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Abstract. In an earlier paper, the authors proved that a process described much earlier
for passing from a finitely generated nilpotent group N of a certain kind to a nilpotent
space X of finite type produced a bijection of Mislin genera �(N) � �(X). The present
paper is concerned with related results obtained by weakening the restrictions on N and
generalizing the homotopical nature of the spaces X to be associated with a given N .
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1. Introduction. The genus of a finitely generated nilpotent group N was intro-
duced in [11] as the set of isomorphism classes of finitely generated nilpotent groups
M such that the localizations Mp and Np are isomorphic at every prime p. Analo-
gously the Mislin genus of a connected nilpotent space X (of the homotopy type of a
CW-complex) of finite type (cf. [4]) is defined as the set of homotopy types of nilpotent
spaces Y of finite type such that the localizations Yp and Xp are homotopy equivalent
at every prime p.
In [10] the author, generalizing results in [13], provided a powerful tool for the

calculation of the Mislin genus �(X) of a (connected) nilpotent space X of finite type
which was an H0-space (i.e., its rationalization is an H-space) and had only finitely
many nonvanishing homotopy groups. It turns out that �(X) may then be given the
structure of a finite abelian group. Much earlier, in [1, 2], the Mislin genus �(N) of a
finitely generated nilpotent group N satisfying three conditions had been calculated.
The conditions are stated in terms of the natural short exact sequence

TN �� �� N �� �� FN , (1.1)

where TN is the torsion subgroup of N with FN the torsionfree quotient; they are
(i) TN and FN are commutative;
(ii) relation (1.1) splits for the action ω : FN �� AutTN ;
(iii) ω(FN ) lies in the center of AutTN .

It was observed in [1] that, in the presence of (i), (iii) is equivalent to
(iii′) for all ξ in FN , there exists an integer u such that ξ ·a=ω(ξ)(a)=ua for all

a∈ TN . (Here, TN is written additively.)
A finitely generated nilpotent group satisfying (i), (ii), (iii) is also said to belong to �1.
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Now it was known (see [3, 11]) that if FN is commutative, then �(N) may also be
given the structure of a finite abelian group. Moreover, a procedure was described in
[2], and exploited in [6], whereby onemight associate with the groupN , in the case that
FN is cyclic, a circle bundle X, over a base M which depends only on �(N), inducing
an injection �(N) �� �� �(X). Using [10, McGibbon’s formula], it was shown in [6] that
the injection is indeed a bijection; in fact, the abelian group structures on �(N) and
�(X) coincide. However, it should be remarked that the result in [6] was based on the
assumption that one had chosen X to have vanishing homotopy groups in dimensions
i≥ 3.
The restriction on N , that FN be cyclic, is reasonable if one wishes to construct and

calculate examples of nontrivial genera, since a result of [8] implies that �(N) is trivial
if FN is not cyclic. On the other hand, from the point of view of obtaining information
about the genus of a certain spaceX, it is significant that we can extend the association
N � �� X to the case of FN not cyclic and hence, via McGibbon’s formula, show that
�(X)= 0 in this case. We do this in Section 2. However, by refining the result quoted
from [8], we obtain very precise information about the nature of the spaces Y of
which we can claim the triviality of the genus. The improvement of the result from
[8] is described in Section 6, and the spaces in question are specified in Theorems 2.3
and 2.4.
In Section 3, we describe an enlargement of the domains of validity of our main

result in [6] and our results in Section 2. The injection �(N) �� �� �(X) referred to
earlier only requires that the base M of the circle bundle X have specified 2-type (i.e.,
we specify π1M , π2M and the action of π1M on π2M as functions of N), and says
nothing about the homotopy groups of M in dimensions i≥ 3 beyond requiring that
M (and hence X) be nilpotent. On the other hand, we have no reason to expect the
injection to be a bijection in this generality. We describe in this section how we may
ease the restriction on X (that its higher homotopy groups vanish) and still preserve
the bijective property proved in [6] (when FN is cyclic) and in Section 2 (when FN is
not cyclic).
In Section 4, we extend the method of [6] and this paper from �(N), where N is a

