TAUTNESS AND APPLICATIONS OF THE ALEXANDER-SPANIER COHOMOLOGY OF *K*-TYPES

ABD EL-SATTAR A. DABBOUR and ROLA A. HIJAZI

(Received 5 February 1999)

ABSTRACT. The aim of the present work is centered around the tautness property for the two *K*-types of Alexander-Spanier cohomology given by the authors. A version of the continuity property is proved, and some applications are given.

2000 Mathematics Subject Classification. Primary 55N05, 55N20, 55N35.

1. Introduction. It is well known that in the Alexander-Spanier cohomology theory [17, 18] or in the isomorphic theory of Čech [9], if the coefficient group *G* is topological then either the theory does not take into account the topology on *G* [9, 18], or considers only the case when *G* is compact to obtain a compact cohomology [4, 1]. Continuous cohomology naturally arises when the coefficient group of a cohomology theory is topological [2, 3, 11]. The partially continuous Alexander-Spanier cohomology theory [14] can be considered as a variant of the continuous cohomology of a space with two topologies in the sense of Bott-Haefliger [15]; also it is isomorphic to the continuous cohomology of a simplicial space defined by Brown-Szczarba [2].

The idea of *K*-groups [5, 6], where *K* is a locally-finite simplicial complex, is used to introduce the *K*-types of Alexander-Spanier cohomology with coefficients in a pair (G, G') of topological abelian groups [7, 8]; namely, *K*-Alexander-Spanier and partially continuous *K*-Alexander-Spanier cohomologies $\bar{H}_K^*, \tilde{H}_K^*$. It is proved that these *K*-types satisfied the seven Eilenberg-Steenrod axioms [9]; the excision axiom for the second *K*-type is verified for compact Hausdorff spaces when (G, G') are absolutely retract. Therefore, the uniqueness theorem of the cohomology theory on the category of compact polyhedral pairs [9] asserts that our Alexander-Spanier *K*-types over a pair of absolute retract coefficient abelian groups are naturally isomorphic.

In the present work, we prove that the *K*-Alexander-Spanier cohomology of a closed subset in a paracompact space is isomorphic to the direct limit of the *K*-Alexander-Spanier cohomology of its neighborhoods, and that the partially continuous *K*-Alexander-Spanier cohomology of a neighborhood retract closed subspace of a Hausdorff space is isomorphic to the direct limit of the partially continuous *K*-Alexander-Spanier cohomology of its neighborhoods. Also a version of the continuity property is proved. Moreover, we study some applications of the *K*-type cohomologies.

2. Alexander-Spanier cohomology of *K*-types. Here we mention the notations which we used throughout [7, 8].

For an object (*X*,*A*) of the category *Q* of the pairs of topological spaces and their continuous maps, denote by $\Omega(X,A)[\tilde{\Omega}(X,A)]$ the set of the pairs $\bar{\alpha} = (\alpha, \alpha')$, where

 α is an open covering of X and α' is a subcollection of α covering $A[\alpha' = \alpha \cap A]$; it is directed with respect to the refinement relation $\bar{\alpha} < \bar{\beta}$, that is, $\alpha < \beta$ and $\alpha' < \beta'$ [9]. Denote by $C^{q(\tau)}(\tilde{X})$ the group of functions $\varphi^{\tau} : \tilde{X}^{q(\tau)+1} \to G$, where τ is a simplex in K, $q(\tau) = q + \dim \tau$, $q \ge 0$, and \tilde{X} denotes either a space X or $\alpha \in \Omega(X)$. Let $C^{q(\tau)}(\tilde{X})$ be the subgroup of the direct product $\prod_{\tau \in K} C^{q(\tau)}(\tilde{X})$ consisting of such $\varphi = \{\varphi^{\tau}\}$ for which the condition (k) is satisfied, which states that there is a cofinite subset $\check{\tau}(\varphi)$ of K, that is, $K - \check{\tau}(\varphi)$ is finite such that $(\varphi^{\tau})^{-1}(G') = \tilde{X}^{q(\tau)+1}$, $\forall \tau \in \check{\tau}(\varphi)$. The coboundary $\delta^q : C^q(\tilde{X}) \to C^{q+1}(\tilde{X})$ is given by

