of δ is a norm dense subalgebra of C(K).
(2) δ(fg)= δ(f)g+fδ(g)(f ,g ∈�(δ)).
(3) If fn ∈ �(δ), fn → f , and δ(fn) → g implies f ∈ �(δ) and δ(f) = g (i.e., δ is

closed as a linear operator).
(4) f ∈ �(δ) implies f∗ ∈ �(δ) and δ(f∗) = δ(f)∗, where f∗ means the complex

conjugate of f .
The differentiation d/dt on the space C(1)([0,1]) of continuously differentiable

functions on [0,1] is a typical example of closed ∗-derivations. For any closed
∗-derivation δ in C(K), we may regard the domain �(δ) of δ as a generalization
of the Banach space C(1)([0,1]). Moreover, if �(δ) = C(K), δ is bounded and hence
δ≡ 0.
Properties of the domains of closed ∗-derivations have been studied by many

authors.
We summarize useful properties of closed ∗-derivations which is used later fre-

quently without references.

Property 4 [7]. For f(= f∗) ∈ �(δ) and h ∈ C(1)([−‖f‖∞,‖f‖∞]), h(f)(= h ◦
f)∈�(δ) and δ(h(f))= h′(f )δ(f), where h′ means the derivative of h.

Property 5 [7]. If f ∈ �(δ) is a constant in a neighborhood of x ∈ K, then
δ(f)(x)= 0.

Property 6 [7]. Let J1 and J2 be disjoint closed subsets of K. Then there is a func-
tion f ∈�(δ) such that

f = 0 on J1, f = 1 on J2, (0≤ f ≤ 1). (2)

Now, for any fixed point x ∈K, we define a linear functional ηx ◦δ on �(δ) by

ηx ◦δ(f) := δ(f)(x)
(
f ∈�(δ)

)
. (3)

Let K(δ) be the set of x ∈K such that ηx ◦δ≠ 0, i.e.,

K(δ)= {x ∈K : ηx ◦δ≠ 0}= {x ∈K : ∃f ∈�(δ) such that δ(f)(x)≠ 0
}
. (4)

Then K(δ) is an open subset of K.
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Throughout this paper, the norm ‖‖ in �(δ) is given by

‖f‖ := ‖f‖∞+‖δ(f)‖∞
(
f ∈�(δ)

)
. (5)

Then we note that for x0 ∈K(δ), the norm of a linear functional ηx0 ◦δ is 1 (see [6]).
In [6], we obtained the following result.

Theorem 7. LetKi be a compact Hausdorff space and let δi be a closed∗-derivation
in C(Ki) (i= 1,2). Let T be a surjective linear isometry between�(δ1) and�(δ2). Then,
there exist a homeomorphism τ from K2 to K1, w1 ∈ ker(δ2) and a continuous function
w2 on K2(δ2) such that τ(K2(δ2)) = K1(δ1), |w1(y)| = 1 for all y ∈ K2, |w2(y)| = 1
for all y ∈K2(δ2),

(Tf)(y)=w1(y)f
(
τ(y)

)
for f ∈�

(
δ1
)
, y ∈K2,

δ2(Tf)(y)=w2(y)δ1(f )
(
τ(y)

)
for f ∈�

(
δ1
)
, y ∈K2

(
δ2
)
.

(6)

In this paper, we consider Jarosz’s problem in the same context as this theorem.
We use the following notation, for a Banach space B,B∗ denotes the conjugate space

of B. B1 and B∗1 denote the closed unit balls of B and B∗, respectively. T denotes the
unit circle {z ∈ C : |z| = 1} in the complex plane.
We shall prove the following theorem.

Theorem 8. Let Ki be a compact Hausdorff space satisfying the first countable
axiom, and let δi be a closed ∗-derivation in C(Ki) (i = 1,2). If there exist a linear
isomorphism T of �(δ1) onto �(δ2) with ‖T‖‖T−1‖ < 2 and T , T−1 are bounded un-
der the uniform norm, then K1(δ1) and K2(δ2) are homeomorphic. Moreover, if the
range �(δi) contains 1 (i= 1,2), then K1 and K2 are homeomorphic.

