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Abstract. The uniform convergence of the approximations by new numerical schemes in
the charge simulation method, which have been recently proposed by Inoue (1997), will be
studied. The exponential decrease of the errors will also be shown.
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1. Introduction. The charge simulation method is very useful to obtain the numer-
ical solution of partial differential equations in electrical engineering. The method
can be easily applied by solving a system of simultaneous linear equations. Many ex-
amples show that the method makes it possible to get rather precise solutions for
the boundary value problems with respect to domains bounded by smooth curves
[1, 2, 3, 4, 5, 6, 7]. However, many parts of the method depend on the results of nu-
merical examples. For instance, the theoretically best distribution of the charge points
is not known.
Though a lot of the schemes for computing the approximations of conformal map-

pings in the charge simulation method have been proposed for interior and exterior
domains [1, 2, 3, 4], the uniform convergence of the approximations is not verified
even now. For the Dirichlet problem it has been shown by Katsurada-Okamoto [5] and
Murota [7]. In fact they have shown the exponential decrease of the errors.
In this paper, the uniform convergence of the approximations by new numerical

schemes, which have been recently proposed by Inoue [3, 4], will be studied. The
exponential decrease of the errors will also be shown.

2. Numerical schemes. The schemes for the numerical conformal mapping of in-
terior and exterior domains in the charge simulation method have been recently pro-
posed by Amano [1, 2] and Inoue [3, 4]. In this section, the latter is shown, and the
uniform convergence of the approximations and the exponential decrease of the er-
rors are studied in the next section.
Let G denote an interior domain whose boundary is a Jordan curve γ. Without loss

of generality, we assume that G contains zero and ∞ in its interior and exterior, re-
spectively.
Let g(z) map conformally the unit disk |w|< 1 onto G with the expansion

g(z)= dz+d1z2+··· , d > 0 (2.1)
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near z = 0. Then the following scheme for computing an approximation of g(z) has
been recently proposed in [3, 4].

Scheme 2.1. The approximation gn(z) of g(z) may be obtained as follows:
(2a) {zn,i}ni=1 and {ζn,i}ni=1 (called charge points and collocation points) are chosen

on |z| = ρ and on |z| = 1, respectively, so that

zn,i = ρζn,i, ζn,i = eiθi
(
ρ > 1, θi = 2π(i−1)n

)
. (2.2)

(2b) When αi (i= 0,1,2, . . . ,n) are the solutions of a system of simultaneous linear
equations

α0+ log |ζn,k|+
n∑
i=1
αi log

∣∣∣∣∣1− ζn,kzn,i

∣∣∣∣∣= log
∣∣g(ζn,k)∣∣ (k= 1,2, . . . ,n),

α1+α2+···+αn =−1,
(2.3)

the charges at {zn,i}ni=1 are given by {αi}ni=1.
(2c) The approximation gn(z) is represented by

gn(z)= eα0zexp
{ n∑
i=1
αi log

(
1− z

zn,i

)}
. (2.4)

We have, in Scheme 2.1, assumed that the values log |g(ζn,k)| (k = 1,2, . . . ,n) are
known. It is known that the scheme (2.4) has the following mathematical properties.
(2d) The constant terms of schemes have a geometric meaning. The constant term

in (2.4) has the approximations of high accuracy

α0 	 logd, (2.5)

when the charge and collocation points are suitably distributed [3, 4].
(2e) The schemes are dual with respect to interior and exteriormappings. Thismeans

that there hold (2.4) with (2.3) and

fn(z)= eα0zexp
{ n∑
i=1
αi log

(
1− zn,i

z

)}
(2.6)

with

α1+α2+···+αn = 1 (2.7)

for interior and exterior domains, respectively.
(2f) The scheme (2.4) introduced in this paper has the invariant property (whose

definition is shown in the next section) under any scaling of domains.
Invariant schemes analogous to ours have recently been proposed for the mapping

from a general domain onto a standard one [2]. However they do not have the dual
property.
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3. Murota scheme. Let h(z) de a harmonic function on the closed unit disk |w| ≤
1. Murota [6] has recently proposed the following scheme of approximations in the
Dirichlet problem.

Scheme 3.1. The approximation hn(z) of h(z) may be obtained as follows:
(3a) The charge points {zn,i}ni=1 and the collocation points {ζn,i}ni=1 are chosen on

|z| = ρ (ρ > 1) and on |z| = 1, respectively, by the method same as (2a).
(3b) When αi (i= 0,1,2, . . . ,n) are the solutions of a system of simultaneous linear

equations

β0+
n∑
i=1
βi log |ζn,k−zn,i| = h

(
ζn,k

)
(k= 1,2, . . . ,n), (3.1)

β1+β2+···+βn = 0, (3.2)

the charges at {zn,i}ni=1 are given by {βi}ni=1.
(3c) The approximation hn(z) is represented by

hn(z)= β0+
n∑
i=1
βi log |z−zn,i|. (3.3)

The approximation is superior in the sense that it remains invariant with respect
to trivial affine transformations. More precisely, Murota-scheme has the advantage
satisfying the following “invariant” property.