$$\left(\delta^{q}\varphi\right)^{\tau} = \sum_{i=1}^{q(\tau)+1} (-1)^{i}\varphi^{\tau} p_{i}^{(q(\tau)+1)} + (-1)^{q(\tau)+1} \sum_{\sigma \in \mathrm{st}(\tau)} [\sigma:\tau]\varphi^{\sigma}, \qquad (2.1)$$

where st(τ) = { $\sigma \in K : \tau$ is (dim σ – 1)-face of σ }, $p_i^{(\tau)} : X^{\tau+1} \to X^{\tau}$ is the projection defined by: if \hat{t}_i is the τ -tuple consisting of $t = (x_0, ..., x_{\tau}) \in X^{\tau+1}$ with x_i omitted, then $p_1^{(\tau)}(t) = \hat{t}_i, 0 \le i \le \tau$. The cohomology groups of the cochain complex $C^{\neq}(X) = \{C^q(X), \delta^q\}$ is, in general, uninteresting, as shown in the following theorem [8].

THEOREM 2.1. If dim K = 0, then $H^q(C^*(X)) \cong G^{*K}$ (the subgroup of $G^K = \prod_{\tau \in K} G^{\tau}$, $G^{\tau} = G$, consisting of those elements having all but a finite number of their τ -coordinates in G'), and $H^q(C^*(X)) = 0$, when $q \neq 0$.

To pass to more interesting cohomology groups, the topology of the space *X* will be used to define that $\varphi \in C^q(X)$ is said to be *K*-locally zero on $M \subseteq X$ if there is $\alpha \in \Omega_X(M)$ (the set of external covering of *M* by open subsets of *X*) such that φ vanishes on $\alpha \cap M$, that is, each φ^{τ} vanishes on $(\alpha \cap M)^{q(\tau)+1}$, where $\alpha^{\tau} = \bigcup \{u_{\alpha}^{\tau} :$ $u_{\alpha} \in \alpha\}$. The subgroups of $C^q(X)$ consisting of those elements which are *K*-locally zero on *X*, *A*, respectively, are denoted by $C_0^q(X), C^q(X, A)$. The *K*-Alexander-Spanier cohomology of (X, A) over (G, G'), denoted by $\bar{H}_k^*(X, A)$, is the cohomology of the quotient cochain complex $\bar{C}_k^{\pm}(X, A) = C^{\pm}(X, A)/C_0^{\pm}(X)$. If $f : (X, A) \to (Y, B)$ is in Q, $\bar{\beta} \in \Omega(Y, B)$ and $\bar{\alpha} = f^{-1}(\bar{\beta})$, then f defines a cochain map $\bar{f}^{\pm} : \bar{C}_k^{\pm}(Y, B) \to \bar{C}_k^{\pm}(X, A)$, where $\check{\tau}(f^q \varphi) = \check{\tau}(\varphi)$ for each $\varphi \in C^q(Y)$. In turn, \bar{f}^{\pm} induces the homomorphism $\bar{f}^* : \bar{H}_k^*(Y, B) \to \bar{H}_k^*(X, A)$.

On the other hand, for $\tilde{\alpha} \in \Omega(X, A)$, denote by $C^{q}_{\tilde{\alpha}}$ the subgroup of $C^{q}_{\alpha} = C^{q}(\alpha)$ consisting of those φ that vanish on $\alpha' \cap A$. Then we obtain a direct system $\{C^{*}_{\tilde{\alpha}}\}_{\Omega(X,A)}$ such that any map $f \in Q$ constitutes a map $F : \{C^{*}_{\tilde{\beta}}\}_{\Omega(Y,B)} \to \{C^{*}_{\tilde{\alpha}}\}_{\Omega(X,A)}$ [9]; its limit is F^{∞} .