The proof of this theorem is done along the line in [3].
Let K be a compact Hausdorff space satisfying the first countable axiom and let δ

be a closed ∗-derivation in C(K).
The following two lemmas will be used in the rest of the paper.

Lemma 9. For x0 ∈ K(δ), an open neighborhood U of x0 and ε (0 < ε < 1), there
exists a function f ∈�(δ) such that

‖f‖ ≤ 1, ‖f‖∞ ≤ ε, f
(
x0
)= 0,

f = δ(f)= 0 on K\U, 1>
∣∣δ(f)(x0)∣∣> 1−ε. (7)

Proof. We take an open neighborhood V of x0 such that V ⊂U and take a function
g ∈�(δ) such that

0≤ g ≤ 1, g
(
x0
)= 1, g = 0 on K\V. (8)

Then, g = δ(g) = 0 on K\U . Since x0 ∈ K(δ), there is a function gε(= g∗ε ) ∈ �(δ)
such that

∥∥gε∥∥< 1, 1−ε = ∥∥ηx0 ◦δ∥∥−ε < ∣∣δ(gε)(x0)∣∣. (9)
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For cε :=min{(1−‖δ(gε)‖∞)/(1+‖δ(g)‖∞),ε}, there is a function h∈ C1(0[−‖gε‖∞,
‖gε‖∞]) such that

‖h‖∞ ≤ cε, h
(
gε
(
x0
))= 0, h′

(
gε
(
x0
))= 1, ‖h′‖∞ = 1. (10)

Then f := h(gε)g ∈�(δ) has all required properties in Lemma 9.

Lemma 10. For x0 ∈ K(δ) and ε (0 < ε < 1), there exists a sequence {fn} ⊂ �(δ)
such that

∥∥fn∥∥≤ 1, ∥∥fn∥∥∞ ≤ 1
n
, fn

(
x0
)= 0,

lim
n→∞δ

(
fn
)
(x)= 0 (

x ≠ x0
)
, 1>

∣∣δ(fn)(x0)∣∣> 1−ε, (11)

and dx0 := δ(fn)(x0) is independent of n.
Proof. Since K satisfies the first countable axiom, there is a family {Un} of open

neighborhood of x0 such that Ui+1 ⊂Ui and
⋂∞
1 Un = {x0}. Then there exists a family

{Vn} of open neighborhood of x0 such that Vn ⊂Un, and there is gn ∈�(δ) such that

gn(x0)= 1, 0≤ gn ≤ 1, gn = 0 on K\Vn. (12)

Then gn = δ(gn)= 0 on K\Un. Since x0 is in K(δ), there is a function gε(= g∗ε )∈�(δ)
such that

∥∥gε∥∥< 1, 1−ε = ∥∥ηx0 ◦δ∥∥−ε < ∣∣δ(gε)(x0)∣∣. (13)

For each cn := min{(1− ‖δ(gε)‖∞)/(1+ ‖δ(gn)‖∞),1/n}, there is a function hn ∈
C1([−‖gε‖∞,‖gε‖∞]) such that

‖hn‖∞ ≤ cn, hn
(
gε
(
x0
))= 0, h′n

(
gε
(
x0
))= 1, ‖h′n‖∞ = 1. (14)

Then every fn := hn(gε)gn ∈�(δ) has the properties required in Lemma 10.

LetW be the compact Hausdorff spaceW =K×K×T with the product topology. For
f ∈�(δ), we define f̃ ∈ C(W) by

f̃
(
x,x′,z

)
:= zf(x)+δ(f)(x′), (15)

for (x,x′,z)∈W . Then we have ‖f̃‖∞ = ‖f‖.
Proof of Theorem 7. Let Wi := Ki × Ki × T and Si = {f̃ ∈ C(Wi); f ∈ �(δi)}

(i= 1,2).
Define a linear isomorphism T̃ of S1 onto S2 by

T̃
(
f̃
)
:= T̃ (f ) (

f̃ ∈ S1
)
. (16)