finitely generated nilpotent group in �1, to �(Nk), where Nk is the direct product of k
copies ofN . This extension is significant becauseNk, with k≥ 2, does not inherit prop-
erty (iii) from N , though �(Nk) is still a finite abelian group since Nk inherits property
(i) from N . The calculation of �(Nk) for k ≥ 2, was carried out in [7]—it was already
known that there is a surjection �(N) �� �� �(Nk) given by Ñ � �� Ñ×Nk−1 (cf. [1])—
and effectively we show in Section 4 that exactly the same process of passing to the
appropriate quotient groups takes place in analysing the surjection �(X) �� �� �(Xk),
where Xk is the topological product of k copies of X, the circle bundle associated with
N . As a consequence, we know that �(Nk) �� �(Xk) is bijective. Of course, we can
here allow the generalization of the construction of X from N discussed in Section 3.
We conjecture that we may further generalize the results of this section by replacing
Nk by N1×N2×···×Nk, where each Ni is a finitely generated nilpotent group satisfy-
ing conditions (i), (ii), and (iii); more precisely, we conjecture that we obtain a bijection
�(N1×N2×···×Nk)� �(X1×X2×···×Xk). The abelian group �(N1×N2×···×Nk)
was calculated in [5].
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In Section 5, we use the equivalence between �(Nk) and �(Xk) to transfer noncan-
cellation phenomena from the category of finitely generated nilpotent groups to that
of nilpotent spaces of finite type. The original noncancellation phenomena were de-
scribed in [9]; they are a ready consequence of the calculation of �(Nk).

2. The case FN noncyclic. Here we generalize the procedure used in [6] to study
the case when FN is not cyclic. Thus we have, as in Section 1, a finitely generated
nilpotent group N belonging to �1 and fitting into a split short exact sequence

TN �� �� N �� �� FN , (2.1)

but now we assume that FN is free abelian of rank r ≥ 2. We then know that we
can write

FN = 〈ξ1,ξ2, . . . ,ξr
〉
, (2.2)

where, for i= 1,2, . . . ,r ,

ξi ·a=uia, ∀a∈ TN , (2.3)

and the order of uimodm is ti, wherem= expTN , and

t1 | t2 | ··· | tr . (2.4)

As in [1], we know that the genus of N is given by

�(N)� (Z/t1
)∗/{±1}. (2.5)

However, [8, Theorem 1.1] tells us that, in fact, t1 = 1 or 2 (given r ≥ 2), so that we
have the following.

Theorem 2.1. If r ≥ 2, then �(N) is trivial.

Actually, as will be shown in Section 6, we can improve on [8, Theorem 1.1] and
deduce (see Theorem 6.1) the following.

Theorem 2.2. If r ≥ 2, the quantities t1, t2, . . . , tr of (2.4) satisfy

t1 = t2 = ··· = tr−2 = 1, tr−1 = 1 or 2. (2.6)

In fact, the case tr−1 = 2 is a highly exceptional case—though it certainly does occur.
Let us consider the group N0 in �1, where expTN 0 = m and FN 0 is cyclic with

generator ξ and ξ ·a=ua for all a∈ TN 0. Suppose that the order of umodm is t, so
that

�
(
N0
)� (Z/t)∗/{±1}. (2.7)

Then, with tr = t, the group N we have been discussing, with t1 = t2 = ··· = tr−1 = 1,
tr = t, is just Cr−1×N0, where C is cyclic infinite, so that

�
(
Cr−1×N0

)= 0 for r ≥ 2. (2.8)



542 P. HILTON AND D. SCEVENELS

Now suppose that N0 gives rise, as in [6], to the circle bundle X0 over a baseM , where
π1X0 = C , π2X0 = TN 0, and πiX0 = 0 for i≥ 3. Then, as proved in [6],

�
(
X0
)� (Z/t)∗/{±1}. (2.9)

We can now carry out a process very like that in [6]. Using X0 as our base, we con-
struct a trivial circle bundle over X0 and the argument of [6] show that

�
(
C×N0

)� �
(
S1×X0

)
. (2.10)

Iterating this procedure, we finally obtain the following.

Theorem 2.3. We have �((S1)r−1×X0)= 0 for r ≥ 2.

Let us now turn to the exceptional case where tr−1 = 2 in Theorem 2.2. We first recall
when the exceptional case arises. Using the notation above (and in Section 6), let

m= pn11 pn22 ···pnλλ , (2.11)

where p1 <p2 < ···<pλ are primes. Moreover, we know that each ui is of the form

ui = 1+cipni11 pni22 ···pniλλ , with nij ≥ 1 for j = 1,2, . . . ,λ, (2.12)

where ci is prime to p1p2 ···pλ. Then we may find ourselves in the exceptional case
of Theorem 6.1, with ε = 2, if p1 = 2 and n1 ≥ 3.
Let us then begin with a groupN in�1 such that r = 2 and t1 = 2, t2 = t. We construct

a nilpotent CW -complex M according to the following homotopical specifications:
• π1M = C2×C = 〈η,ξ〉;
• π2M = TN , with η·a= 2a, and ξ ·a= ta, for all a∈ TN ;
• πiM = 0 for i≥ 3.