THEOREM 2.2. The K-Alexander-Spanier cohomology functor $\{\bar{H}_{K}^{*}, \bar{f}^{*}\}$ is naturally isomorphic to the functor $\{\underline{\lim}_{K} \{H^{*}(C_{\bar{\alpha}}^{*})\}_{\Omega(X,A)}, F^{\infty*}\}$ [7].

In the previous part, the topology on (G, G) plays no role; to pass to the second cohomology of *K*-type we characterize an element $\varphi \in C^q(X)$ to be *K*-partially continuous if it is continuous on some $\alpha \in \Omega(X)$, that is, $\varphi^{\tau} \mid \alpha^{q(\tau)+1}$ are continuous functions. Let $L^q(X)$ be the group of all such elements, and $M_K^{\pm}(X) = L^{\pm}(X)/C_0^{\pm}(X)$. The subgroup of C_{α}^q , where $\alpha \in \Omega(X)$, consisting of the *K*-continuous elements φ , that is, φ^{τ} are continuous, is denoted by M_{α}^q . Let $i : A \hookrightarrow X$, define $M_K^{\pm}(X, A)$ to be the mapping cone of $i^{\pm} : M_K^{\pm}(X) \to M_K^{\pm}(A)$, (see [13, 18]), assuming that $M_K^q(X, A) = M_K^q(X) \oplus M_K^{q-1}(A)$, and

the coboundary is $\triangle^q(\varphi, \psi) = (-\delta^q \varphi, i^q \varphi + \delta^{q-1} \psi)$. The cohomology of $M_K^{\neq}(X, A)$ is the partially continuous *K*-Alexander-Spanier cohomology of (X, A) over the topological pair (G, G') of coefficient groups; it is denoted by $\tilde{H}_K^{*}(X, A)$.

On the other hand, if $\bar{\alpha} \in \tilde{\Omega}(X, A)$, then *i* defines a cochain map $i_{\alpha}^{\pm} : M_{\alpha}^{\pm} \to M_{\alpha'}^{\pm}$; its mapping cone is denoted by $M_{\bar{\alpha}}^{\pm}$.

THEOREM 2.3. For a pair $(X, A) \in Q$ with A closed, $M_K^{\pm}(X, A)$ is naturally isomorphic to $\lim_{K \to 0} \{M_{\tilde{\alpha}}^{\pm}\}_{\tilde{\Omega}(X,A)}$ [7].

THEOREM 2.4. For a discrete space, and $q \ge 0$, $\tilde{H}_{K}^{q}(X) \cong \tilde{H}_{K}^{q}(X)$.

PROOF. Since $X^{q(\tau)+1}$ admits a discrete topology, it follows that each τ -coordinate φ^{τ} of $\varphi \in C_{K}^{q}(X)$ is continuous [16]. Then φ is *K*-partially continuous with respect to any $\alpha \in \Omega(X)$. Therefore, $L^{q}(X) = C_{K}^{q}(X)$ and $M_{K}^{\pm}(X) = \tilde{C}_{K}^{\pm}(X)$.

3. Tautness and continuity properties. This article is devoted to study the tautness property for both Alexander-Spanier cohomology of *K*-types. One of its applications is the continuity property.

The star of a subset *A* in a space *X* with respect to $\alpha \in \Omega(X)$ is

$$\operatorname{st}(A,\alpha) = \bigcup \{ U_{\alpha} \in \alpha : U_{d} \cap A \neq \emptyset \}.$$
(3.1)

The star of α is

$$\alpha^* = \{ \operatorname{st}(U_\alpha, \alpha) : u_\alpha \in \alpha \}.$$
(3.2)

DEFINITION 3.1. Let $\alpha, \beta \in \Omega(X)$, then β is a star-refinement of α , written $\alpha <^* \beta$ if $\alpha < \beta^*$.