Then T̃ is well defined since f → f̃ is a linear isomorphism.
We may assume that ‖T−1‖ = 1 and 1 < ‖T‖ < 2. Then we have ‖T̃−1‖ = ‖T−1‖ = 1

and ‖T̃‖ = ‖T‖ < 2. For (y0, y ′0, z0) ∈ W2, let Φ be a norm-preserving extension of
T̃∗L(y0, y′0, z0) to C(W1), where L(y0, y′0, z0) denotes the linear functional defined by
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L(y0,y′0,z0)(f̃ ) = f̃ (y0,y ′0,z0) (f̃ ∈ S2). Then, from the Riesz representation theorem,

there exists a regular Borel measure µy0, y
′
0, z0 on W1 such that ‖µy0, y′0, z0‖=‖Φ‖=

‖T̃∗L(y0,y′0,z0)‖ ≤ ‖T‖< 2 and

Φ(h)=
∫
W1
hdµy0, y

′
0, z0

(
h∈ C(W1

))
. (17)

Hence we have

z0(Tf)
(
y0
)+δ2(Tf)(y ′0)=

∫
W1
f̃
(
x,x′,z

)
dµy0, y

′
0, z0

=
∫
W1

(
zf(x)+δ1(f )(x′)

)
dµy0, y

′
0, z0

(18)

for f ∈�(δ1).

In the following, we identify Φ and µy0, y
′
0, z0 .

µx0,x
′
0,z0 , where (x0,x′0,z0) ∈ W1, is also defined in a similar way. Then we have

‖µx0,x′0,z0‖ ≤ 1.
The following lemma shows that for x0 ∈ K1(δ1), µy,y

′,z(K1 × {x0} × T), where
(y,y ′,z) ∈ W2 depends on y ′ only, that is, µy,y

′,z(K1×{x0}×T) is independent of
y, z, and any choice of norm-preserving extension of T̃∗L(y,y′,z).

Lemma 11. (1) For x0 ∈K1(δ1) and ε (0< ε < 1), let {fn} ⊂�(δ1) be a sequence in
Lemma 10. Then for (y,y ′,z)∈W2,

µy,y
′,z(K1×{x0}×T

)= ( 1
dx0

)
lim
n→∞ T̃

(
f̃n
)(
y,y ′,z

)

=
(
1
dx0

)
lim
n→∞δ2

(
T
(
fn
))(
y ′
)
.

(19)

(2) For y0 ∈ K2(δ2) and ε (0< ε < 1), let {gn} ⊂�(δ2) be a sequence in Lemma 10.
Then for (x,x′,z)∈W1,

µx,x
′,z(K2×{y0}×T

)=
(
1
dy0

)
lim
n→∞ T̃

−1(g̃n)(x,x′,z)

=
(
1
dy0

)
lim
n→∞δ1

(
T−1

(
gn
))(
x′
)
.

(20)

Proof. (1) Let µy,y′,z be a norm-preserving extension of T̃∗L(y,y′,z).

lim
n→∞ T̃ (f̃n)(y,y

′,z)= lim
n→∞

∫
W1
f̃ndµy,y

′,z =
∫
W1
lim
n→∞ f̃ndµ

y,y′,z

=
∫
K1×{x0}×T

dx0 dµ
y,y′,z = dx0µy,y

′,z(K1×{x0}×T
)
.

(21)

From the uniform boundedness of T ,

lim
n→∞ T̃ (f̃n)(y,y

′,z)= lim
n→∞

(
z
(
Tfn

)
(y)+δ2

(
Tfn

)(
y ′
))= lim

n→∞δ2
(
Tfn

)(
y ′
)
. (22)
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Thus, we have

dx0µ
y,y′,z(K1×{x0}×T

)= lim
n→∞δ2

(
Tfn

)(
y ′
)

(23)

which implies that for x0 ∈K1(δ1), µy,y′,z(K1×{x0}×T) depends on y ′ ∈K2 only.
The statement (2) is also shown by the same argument as above.
Now, let M1 be any real number with (1 <)‖T‖ < 2M1 < 2. Let K̃2 := {y ∈ K2 : ∃x ∈

K1 such that |µy,y,z(K1 × {x} ×T)| > M1 for every z ∈ T and every norm-preserving
extension µy,y,z of T̃∗L(y,y,z)}. Since ‖µy,y,z‖ = ‖T̃∗L(y,y,z)‖ ≤ ‖T‖ < 2M1, for y ∈
K̃2, there can be at most one x ∈ K1 with the property in the definition of K̃2. Thus
the map ρ1 of K̃2 to K1 is well defined by ρ1(y) := x if x is related to y as above.
Next, we set M2 := 1/(2M1). Let K̃1 := {x ∈ K1 : ∃y ∈ K2 such that |µx,x,z(K2 ×

