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A UNIQUENESS THEOREM FOR BOEHMIANS OF ANALYTIC TYPE
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Abstract. The following uniqueness theorem is proven for a class of generalized func-
tions. If F is a Boehmian of analytic type and F = 0 on some open arc Ω, then F ≡ 0.
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1. Introduction. It is well known that if f(z) is a bounded analytic function in the
unit disk D, then it has a radial limit F(eiθ) = limr→1f(reiθ) almost everywhere on
the unit circle T . Moreover, if F(eiθ)= 0 on a set E ⊆ T of positive measure, then f(z)
is identically zero. This property is called the uniqueness property, since bounded
analytic functions inD are uniquely determined by their boundary values F(eiθ) on E.
Similar results can be obtained for a larger class of analytic functions in D, where

each function f(z) in this class corresponds to a Beurling distribution F on T . More-
over, if F = 0 (in the sense of distributions) on an open arc, then f(z) is identically
zero [6].
Thus, let A be a space of generalized functions on T . Two questions arise:
(1) Does the space A have a uniqueness property?
(2) What type of function in the unit disk has an element of A as a boundary value?
In this paper we consider a space of generalized functions on T called Boehmi-

ans. The space of Boehmians is a generalization of Schwartz distributions as well as
Beurling distributions. In [3, 4] the author shows, among other things, that there are
Boehmians which are not hyperfunctions and hyperfunctions which are not Boehmi-
ans. For other results, which also includes a more general construction of spaces of
Boehmians, see Mikusiński [1].
In this paper we show that a uniqueness property holds for a subspace of Boehmians

known as Boehmians of analytic type.

2. Preliminaries. Let C(T) denote the collection of continuous complex-valued
functions on the unit circle T . We make no distinction between a function on T and a
2π -periodic function on the real line R.
The convolution of two functions f ,g ∈ C(T), denoted by f ∗g, is given by

(f ∗g)(x)= 1
2π

∫ π

−π
f(x−t)g(t)dt. (2.1)

A sequence of continuous nonnegative functions {δn} will be called a delta se-
quence if
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(i) 1/2π
∫π
−π δn(x)dx = 1 for all n∈N,

(ii) suppδn ⊆ (−εn,εn), where εn→ 0 as n→∞.
The collection of delta sequences will be denoted by ∆.
Let CN(T) denote the collection of sequences of elements from C(T) and � ⊆

CN(T)×∆ be defined as follows:

�= {({fn},{δn
})
: fk∗δn = fn∗δk for all n,k∈N

}
. (2.2)

Two elements ({fn},{δn}) and ({gn},{σn}) of� are said to be equivalent if fk∗σn =
gn∗δk for all n,k∈N. A straightforward calculation shows that this is an equivalence
relation on �. The equivalence classes are called periodic Boehmians.
Define

β=
{[{

fn
}{

δn
}] : ({fn},{δn

})∈�

}
. (2.3)

For convenience a typical element of β will be written as F = fn/δn .
By defining a natural addition, multiplication, and scalar multiplication on β, i.e.,

fn
δn
+ gn

σn
= fn∗σn+gn∗δn

δn∗σn
,

fn
δn
∗ gn

σn
= fn∗gn

δn∗σn
, α

fn
δn

= αfn
δn

, (2.4)

where α is a complex number, β becomes a commutative algebra with identity δ =
δn/δn.

3. Boehmians of analytic type. The nth Fourier coefficient for a function f ∈ C(T)
is defined in the usual way,

f̂ (n)= 1
2π

∫ π

−π
f(x)e−inx dx, n∈ Z. (3.1)

Definition 3.1. Let F = fn/δn ∈ β. The nth Fourier coefficient of F , denoted by
F̂(n), is defined by F̂(n)= limk→∞ f̂ k(n).

The limit in the above definition always exists and is independent of the represen-
tative used for F (see [2]).
The sequence of Fourier coefficients for a Boehmian can behave quite differently

than the sequence of Fourier coefficients of a distribution or hyperfunction. For ex-
ample, the sequence of Fourier coefficients for a Boehmian cannot grow unrestricted,
however a subsequence may grow without any restrictions (see [4]).
A Boehmian F is said to be of analytic type if F̂(n)= 0, for n=−1,−2, . . . .
Definition 3.2. A Boehmian F is said to be zero on an open set Ω, denoted by

F = 0 on Ω, if there exists a delta sequence {δn} such that F∗δn ∈ C(T) for all n∈N
and F∗δn→ 0 uniformly on compact subsets of Ω as n→∞.
As an example, consider the Boehmian δ= δn/δn. Then, δ= 0 on Ω = {x : 0< |x|<

2π}.
It appears that the above definition may depend on the delta sequence {δn}. How-

ever it is not difficult to show that if {σn} is a delta sequence such that F∗σn ∈ C(T)
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for alln∈N, then the sequence {F∗σn} also converges to zero uniformly on compact
subsets of Ω as n→∞.

Theorem 3.3. If F is a Boehmian of analytic type such that F = 0 on some open arc
Ω, then F ≡ 0.

Proof. Let F = fn/δn ∈ β be a Boehmian of analytic type such that F = 0 on Ω.
Since F̂(n)= 0 for n=−1,−2, . . . , we see that for each n

f̂n(k)= F̂(k)δ̂n(k)= 0 for k=−1,−2, . . . . (3.2)

Thus, by a well known result (see [5, Theorem 17.18]), fn is identically zero provided
it vanishes on a set of positive measure. Hence to complete the proof it suffices to
show that there exist an n0 ∈N and an arc J such that for each n ≥ n0, fn vanishes
on J.
Now,

fn = fn−
(
fn∗δk

)+(fn∗δk
)
, for all n,k∈N. (3.3)

Since {δk} is a delta sequence, for each n

fn∗δk �→ fn uniformly on T as k �→∞. (3.4)

Let J be any closed subinterval of Ω. Then there exist an α> 0 and a closed interval
I such that J ⊂ I ⊂ Ω and (−α,α)+ J ⊆ I. Also, there exists an n0 ∈ N such that
suppδn ⊆ (−α,α), for all n≥n0.
Now, let ε > 0. Since fk→ 0 uniformly on I as k→∞, there exists a k0 ∈N such that

for all k≥ k0, |fk(x)|< ε for all x ∈ I.
Let n be any fixed integer greater than n0. Then for all k≥ k0∣∣(fn∗δk

)
(x)

∣∣= ∣∣(fk∗δn
)
(x)

∣∣
≤ 1
2π

∫ α

−α

∣∣fk(x−t)
∣∣δn(t)dt

<
ε
2π

∫ α

−α
δn(t)dt = ε, for all x ∈ J.

(3.5)

That is, for each n≥n0,

fn∗δk �→ 0 uniformly on J as k �→∞, (3.6)

By combining (3.3), (3.4), and (3.6), we see that for each n≥n0, fn vanishes on J. This
establishes the theorem.

4. Some final comments. In the definition of a delta sequence, the condition that δn

be nonnegative can be relaxed. In this case, an additional condition must be required.
That is, the condition that 1/2π

∫π
−π |δn(x)|dx ≤M for some M > 0 and all n ∈ N is

needed.
A slight modification of the proof of Theorem 3.3 shows that the theorem is still

valid if one uses delta sequences in the above sense. The details are left to the reader.
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By using this relaxed form of a delta sequence to construct the space of Boehmians,
it is not known whether any new Boehmians are obtained.
We conclude this paper with an open problem: What type of function in the unit

disk has a Boehmian of analytic type as a boundary value?

References
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