z �→ az, zn,i �→ azn,i, h(z) �→ h(z)+b (3.4)

implies

hn(z) �→ hn(az), hn(z) �→ hn(z)+b, (3.5)

where a(�= 0) and b are constant. Using the sub-condition (3.2), the invariant property
is easily verified.
We may show that the scheme (2.4) introduced in this paper has the invariant prop-

erty mentioned above without any sub-condition, but

eα0 �→ aeα0 . (3.6)

When the charge points and the collocation points are distributed as (2a), (3.1) with
(3.2) is transformed to

hn(z)= β0+
n∑
i=1
βi log

∣∣∣∣1− z
zn,i

∣∣∣∣ (3.7)

with

β1+β2+···+βn = 0. (3.8)

Under the condition that the function h(z) may have a conformally extension, the
following (3d) and (3e) have been verified by Murota [7].
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(3d) The coefficient matrix in Scheme 3.1 is nonsingular.
(3e) There exist positive constants c, 0< τ < 1 and n0 such that

∣∣hn(z)−h(z)∣∣≤ cτn, ∀n≥n0, (3.9)

where c depends on ρ.

4. Uniform convergence. Under the condition that the function may have a con-
formally extension, the following (4a) and (4b) will be shown in this section.
(4a) The coefficient matrix in Scheme 2.1 is nonsingular.
(4b) There exist positive constants c, 0< τ < 1 and n0 such that

∣∣gn(z)−g(z)∣∣≤ cτn, ∀n≥n0, |z| ≤ 1, (4.1)

where c depends on ρ.
(4a) and (4b) for the approximations gn(z) may be shown from (3d) and (3e), and

the fact that the uniform convergence of real parts of regular functions implies the
one of the imaginal.
Since the coefficient matrices in Schemes 2.1 and 3.1 are same, (4a) is trivial. Next

the uniform convergence of the approximations gn(z), obtained by the Scheme 2.1,
will be shown as follows.
Equation (2.3) may be transformed to (3.2) and (3.3), respectively, where

h(z)= log
∣∣∣∣∣g(z)z

(
1− z

z1

)∣∣∣∣∣, (4.2)

β0 =α0, β1 =α1+1, βk =αk (k= 1,2, . . . ,n). (4.3)

The approximation hn(z) has the form (3.7) with (3.8). When

hn(z)= log
∣∣∣∣∣gn(z)z

(
1− z

z1

)∣∣∣∣∣ (4.4)

with (4.3), gn(z) is represented as (2.4) with (2.3).
Now we consider a function

Gn(z)= gn(z)g(z)
(4.5)

analytic on the disk |z|< ρ with the expansion

Gn(z)= e
α
0

d
+c1z+··· (4.6)

near z = 0.
Then using (3.9), (4.2), (4.4), and (4.5) there holds

| log |Gn(z)|| = | log |gn(z)|− log |g(z)|| = | log |hn(z)|− log |h(z)|| ≤ cτn. (4.7)

Since Gn(0) = eα0/d, logGn(z) is represented as follows (using the representation
has been supported by an unknown researcher).
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logGn(z)= loggn(z)− logg(z)

= 1
2π

∫ 2π
0
log

∣∣Gn(ρ′eiθ)∣∣ρ′eiθ+zρ′eiθ−zdθ
(
ρ′ = ρ+1

2

)
,

(4.8)

which implies for |z| ≤ 1 that

∣∣ logGn(z)∣∣= ∣∣ loggn(z)− logg(z)∣∣≤ cτn
(
ρ′ +1)

ρ′ −1 . (4.9)

Therefore there exist positive constants c2, 0< τ < 1,

∣∣gn(z)−g(z)∣∣≤ c2τn, ∀n≥n0, |z| ≤ 1, (4.10)

where c2 depends on ρ.
Thus the uniform convergence of the approximations gn(z), obtained by Scheme

2.1, has been verified.

5. Example. The object of this section is to estimate the exponential decrease of
the errors in Scheme 2.1 by an example. We consider the function

w = g(z)= 4z
4−z2 (5.1)

which maps conformally the unit disk |z|< 1 onto a domain G denoted in Figure 5.1.

1−1

1.0

0.5

0.0

−0.5
−1.0

0 2−2

Figure 5.1. The domain G.

Example 5.1. We distribute the charge points and collocation points as (2.2). We
solve a system of simultaneous linear equations (2.3) with ρ = 2, 9 ≤ n ≤ 42 and
obtain the charges {αi}ni=1.
Using the charges, the approximation (2.4) is represented. Accuracy of the errors of

gn(z) is estimated by the maximum E(n) of

∣∣gn(ζ100,i)−g(ζ100,i)∣∣ (i= 1,2, . . . ,100). (5.2)

By the maximum principle for the regular functions, it is sufficient that the errors are
estimated only on the boundary. The graphs logE(n) are shown in Figures 5.2 and 5.3
for even and odd n, respectively.
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Figure 5.2. Graph for even n.
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Figure 5.3. Graph for odd n.

The numerical calculation has been performed in MsDevf90 (PC98XA21-NEC) and
with double precision.

6. Concluding remarks. We have assumed that the values g(z) at collocation
points are known. Otherwise at first consider the inverse function z = g−1(w) of
w = g(z). Then |g−1(w)| = 1 holds on the boundary of G. Applying the charge simu-
lation method for z = g−1(w), the approximation of g−1(w) will be utilized instead
of the real values at the collocation points.
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