{y}×T)| > M2 for every z ∈ T and for every norm-preserving extension µx,x′,z of
(T̃−1)∗L(x,x,z)}. Since ‖µx,x,z‖ = ‖(T̃−1)∗L(x,x,z)‖ ≤ ‖T−1‖ ≤ 1, for x ∈ K̃1, there can
be at most one y ∈ K2 with the property in the definition of K̃1. Thus, the map ρ2 of
K̃1 to K2 is well defined by ρ2(x) :=y if y is related to x as above.

The following lemma shows that K̃i contains sufficiently many elements (hence, is
nonempty).

Lemma 12. (1) For x0 ∈K1(δ1), there exists y0 ∈ K̃2∩K2(δ2) such that ρ1(y0)= x0.
(2) For y0 ∈K2(δ2), there exists x0 ∈ K̃1∩K1(δ1) such that ρ2(x0)=y0.
Proof. (1) For x0 ∈ K1(δ1) and 0 < ε < 1−M1, there exists a family {fn} ⊂�(δ1)

in Lemma 10 such that

∥∥fn∥∥≤ 1, ∥∥fn∥∥∞ ≤ 1
n
, fn

(
x0
)= 0,

lim
n→∞δ1

(
fn
)
(x)= 0 (∀x ≠ x0), 1−ε < ∣∣dx0∣∣< 1,

(24)

where dx0 = δ1(fn)(x0). If limn→∞ |T̃ (f̃n)(y,y ′,z)| ≤ M1 for every (y,y ′,z) ∈ W2,
then

1−ε < ∣∣dx0∣∣= lim
n→∞

∣∣fn(x0)+δ1(fn)(x0)∣∣= lim
n→∞

∣∣f̃n(x0,x0,1)∣∣
= lim
n→∞

∣∣(T̃−1)∗L(x0,x0,1)(T̃(f̃n))∣∣
= lim
n→∞

∣∣∣∣∣
∫
W2
T̃
(
f̃n
)(
y,y ′,z

)
dµx0,x0,1

∣∣∣∣∣
≤
∫
W2
lim
n→∞

∣∣T̃(f̃n)(y,y ′,z)∣∣d∣∣µx0,x0,1∣∣
≤M1

∥∥µx0,x0,1∥∥≤M1.

(25)

This contradicts with 1−ε >M1.
Hence there exists (y0,y ′0,z0)∈W2 such that

lim
n→∞

∣∣T̃(f̃n)(y0,y ′0,z0)∣∣>M1. (26)
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Then, from Lemma 11 we have for arbitrary z ∈ T and any norm-preserving exten-
sion µy0,y

′
0,z of T̃∗L(y0,y′0,z),

M1 < lim
n→∞

∣∣T̃(f̃n)(y0,y ′0,z0)∣∣= lim
n→∞

∣∣δ2(Tfn)(y ′0)∣∣
= lim
n→∞

∣∣T̃(f̃n)(y ′0,y ′0,z0)∣∣= ∣∣dx0µy′0,y′0,z(K1×{x0}×T
)∣∣

<
∣∣µy′0,y′0,z(K1×{x0}×T

)∣∣.
(27)

Thus, y ′0 ∈ K̃2∩K2(δ2) and ρ1(y ′0)= x0.
(2) For y0 ∈ K2(δ2) and 0 < ε < 1−M2‖T‖, we take a family {gn} ⊂ �(δ2) in

Lemma 10. The remainder of the proof is completed by the same way as above.

Now, we state another important lemma which holds without the first countability
axiom.