Denote by $\mathcal{N}(A)$ the collections of neighborhoods $\{N\}$ of A in X; it is directed downward by inclusion. If $N_1 < N_2$, then the inclusion $\pi_{N_1N_2} : N_2 \hookrightarrow N_1$ induces the homomorphisms $\bar{\pi}^*_{N_1N_2} : \bar{H}^q_K(N_1) \to \bar{H}^q_K(N_2)$. Also $i_N : A \hookrightarrow N$ induces $\bar{i}^*_N : \bar{H}^q_K(N) \to \bar{H}^q_K(A)$, and they define a homomorphism

$$I^{\infty}: \varinjlim\{\bar{H}^{q}_{K}(N), \bar{\pi}^{*}_{N_{1}N_{2}}\}_{\mathcal{N}(A)} \longrightarrow \bar{H}^{q}_{K}(A).$$

$$(3.3)$$

THEOREM 3.2 (Tautness). A closed subspace of a paracompact space is a taut subspace relative to the K-Alexander-Spanier cohomology, that is, I^{∞} is an isomorphism for each q and any pair (G, G') of coefficient groups.

PROOF. (1) I^{∞} is an epimorphism. Let $h \in \tilde{H}_{K}^{q}(A)$ with representative $\tilde{\varphi} \in \tilde{C}_{K}^{q}(A)$, written as $h = [\tilde{\varphi}]$. Let $\varphi \in C^{q}(A)$ such that $\varphi \in \tilde{\varphi}$. Then there is $\alpha = \{u_{\alpha} = v_{\alpha} \cap A : v_{\alpha} \subseteq X \text{ is open}\} \in \Omega(A)$ such that

$$(\delta^q \varphi) \mid \alpha^{q(\tau)+2} = 0. \tag{3.4}$$

Since *A* is closed, it follows that $\beta = \{\nu_{\alpha}\} \cup \{X - A\} \in \Omega(X)$. The paracompactness of *X* is equivalent to the existence of such $\gamma \in \Omega(X)$ that $\beta <^* \gamma$, and a neighborhood *N* of *A* and an extension $f : N \to A$ (not necessarily continuous) of the identity map id_A of *A*, that is, $fi_N = id_A$, such that $f(u_{\gamma} \cap N) \subseteq st(u_{\gamma}, \gamma)$ for each $u_{\gamma} \in \gamma$ [18]. One can show that *f* defines a cochain map $f^{\pm} : C^{\pm}(A) \to C^{\pm}(N)$ by $(f^q \varphi)^{\tau} = \varphi^{\tau} f^{(q(\tau)+1)}$ with

 $\check{\tau}(f^{q}\varphi) = \check{\tau}(\varphi)$, where $f^{(\tau)}: N^{\tau} \to A^{\tau}$ given by $f(x_{0}, \dots, x_{\tau-1}) = (f(x_{0}), \dots, f(x_{\tau-1}))$. The relation $\beta < \gamma^{*}$ yields that for each $u_{\gamma} \in \gamma$ there is $u_{\beta} \in \beta$ such that $f(u_{\gamma} \cap N) \subseteq$ st $(u_{\gamma}, \gamma) \subseteq u_{\beta}$. Because f(N) = A, then $f(u_{\gamma} \cap N) \subseteq u_{\beta} \cap A \subseteq u_{\alpha}$ for some $u_{\alpha} \in \alpha$. By using (3.4), we get $(\delta^{q} f^{q} \varphi)^{\tau} | (\gamma \cap N)^{q(\tau)+2} = 0$, that is, $\delta^{q}(f^{q} \varphi) \in C_{0}^{q+1}(N)$. Then $f^{q}\varphi$ represents a cocycle $\overline{f^{q}\varphi} \in \overline{C}_{K}^{q}(N)$ which, in turn, defines $h_{N} \in \overline{H}_{K}^{q}(N)$, that is, $h_{N} = [\overline{f^{q}\varphi}]$. Let $t \in A^{q(\tau)+1}$, then

$$(i_N^q(f^q\varphi))^{\tau}(t) = \varphi^{\tau} f^{(q(\tau)+1)} i_N^{(q(\tau)+1)}(t) = \varphi^{\tau}(t),$$
(3.5)

and therefore, $\overline{i}_N^* h_N = [\overline{(fi_N)^q \varphi}] = [\overline{\varphi}] = h$.