Then H2(M ;Z) ⊇ Ext(H1M,Z) = Ext(Z/2,Z) = Z/2 = 〈g〉, and we interpret g as the
homotopy class of a map, which, by abuse, we also designate as g : M �� K(Z,2).
We then use g to induce a circle bundle X over M ; thus,

S1 �� X
h �� M

g
�� K(Z,2). (2.13)

Then h induces an isomorphism h∗ : πiX � πiM for i ≥ 2; moreover, π1X = C ×C
and h maps one generator of π1X onto η, the other being mapped onto ξ. As in [6]
(cf. [12, Theorem 1.8]), we have

N � [S1,ΩX]fr =π2X # π1X, (2.14)

the semidirect product for the action of π1X on π2X. It again follows, just as we
argued in [6], that �(N)� �(X). However, �(N)= 0, so we conclude that

�(X)= 0. (2.15)

However, wemay nowputX in the role ofM and repeat the construction using the zero
element of H2(X;Z). We obtain, of course, the trivial bundle S1×X, corresponding to
the nilpotent group C×N , where, of course, �(C×N)= 0. Continuing in this way, we
finally prove the following.
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Theorem 2.4. Let N be as above, and let X be the associated circle bundle con-
structed as in (2.13). Then, for any r ∈N,

�
((
S1
)r ×X)= 0. (2.16)

3. Carrying the calculation of �(X) further. Let us remove a key item in the spec-
ification of M in [6] and in Section 2. Thus we first assume that FN in (2.1) is cyclic,
but we no longer insist that πiM = 0 for i≥ 3. In fact, we impose no restriction at all
on the homotopy groups of M in dimensions i≥ 3 as π1M-modules, beyond insisting
that M be nilpotent. We may then construct X exactly as we did in [6], and it remains
true that we may find, for each N$ in the genus of N , a space X$ in the genus of X,
and that we obtain thereby an embedding of �(N) in �(X). (Indeed, the method of
passing from N to X was carried out in [2] in the sense described in this paragraph,
that is, without requiring that πiM = 0 for 1≥ 3.)
However, at this level of generality we certainly cannot claim that �(N) and �(X)

coincide, i.e., the embedding referred to above is a bijection.
Since we certainly want to apply the key formula of McGibbon, we must insist that X

be an H0-space with only finitely many nonzero homotopy groups. We will be content
to present here a generalization of the theorem of [6] which requires virtually no
change in the arguments. We use the notation of Section 1; and denote by T the set
of primes p such that N has p-torsion.

Theorem 3.1. Let N ∈�1 with FN cyclic and let M be constructed according to the
following specifications:
• π1M = Ct = 〈η〉;
• π2M = TN , with η·a=ua, for all a∈ TN ;
• πiM = 0, for almost all i and is always a (finite) T -group if i≥ 2.

One then constructs X as in [6] and the mapping N$
� �� X$, for $ ∈ (Z/t)∗, induces a

bijection of �(N) with �(X).

Proof. We only need to remark that X is an H0-space, indeed, X is rationally
equivalent to S1, and that X has only finitely many nonzero homotopy groups since
πiX �πiM for i≥ 2. Thus we may apply McGibbon’s sequence

s-EquX d �� (Z/s)∗/{±1} �� �� �(X) (3.1)

to calculate �(X), except that s may be replaced by a larger T -number s̃ having s
as a factor. However, both an s-equivalence and an s̃-equivalence of X are just a T -
equivalence; and the calculation of �(X) from (3.1) is unaffected by replacing s in the
middle term of (3.1) by any other T -number having s as a factor. Thus we still ob-
tain, from the calculations in [6], the conclusion �(X)� (Z/t)∗/{±1}, whence, finally,
�(N)� �(X)� (Z/t)∗/{±1}.

4. Products. In this section, we will calculate the Mislin genus of the product Xk of
k copies of X for k ≥ 2, where X is a circle bundle associated with a nilpotent group
N in �1 by the methods of [6] or Section 2.



544 P. HILTON AND D. SCEVENELS

We start by a very general result.