Lemma 13. If x0 ∈ K̃1 and ρ2(x0)∈K2(δ2), then x0 ∈K1(δ1).
Proof. Letµx0,x0,1 be a norm-preserving extension of (T̃−1)∗L(x0,x0,1). Sinceµx0,x0,1

is regular, Since for all ε such that 0 < ε < M2/(M2+3+‖T−1‖∞) there is an open
neighborhood Uε of ρ2(x0) such that∣∣µx0,x0,1∣∣(K2×(Uε\{ρ2(x0)})×T

)
< ε. (28)

For ε,Uε and ρ2(x0), we take a function f ∈�(δ2) in Lemma 9, then

‖f‖ ≤ 1, ‖f‖∞ ≤ ε, f
(
ρ2
(
x0
))= 0,

f = δ2(f )= 0 on K2\Uε, 1>
∣∣δ2(f )(ρ2(x0))∣∣> 1−ε. (29)

Since∣∣∣∣∣
∫
K2×{ρ2(x0)}×T

zf(y)dµx0,x0,1
∣∣∣∣∣≤ ‖f‖∞‖µx0,x0,1‖ ≤ ε,∣∣∣∣∣

∫
K2×{ρ2(x0)}×T

δ2(f )
(
ρ2
(
x0
))
dµx0,x0,1

∣∣∣∣∣
= ∣∣δ2(f )(ρ2(x0))∥∥µx0,x0,1∥∥(K2×{ρ2(x0)}×T

)∣∣
> (1−ε)M2,

(30)

we have∣∣∣∣∣
∫
K2×{ρ2(x0)}×T

f̃ dµx0,x0,1
∣∣∣∣∣≥

∣∣∣∣∣
∫
K2×{ρ2(x0)}×T

δ2(f )
(
ρ2
(
x0
))
dµx0,x0,1

∣∣∣∣∣
−
∣∣∣∣∣
∫
K2×{ρ2(x0)}×T

zf(y)dµx0,x0,1
∣∣∣∣∣

> (1−ε)M2−ε > 0.

(31)

From this and∣∣∣∣∣
∫
K2×(Uε\{ρ2(x0)})×T

f̃dµx0,x0,1
∣∣∣∣∣≤

∥∥f̃∥∥∞∣∣µx0,x0,1∣∣(K2×(Uε\{ρ2(x0)})×T
)≤ ε, (32)
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we have ∣∣∣∣∣
∫
K2×Uε×T

f̃ dµx0,x0,1
∣∣∣∣∣≥

∣∣∣∣∣
∫
K2×{ρ2(x0)}×T

f̃ dµx0,x0,1
∣∣∣∣∣

−
∣∣∣∣∣
∫
K2×(Uε\{ρ2(x0)})×T

f̃ dµx0,x0,1
∣∣∣∣∣

> (1−ε)M2−2ε > 0.

(33)

Since ∣∣∣∣∣
∫
K2×(K2\Uε)×T

f̃dµx0,x0,1
∣∣∣∣∣=

∣∣∣∣∣
∫
K2×(K2\Uε)×T

zf(y)dµx0,x0,1
∣∣∣∣∣

≤ ‖f‖∞
∥∥µx0,x0,1∥∥≤ ε,

(34)

we get

∣∣(T̃−1f̃ )(x0,x0,1)∣∣= ∣∣(T̃−1)∗L(x0,x0,1)(f̃ )∣∣=
∣∣∣∣∣
∫
W2
f̃ dµx0,x0,1

∣∣∣∣∣
≥
∣∣∣∣∣
∫
K2×Uε×T

f̃ dµx0,x0,1
∣∣∣∣∣−

∣∣∣∣∣
∫
K2×(K2\Uε)×T

f̃ dµx0,x0,1
∣∣∣∣∣

≥ (1−ε)M2−3ε > 0.

(35)

Thus
∣∣δ1(T−1(f ))(x0)∣∣= ∣∣T̃−1(f̃ )(x0,x0,1)−T−1(f )(x0)∣∣

≥ ∣∣T̃−1(f̃ )(x0,x0,1)∣∣−∣∣T−1(f )(x0)∣∣
≥ (1−ε)M2−3ε−ε

∥∥T−1∥∥∞ > 0,
(36)

that is, x0 ∈K1(δ1). This completes the proof.
Lemma 14. If y0 ∈ K̃2∩K2(δ2), then ρ1(y0)∈ K̃1∩K1(δ1) and ρ2(ρ1(y0))=y0.
Proof. Let ρ1(y0) = x0 (y0 ∈ K̃2 ∩K2(δ2)). If x0 ∈ K̃1 and ρ2(x0) = y0, then