(2) I^{∞} is a monomorphism. Let $h_1 \in \tilde{H}^q_K(N_1)$, $\tilde{\varphi}_1 \in \tilde{C}^q_K(N_1)$ and $\varphi_1 \in C^q(N_1)$ such that $\varphi_1 \in \tilde{\varphi}_1$, $\tilde{\varphi}_1 \in h_1$, and $[h_1] \in \text{Ker } I^{\infty}$.

First, one can consider that the neighborhood N_1 of A is a paracompact subset of X. For, if N_1 is not so, then there is a paracompact subset M_1 of X such that $M_1 < N_1$ (e.g., take $M_1 = X$) [10]. The inclusion $\pi_{M_1N_1}$ induces an epimorphism $\bar{\pi}_{M_1N_1}^{\neq}$ [8], let $\bar{\pi}_{M_1N_1}^{q}\bar{\psi}_1 = \bar{\varphi}_1$. Thus the cohomology class of $\bar{H}_K^q(M_1)$ represented by $\bar{\psi}_1$ is $[h_1]$, which shows that N_1 can be taken paracompact.

Now, $\overline{\varphi}_1 \in \text{Ker}\,\delta^q$, or equivalently, there is $\alpha = \{u_\alpha = \nu_\alpha \cap N_1 : \nu_\alpha \subseteq X \text{ is open}\} \in \Omega(N_1)$ such that

$$\left(\delta^q \varphi_1\right)^\tau \mid \alpha^{q(\tau)+2} = 0. \tag{3.6}$$

On the other hand, the assumption $\bar{i}_{N_1}^* h_1 = 0$ asserts that there exists $\bar{\varphi} \in \bar{C}_K^{q-1}(A)$ such that $i_{N_1}^q \varphi_1 - \delta^{q-1} \varphi \in C_0^q(A)$, where $\varphi \in \bar{\varphi}$. This means that there is $\beta = \{u_\beta = \omega_\beta \cap A : \omega_\beta \subseteq X \text{ is open}\} \in \Omega(A)$ such that

$$(i_{N_1}^q \varphi_1)^{\tau} = (\delta^{q-1} \varphi)^{\tau} \text{ on } \beta^{q(\tau)+1}.$$
 (3.7)

Assume that $\beta_1 = \{u_{\beta_1} = \omega_{\beta} \cap N_1\} \cup \{N_1 - A\}$. The paracompactness of N_1 asserts the existence of $\gamma_1, \gamma_2 \in \Omega(N_1)$ for which $\alpha <^* \gamma_1$ and $\beta_1 <^* \gamma_2$. The directedness of $\Omega(N_1)$ implies that there is $\gamma \in \Omega(N_1)$ for which $\gamma_1, \gamma_2 < \gamma$; and so for each $u_{\gamma} \in \gamma$ there are $u_{\gamma_i} \in \gamma_i$, i = 1, 2 and $u_{\alpha} \in \alpha$, $u_{\beta_1} \in \beta_1$ such that

$$u_{\gamma} \subset u_{\gamma_i} \subseteq \operatorname{st} \left(u_{\gamma_i}, \gamma_i \right) \subseteq u_{\alpha} \cap u_{\beta_1}.$$
(3.8)

Then

$$\operatorname{st}(u_{\gamma},\gamma) \subseteq u_{\alpha} \cap u_{\beta_{1}},\tag{3.9}$$

that is, $\alpha, \beta_1 <^* \gamma$. According to [18, Lemma 6.6.1], there is a neighborhood N_2 of N_1 and $f: N_2 \to A$ (not necessarily continuous) such that $fi_{N_2} = id_A$, and $u_{\beta_1} \in \beta_1$ such that

$$f(u_{\gamma} \cap N_2) \subseteq \operatorname{st}(u_{\gamma}, \gamma) \subseteq u_{\beta_1} \subseteq u_{\beta_1} \cap A = u_{\beta}.$$
(3.10)

