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Abstract. For each nonnegative integer n, r3(n) denotes the number of representations
of n by sums of three squares. Here presented is a two-step recursive scheme for comput-
ing r3(n), n≥ 0.
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1. Introduction. In order to lend greater precision to statements of results and
methods of proof we begin our discussion with a definition.

Definition 1.1. As usual, P := {1,2,3, . . .}, N := P∪{0} and Z := {0,±1,±2, . . .}.
Then, for each n∈N,

r3(n) :=
∣∣{(h,j,k)∈ Z3 |n= h2+j2+k2}∣∣; (1.1)

and q0(n) := the number of partitions of n into distinct odd parts. The function
q0(n), n∈N, is generated by the infinite product expansion

∞∏
1

(
1+x2n−1)= ∞∑

0

q0(n)xn (1.2)

which is valid for each complex number x such that |x|< 1.

The outstanding result about r3(n), n ∈ N, was first presented by Legendre. We
state his result in the following theorem.

Theorem 1.2. If S := {n ∈ P | n = 4k(8m+7), for some k,m ∈ N}, then for each
n∈ S, r3(n)= 0; and, for each n∈N−S, r3(n) > 0.

Based on his theory of ternary quadratic forms, Gauss gave the first complete proof
of this theorem in his now famous book Disquistiones Arithmaticae.
In this note, our major objective is to give a two-step recursive determination of the

sequence r3(n), n∈N. This is accomplished by the following two results.
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Theorem 1.3. For each n∈N,

∑
k=0
(−1)k(k+1)/2q0

(
n− k(k+1)

2

)
=

(−1)

m, if n=m(3m±1),
0, otherwise.

(1.3)

Here, summation ranges over all k∈N such that n−k(k+1)/2≥ 0.

Theorem 1.4. For each n∈N,

r3(n)= q0(n)−
∑
k=1
(−1)k(3k−1)/2q0

(
n− k(3k−1)

2

)
(6k−1)

+
∑
k=1
(−1)k(3k+1)/2q0

(
n− k(3k+1)

2

)
(6k+1).

(1.4)

As before, summation extends as far as the arguments of q0 remain nonnegative.

For a proof of Theorem 1.3, see [1, pages 1–2]. Section 2 is dedicated to proof of
Theorem 1.4.

2. Proof of Theorem 1.4. Our proof is based on the following two identities, each
of which is valid for each complex number x such that |x|< 1.

∞∏
1

(
1−xn)(1−x2n−1)= ∞∑

−∞
(−1)nxn2 , (2.1)

∞∏
1

(
1−xn)3(1−x2n−1)2 = ∞∑

−∞
(6n+1)xn(3n+1)/2. (2.2)

Identity (2.1) is due to Gauss; and, elementary proofs of it abound, cf. [3, page 284].
The second identity (2.2) is due to Basil Gordon [2, page 285]. In passing we ob-
serve that the cube of the right-hand side of (2.1) generates the sequence (−1)nr3(n),
n∈N. Hence, we multiply both sides of (2.2) by

∏∞
n=1(1−x2n−1) to get

∞∑
0

(−1)nr3(n)xn =
∞∏
1

(
1−xn)3(1−x2n−1)3

=
∞∏
1

(
1−x2n−1){1− ∞∑

k=1
(6k−1)xk(3k−1)/2+

∞∑
k=1
(6k+1)xk(3k+1)/2

}

=
∞∑
j=0
(−1)jq0(j)xj

{
1−

∞∑
k=1
(6k−1)xk(3k−1)/2+

∞∑
k=1
(6k+1)xk(3k+1)/2

}

(2.3)

Now, we expand the product of the two series, and subsequently equate coefficients
of like powers of x to prove our theorem.
Our recursive two-step algorithm proceeds as follows:
(i) use the recursive determination of q0 in Theorem 1.3 to compile a table of

values of q0, as in Table 2.1,
(ii) in terms of these computed values of q0 we then utilize Theorem 1.4 to compile

a table of values of r3, as in Table 2.2.
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Table 2.1.

n q0(n) n q0(n)

0 1 13 3

1 1 14 3

2 0 15 4

3 1 16 5

4 1 17 5

5 1 18 5

6 1 19 6

7 1 20 7

8 2 21 8

9 2 22 8

10 2 23 9

11 2 24 11

12 3 25 12

Table 2.2.

n r3(n) n r3(n)

0 1 13 24

1 6 14 48

2 12 15 0

3 8 16 6

4 6 17 48

5 24 18 36

6 24 19 24

7 0 20 24

8 12 21 48

9 30 22 24

10 24 23 0

11 24 24 24

12 8 25 30

Concluding remarks. The brief Tables 2.1 and 2.2 are compiled to show the
effectiveness of our procedure. In terms of machine computation we observe that for
a fixed but arbitrary choice of n ∈ P, each of Theorems 1.3 and 1.4 requires 0(n3/2)
running time. Legendre’s Theorem 1.2 would provide an excellent check on the accu-
racy of computation.
For given n∈ P, there are formulas which express r3(n) in terms of certain divisor

functions; and, also in terms of Jacobi symbols. However, factorization of arguments
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of the divisor functions and denominators of Jacobi symbols is required before these
expressions can be utilized. By comparison our procedure is entirely additive in char-
acter. In a word, no factorization is required.
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