x0 ∈ K1(δ1) from Lemma 13. Hence, suppose that either x0 is not in K̃1 or x0 ∈ K̃1
and ρ2(x0)≠y0. Then there exists z0 ∈ T such that |µx0,x0,z0(K2×{y0}×T)| ≤M2.
Let P := sup{|µx,x,z(K2 × {y0} × T)|;(x,x,z) ∈ W1}(≤ 1). Since y0 ∈ K2(δ2), we

have P = sup{|µx,x′,z(K2 × {y0} × T)|;(x,x′,z) ∈ W1} by Lemma 11. Since P > M2

by Lemma 12 and 0< ‖T‖−M1 <M1, there exists (x1,x1,z1)∈W1 such that

∣∣µx1,x1,z1(K2×{y0}×T
)∣∣>max{M2,

(‖T‖−M1
)
P/M1

}
. (37)

Then, for arbitrary z ∈ T and any norm-preserving extension µx1,x1,z,

∣∣µx1,x1,z(K2×{y0}×T
)∣∣>M2, (38)

by Lemma 11. Thus, x1 ∈ K̃1, ρ2(x1) = y0, and x1 ≠ x0. Therefore, x1 ∈ K1(δ1) by
Lemma 13. Since x1 ≠ x0, there exist y1(≠ y0) ∈ K̃2∩K2(δ2) such that ρ1(y1) = x1
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by Lemma 12. For y0 ∈ K2(δ2) and ε (0 < ε < 1), there exists a family {gn} ⊂ �(δ2)
in Lemma 10. Then, since y1 ≠y0,

0= lim
n→∞

(
z1gn

(
y1
)+δ2(gn)(y1))= lim

n→∞ g̃n
(
y1,y1,z1

)
= lim
n→∞ T̃

∗L(y1,y1,z1)
(
T̃−1

(
g̃n
))= lim

n→∞

∫
W1
T̃−1

(
g̃n
)
dµy1,y1,z1

= lim
n→∞

∫
K1×{x1}×T

T̃−1
(
g̃n
)
dµy1,y1,z1+ lim

n→∞

∫
K1×(K1\{x1})×T

T̃−1
(
g̃n
)
dµy1,y1,z1 .

(39)

Now, by Lemma 11,∣∣∣∣∣ limn→∞
∫
K1×{x1}×T

T̃−1
(
g̃n
)
dµy1,y1,z1

∣∣∣∣∣
=
∣∣∣∣∣
∫
K1×{x1}×T

lim
n→∞ T̃

−1(g̃n)dµy1,y1,z1
∣∣∣∣∣

=
∣∣∣∣∣
∫
K1×{x1}×T

dy0 µ
x,x1,z

(
K2×{y0}×T

)
dµy1,y1,z1

∣∣∣∣∣
=
∣∣∣∣∣
∫
K1×{x1}×T

dy0 µ
x1,x1,z1

(
K2×{y0}×T

)
dµy1,y1,z1

∣∣∣∣∣
= ∣∣dy0µx1,x1,z1(K2×{y0}×T

)
µy1,y1,z1

(
K1×{x1}×T

)∣∣
>
∣∣dy0∣∣·

(‖T‖−M1
)
P

M1
·M1 =

∣∣dy0∣∣P(‖T‖−M1
)
.

(40)

On the other hand,∣∣∣∣∣ limn→∞
∫
K1×

(
K1\{x1}

)
×T
T̃−1

(
g̃n
)
dµy1,y1,z1

∣∣∣∣∣
=
∣∣∣∣∣
∫
K1×

(
K1\{x1}

)
×T
lim
n→∞ T̃

−1(g̃n)dµy1,y1,z1
∣∣∣∣∣

=
∣∣∣∣∣
∫
K1×(K1\{x1})×T

dy0 µ
x,x′,z(K2×{y0}×T

)
dµy1,y1,z1

∣∣∣∣∣
≤ ∣∣dy0∣∣P∣∣µy1,y1,z1∣∣(K1×(K1\{x1})×T

)
= ∣∣dy0∣∣P(∣∣µy1,y1,z1∣∣(K1×K1×T

)−∣∣µy1,y1,z1∣∣(K1×{x1}×T
))

≤ ∣∣dy0∣∣P(‖T‖−∣∣µy1,y1,z1∣∣(K1×{x1}×T
))
<
∣∣dy0∣∣P(‖T‖−M1

)
.