Then, by (3.7), we get

$$(\delta^{q-1} f^{q-1} \varphi)^{\tau} = (f^q i_{N_1}^q \varphi_1) \quad \text{on } (\gamma \cap N_2)^{q(\tau)+1}.$$
(3.11)

Define $D^q: C^{q+1}(N_1) \to C^q(N_2)$ by

if
$$t = (x_0, \dots, x_{q(\tau)}) \in N_2^{q(\tau)+1}$$
 and $\psi_1 \in C^{q+1}(N_1)$ (3.12)

then

$$(D^{q}\psi_{1})^{\tau}(t) = \sum_{r=0}^{q(\tau)} (-1)^{\gamma} \psi_{1}^{\tau} (\gamma_{0}, \dots, \gamma_{\tau}, z_{\tau}, \dots, z_{q(\tau)}),$$
 (3.13)

where

$$y_j = \pi_{N_1N_2}(x_j), \qquad z_j = (i_{N_1}f)(x_j) = f(x_j),$$
(3.14)

and $\check{\tau}(D^q \psi_1) = \check{\tau}(\psi_1)$. By a similar calculation as given in [7], we get

$$(\delta^{q-1}D^{q-1}\varphi_1)^{\tau} = (f^q i^q_{N_1}\varphi_1)^{\tau} - (\pi^q_{N_1N_2}\varphi_1)^{\tau} - (D^q \delta^q \varphi_1)^{\tau}.$$
 (3.15)

By (3.9), (3.10) for each $u_{\gamma} \in \gamma$, there is $u_{\alpha} \in \alpha$ such that

$$(u_{\gamma} \cap N_2) \cup f(u_{\gamma} \cap N_2) \subseteq u_{\alpha}. \tag{3.16}$$

Then, by (3.6), (3.11), and (3.15) consequently, we have

$$\left(\delta^{q-1}D^{q-1}\varphi_{1}\right)^{\tau} = \left(f^{q}i_{N_{1}}^{q}\varphi_{1}\right)^{\tau} - \left(\pi_{N_{1}N_{2}}^{q}\varphi_{1}\right)^{\tau} \quad \text{on } \left(\gamma \cap N_{2}\right)^{q(\tau)+1}, \tag{3.17}$$

and so

$$(\pi_{N_1N_2}^q \varphi_1)^{\tau} = (\delta^{q-1} (f^{q-1} \varphi - D^{q-1} \varphi_1))^{\tau} \quad \text{on } (\gamma \cap N_2)^{q(\tau)+1}.$$
(3.18)

Therefore

$$\psi_2 = f^{q-1}\varphi - D^{q-1}\varphi_1 \in C^{q-1}(N_2)$$
(3.19)

such that

$$(\pi_{N_1N_2}^q \varphi_1)^{\tau} = (\delta^{q-1} \psi_2)^{\tau} \quad \text{on } (\gamma \cap N_2)^{q(\tau)+1},$$
(3.20)

that is, $\bar{\pi}_{N_1N_2}h_1 = 0$ which completes the proof.

COROLLARY 3.3. Any one-point subset of a paracompact is a taut subspace relative to \bar{H}_{K}^{*} .

The next part is devoted to studying the tautness property for \tilde{H}_{K}^{*} , which is also valid for \tilde{H}_{K}^{*} . The idea and results of α - β -contiguous maps, introduced in [7] plays an essential role in this study.