Lemma 4.1. Let k≥ 1. IfX is a connected, nilpotent, finite typeH0-space with at most
a finite number of nonzero homotopy groups, then there is an epimorphism

ρ : �(X) �� �
(
Xk). (4.1)

Proof. By [10, McGibbon’s result], and using the notation of the paper (except that
we replace McGibbon’s t by s, since we have used t for another purpose), we know
that there are exact sequences

s-EquX d �� [(Z/s)∗/{±1}]$ �� �� �(X),

s̃-EquXk d̃ �� [(Z/s̃
)∗/{±1}]$ �� �� �

(
Xk).

(4.2)

By definition it is easily seen that s̃ = s, so that there is a diagram

s-EquX d ��

σ
��

[
(Z/s)∗/{±1}]$ �� �� �(X)

s̃-EquXk d̃ �� [(Z/s̃
)∗/{±1}]$ �� �� �

(
Xk),

(4.3)

whereσ is given byσ(φ)=φ×id. Of course, d̃◦σ = d in (4.3), so that an epimorphism
ρ : �(X) �� �� �(Xk) is induced in (4.3).

In particular, we infer from Theorems 2.3 and 2.4 the following result.

Proposition 4.2. Let Y be any of the spaces discussed in Theorems 2.3 and 2.4.
Then �(Yk)= 0 for k≥ 1.

In the case of a group N in �1 with FN cyclic, the genus of the direct product Nk

was calculated in [7]. More precisely, suppose, according to [1], that

�(N)� (Z/t)∗/{±1}, (4.4)

where

t = p$11 ···p$λλ , (4.5)

with p1 <p2 < ···<pλ prime numbers, and $i ≥ 1 for i∈ {1, . . . ,λ}. Starting with the
exact sequence

T -AutNk �� (Z/e)∗/{±1} �� �� �
(
Nk), (4.6)

where T is the set of primes occuring in the torsion of N , so that t is a T -number, it
is shown in [7] that

�
(
Nk)� �(N)

H
, (4.7)
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where, after the identification (4.4), H consists of those residue classesmmodt such
that

m≡±1 modp$ii ∀i∈ {1, . . . ,λ}. (4.8)

Repeating the construction of the circle bundle X associated with N (cf. [6]), and
considering products of these, we obtain the torus fibration

(S1)k �� Xk �� Mk g×···×g �� K(Z,2)×···×K(Z,2). (4.9)

Again, as in [6], we have that Nk � [S1,Ω(Xk)]fr, the group of free homotopy classes;
and the short exact sequences

TN k �� �� Nk �� �� FN k, π2Xk �� �� [S1,Ω
(
Xk)]

fr
�� �� π1Xk (4.10)

may be identified. To complete the calculation of �(Xk), we have to compare the exact
sequence (cf. [10])

s-EquXk d �� (Z/s)∗/{±1} �� �� �
(
Xk) (4.11)

with (4.6). Since s = expTN (cf. [6]), we infer that s-EquXk = T -EquXk. It remains
to analyze d in (4.11). Again, as in [6], it is clear that any f ∈ s-EquXk induces a
commutative diagram

π2Xk �� ��

f∗
��

[
S1,Ω

(
Xk)]

fr
�� ��

f∗
��

π1Xk

f∗
��

π2Xk �� ��[S1,Ω
(
Xk)]

fr
�� ��π1Xk

(4.12)

or, equivalently,

TN k �� ��

�
��

Nk �� ��

f∗
��

FN k

f∗
��

TN k �� ��Nk �� �� FN k,

(4.13)

where f∗ : FN k �� FN k is a T -automorphism. Thus detf∗ ≡mmodt, wherem∈H,
as defined in (4.8), by [7, Proposition 2.2]. Conversely, given any residue classmmodt
satisfying (4.8), we can construct a T -equivalence f : Xk �� Xk such that d(f) =
det(f∗ : π1Xk �� π1Xk) = m. Indeed, we use the construction of the homomor-
phism ψ : FN k �� FN k in [7, proof of Theorem 1.3] to obtain a map

ψ :K(Z,2)×···×K(Z,2) �� K(Z,2)×···×K(Z,2), (4.14)

making the diagram

Mk
g×···×g�� K(Z,2)×···×K(Z,2)

ψ

��
Mk

g×···×g�� K(Z,2)×···×K(Z,2)

(4.15)
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commutative. This yields a commutative diagram

(
S1
)k ��

ψ

��

Xk ��

f

��

Mk �� K(Z,2)×···×K(Z,2)
ψ

��(
S1
)k �� Xk �� Mk �� K(Z,2)×···×K(Z,2),

(4.16)

and f is the desired T -equivalence. Concluding, we thus have proved the following
theorem.