(41)

This contradicts to

0= lim
n→∞

∫
K1×{x1}×T

T̃−1
(
g̃n
)
dµy1,y1,z1+ lim

n→∞

∫
K1×(K1\{x1})×T

T̃−1
(
g̃n
)
dµy1,y1,z1 . (42)

Thus x0 ∈ K̃1 and y0 = ρ2(x0)= ρ2(ρ1(y0)).
By Lemmas 12 and 14, we have K1(δ1) ⊆ ρ1(K̃2∩K2(δ2)) ⊆ K̃1∩K1(δ1) ⊆ K1(δ1)

and K2(δ2) ⊆ ρ2(K̃1 ∩K1(δ1)) = ρ2(K1(δ1)) = ρ2(ρ1(K̃2 ∩K2(δ2))) ⊆ K̃2 ∩K2(δ2) ⊆
K2(δ2). Thus, K1(δ1) ⊆ K̃1,K1(δ1) = ρ1(K̃2∩K2(δ2)), and K2(δ2) = K̃2∩K2(δ2) ⊆ K̃2.
Therefore, ρ1(K2(δ2)) = K1(δ1) and ρ2(K1(δ1)) = K2(δ2). Since ρ2(ρ1(y)) = y for
y ∈K2(δ2) from Lemma 14, ρ1 is injective on K2(δ2). Moreover, we have ρ1(ρ2(x))=
x for x ∈K1(δ1) and hence ρ2 is injective on K1(δ1).
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Lemma 15. ρi is continuous on Ki(δi) (i= 1,2).
Proof. We show that ρ1 is continuous. Suppose that ρ1 is discontinuous at y0 ∈

K2(δ2). Then there exists a sequence {yn} ⊂ K2(δ2) such that yn → y0 ∈ K2(δ2),
but xn := ρ1(yn) is not converge to ρ1(y0)= x0. There exists an open neighborhood
V1(⊂ K1(δ1)) of x0 such that for every n0 there is n(≥n0) with xn outside V1. Since
µy0,y0,1 is regular, for ε (0 < ε < (2M1−‖T‖)/(‖T‖+2M1+10)) there exists an open
neighborhood U1(⊂ V1) of x0 such that

∣∣µy0,y0,1∣∣(K1×(U1\{x0})×T
)
< ε, U1 ⊂ V1. (43)

For x0,U1, and ε, by Lemma 9, there exists a function f ∈�(δ1) such that

‖f‖ ≤ 1, ‖f‖∞ ≤ ε, f
(
x0
)= 0,

1>
∣∣δ1(f )(x0)∣∣> 1−ε, f = δ1(f )= 0 on K1\U1.

(44)

Since

∣∣∣∣∣
∫
K1×{x0}×T

zf(x)dµy0,y0,1
∣∣∣∣∣≤ ‖f‖∞

∥∥µy0,y0,1∥∥≤ 2ε,
∣∣∣∣∣
∫
K1×{x0}×T

δ1(f )(x0)dµy0,y0,1
∣∣∣∣∣= |δ1(f )(x0)

∥∥µy0,y0,1∥∥(K1×{x0}×T
)∣∣

> (1−ε)M1,

(45)

we have

∣∣∣∣∣
∫
K1×{x0}×T

f̃dµy0,y0,1
∣∣∣∣∣> (1−ε)M1−2ε > ε. (46)

From (46) and

∣∣∣∣∣
∫
K1×(U1\{x0})×T

f̃dµy0,y0,1
∣∣∣∣∣≤

∥∥f̃∥∥∞∣∣µy0,y0,1∣∣(K1×(U1\{x0})×T
)≤ ε, (47)

we have

∣∣∣∣∣
∫
K1×U1×T

f̃dµy0,y0,1
∣∣∣∣∣≥

∣∣∣∣∣
∫
K1×{x0}×T

f̃dµy0,y0,1
∣∣∣∣∣

−
∣∣∣∣∣
∫
K1×(U1\{x0})×T

f̃dµy0,y0,1
∣∣∣∣∣

≥ (1−ε)M1−3ε > 2ε∣∣∣∣∣
∫
K1×(K1\U1)×T

f̃dµy0,y0,1
∣∣∣∣∣=

∣∣∣∣∣
∫
K1×(K1\U1)×T

zf(x)dµy0,y0,1
∣∣∣∣∣

≤ ‖f‖∞
∥∥µy0,y0,1∥∥≤ 2ε.