Theorem 4.3. Let N ∈�1 with FN cyclic, and let X be the associated circle bundle,
as constructed in [6]. Then �(Xk) for k ≥ 2 is obtained from �(X) � (Z/t)∗/{±1} by
factoring out those residue classesmmodt satisfying (4.8). Indeed, �(Xk)� �(Nk).

Observe that, instead of constructing the circle bundle X and using the arguments
of [6], we could have used the arguments of Section 3, thus allowing X to have some
nonzero higher homotopy groups, and that the results of Proposition 4.2 and
Theorem 4.3 would remain true.

5. Noncancellation phenomena. Let N ∈�1 with FN cyclic, and let X be the asso-
ciated circle bundle. According to [1, 6],

�(N)� �(X)� (Z/t)∗

{±1} , (5.1)

where t is as in (4.5). Furthermore, a complete set {X$ | $ ∈ (Z/t)∗} of homotopy types
of spaces in �(X), in bijective correspondence with the complete set {N$ | $ ∈ (Z/t)∗}
of isomorphism classes in �(N), was described in [6]. Using the results of the previous
section, we derive some consequences regarding noncancellation phenomena, paral-
leling results obtained in [9].

Theorem 5.1. Let k≥ 2 and letm1, . . . ,mk,m′
1, . . . ,m

′
k ∈ (Z/t)∗. The following con-

ditions are equivalent:
• Xm1×···×Xmk�Xm′

1
×···×Xm′

k
;

• Nm1×···×Nmk�Nm′
1
×···×Nm′

k
;

• there exists a residue classmmodt satisfying (4.8) such that

m1 ···mk ≡mm′
1 ···m′

k modt. (5.2)

Proof. This is essentially a consequence of our proof of Theorem 4.3.

Corollary 5.2. Let k ≥ 1 and let m1,m2 ∈ (Z/t)∗. Then Xm1 ×Xk � Xm2 ×Xk

if and only if there exists a residue class mmodt satisfying (4.8) such that m1 ≡
mm2modt.

As a final consequence, we obtain the following result (cf. [13]).

Corollary 5.3. If X$ ∈ �(X), then Xφ(t)/2
$ � Xφ(t)/2, where φ denotes Euler’s to-

tient function.
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6. Appendix: on the structure of certain nilpotent groups. In this appendix, we
sharpen [8, Theorem 1.1] which asserts that, in the notation of Section 2, with r ≥ 2,
we must have t1 = 1 or 2.
First, we point out that the condition that (2.1) splits, is not required in the conclu-

sion of the theorem. This condition appeared (implicitly) in [8, proof of Lemma 2.1],
in the description of the terms of the lower central series of N . However, we know
that N is nilpotent if and only if TN is FN -nilpotent (since TN , FN are commutative);
and, even without the splitting hypothesis, the description given in fact describes the
“lower central” FN -series of TN . Thus the conclusion of [8, Lemma 2.1] still holds.
On the other hand, it does not follow, without the splitting hypothesis, from the

fact that t1 = 1 or 2 that �(N) is trivial. For the calculation of �(N) as (Z/t1)∗/{±1},
carried out in [1], makes essential use of the splitting hypothesis. Thus it remains an
interesting open problem to determine �(N) where N is a finitely generated nilpotent
group satisfying hypothesis (i) and (iii) of Section 1. Further, the construction of a
space X satisfying N � [S1,ΩX]fr requires the splitting hypothesis.
In fact, we can substantially improve on the conclusion of [8, Theorem 1.1], even

without the splitting hypothesis. We recall that we expressm= expTN as

m= pn11 pn22 ···pnλλ , (6.1)

where p1 < p2 < ···< pλ are primes. We then consider two cases. Case 2 (the excep-
tional case) is given by p1 = 2, n1 ≥ 3; while Case 1 (the general case) is simply the
complement of Case 2. We now argue just as in [8], except that we consider the pairs
(ti,ti+1), i = 1,2, . . . ,r −1, instead of just the pair (t1, t2). By doing so, and by incor-
porating the argument implicit in [8] that r �≥ 3 if t = 2, we conclude the following
theorem.

Theorem 6.1. (i) In the general case, with r ≥ 2,

(
t1, t2, . . . , tr

)= (1,1, . . . ,1, tr
)
. (6.2)

(ii) In the exceptional case, with r ≥ 2,

(
t1, t2, . . . , tr

)= (1,1, . . . ,ε,tr
)
, where ε = 1 or 2. (6.3)

Of course, the conclusion of Theorem 6.1 is entirely consistent with the statement
in [8] that t can take any value if r = 1.
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