(48)
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Thus

∣∣T̃ (f̃ )(y0,y0,1)∣∣= ∣∣T̃∗L(y0,y0,1)(f̃ )∣∣=
∣∣∣∣∣
∫
W1
f̃dµy0,y0,1

∣∣∣∣∣
≥
∣∣∣∣∣
∫
K1×U1×T

f̃dµy0,y0,1
∣∣∣∣∣−

∣∣∣∣∣
∫
K1×(K1\U1)×T

f̃dµy0,y0,1
∣∣∣∣∣

> (1−ε)M1−5ε > 0.

(49)

Now, since yn → y0 in K2, then (yn,yn,1)→ (y0,y0,1) in W2. There exists n0 such
that∀n(>n0) implies |T̃ (f̃ )(yn,yn,1)|> (1−ε)M1−5ε. Fixn1(≥n0) such thatxn1 =
ρ1(yn1) lies outside V1. Since µ

yn1 ,yn1 ,1 is regular, there exists an open neighborhood
U2(⊂K1) of xn1 such that

∣∣µyn1 ,yn1 ,1∣∣(K1×(U2\{xn1})×T
)
< ε, U1∩U2 =φ. (50)

For xn1 ,U2, and ε, we take g(∈�(δ1)) in Lemma 9 such that

‖g‖ ≤ 1, ‖g‖∞ ≤ ε, g(xn1)= 0,
1>

∣∣δ1(g)(xn1)∣∣> 1−ε, g = δ1(g)= 0 on K1\U2.
(51)

By the same way as above, we have
∣∣∣∣∣
∫
K1×U2×T

g̃dµyn1 ,yn1 ,1
∣∣∣∣∣> (1−ε)M1−3ε > 0,

∣∣∣∣∣
∫
K1×(K1\U2)×T

g̃dµyn1 ,yn1 ,1
∣∣∣∣∣=

∣∣∣∣∣
∫
K1×(K1\U2)×T

zg(x)dµyn1 ,yn1 ,1
∣∣∣∣∣

≤ ‖g‖∞‖µyn1 ,yn1 ,1‖ ≤ 2ε.

(52)

Then

∣∣T̃(g̃)(yn1 ,yn1 ,1)∣∣= ∣∣T̃∗L(yn1 ,yn1 ,1)(g̃)∣∣=
∣∣∣∣∣
∫
W1
g̃dµyn1 ,yn1 ,1

∣∣∣∣∣
≥
∣∣∣∣∣
∫
K1×U2×T

g̃dµyn1 ,yn1 ,1
∣∣∣∣∣−

∣∣∣∣∣
∫
K1×(K1\U2)×T

g̃dµyn1 ,yn1 ,1
∣∣∣∣∣

> (1−ε)M1−5ε > 0.

(53)

Thus, if we choose a complex number λ0 ∈ T such that T̃ (f̃ )(yn1 ,yn1 ,1) and λ0
(T̃ (g̃))(yn1 ,yn1 ,1) have equal arguments, then∥∥f +λ0g∥∥=max{∥∥f∥∥∞,∥∥g∥∥∞}+max{∥∥δ1(f )∥∥∞,∥∥δ1(g)∥∥∞}≤ 1+ε, (54)

This is a contradiction. Therefore, ρ1 is continuous on K2(δ2). A similar argument
shows that ρ2 is continuous on K1(δ2).

From Lemma 15, it follows that K1(δ1) and K2(δ2) are homeomorphic. Thus, all
proofs of Theorem are completed.
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Remark 16. There is not a nonzero closed ∗-derivation in C(D) (D is the Cantor
set). However, we can obtain similar results for C(1)(X) (X : a compact subset of R) by
the same way as above.
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