The inclusions $\pi_{N_1N_2} : N_2 \hookrightarrow N_1$, corresponding to the relations $N_1 < N_2$ in $\mathcal{N}(A)$, define the direct system $\{\tilde{H}_K^q(N), \tilde{\pi}_{N_1N_2}^*\}$. Also the inclusion $i_N : A \hookrightarrow N$, where $N \in \mathcal{N}(A)$, defines a map of direct systems [9]:

$$I_N : \{ H^q(M^{\neq}_{\alpha}), \tilde{\pi}^*_{\alpha\beta} \}_{\Omega(N)} \longrightarrow \{ H^q(M^{\neq}_{\tilde{\alpha}}), \tilde{\pi}^*_{\tilde{\alpha}\tilde{\beta}} \}_{\Omega(A)},$$
(3.21)

where $\alpha \in \Omega(N)$, $\tilde{\alpha} = i_N^{-1}(\alpha) = \alpha \cap A$. On the other hand, $\{\tilde{i}_N^*\}$ defines a homomorphism

$$\tilde{I}^{\infty}: \varinjlim\{\tilde{H}^{q}_{K}(N), \tilde{\pi}^{*}_{N_{1}N_{2}}\}_{\mathcal{N}(A)} \longrightarrow \tilde{H}^{q}_{K}A.$$
(3.22)

THEOREM 3.4 (Tautness). If A is a closed subset in a Hausdorff space X such that A is a neighborhood retract, then A is a taut subspace relative to the cohomology \tilde{H}_{K}^{*} .

PROOF. (1) \tilde{I}^{∞} is an epimorphism. Let $h \in \tilde{H}_{K}^{q}(A)$, without loss of generality, the neighborhood retractness of A in X yields that A has an open neighborhood U(in X) such that $U \subseteq N$ and a retraction $\tau_{1} : U \to A$ (if U_{1} is an open neighborhood of A of which A is retract but $U_{1} \notin N$, take $U = U_{1} \cap \text{Int } N$). Let $i_{U} : A \to U$ then, $\tilde{I}^{\infty}[\tilde{\tau}_{1}^{*}(h)] = \tilde{i}_{U}^{*}(\tilde{\tau}_{1}^{*}h) = \text{id}_{A}^{*}(h) = h$.

(2) \tilde{I}^{∞} is a monomorphism. Let $[h] \in \operatorname{Ker} \tilde{I}^{\infty}$. It is sufficient to construct $V \in \mathcal{N}(A)$ satisfying N < V and $\tilde{\pi}_{NV}^* h = 0$. Since the cohomology functor commutes with the direct limit [18]. Theorem 2.3 asserts that one may assume that h belongs to $\lim_{k \to \infty} \{H^q(M_{\alpha}^*), \tilde{\pi}_{\alpha\beta}^*\}_{\Omega(N)}$ with representative $h_{\alpha} \in H^q(M_{\alpha}^*)$, where

$$\alpha = \{ u_{\alpha} = \omega_{\alpha} \cap N : \omega_{\alpha} \subseteq X \text{ is open} \} \in \Omega(N).$$
(3.23)

Let $\alpha_1 = \{\omega_{\alpha}\} \cup \{X - A\}, \ \tilde{\alpha} = \alpha_1 \cap A$,

$$\beta = \{ u_{\beta} = \tau_1^{-1}(u_{\tilde{\alpha}}) \cap (u_{\alpha} \cap U) : \phi \neq u_{\tilde{\alpha}} \in \tilde{\alpha} \},$$
(3.24)

 $V = \bigcup_{u\beta}, \tau = \tau_1 | V : V \hookrightarrow A$, and $\alpha' = \alpha_1 \cap V$. Then $\tilde{\alpha} \in \Omega(A), \alpha' = \alpha \cap V \in \Omega(V)$, $u_{\tilde{\alpha}} \subseteq u_{\beta}$ for each $u_{\tilde{\alpha}} \neq \phi, \beta$ is a family of open subsets in *U* and so open in *X*, *V* is an open neighborhood of *A* such that $V \subseteq U$, and $\beta \in \Omega(V)$. Since $u_{\beta} = u_{\beta} \cap u_{\alpha} \subseteq$ $V \cap u_{\alpha} = u_{\alpha'}$, it follows that $\alpha' < \beta$. Also $\alpha' \cap A = \alpha \cap A = \tilde{\alpha}$ and $j^{-1}\beta = \tilde{\alpha}$, where $j : A \hookrightarrow V$. If $\ell : V \hookrightarrow N$, and $[\varphi] \in H^q(M_{\alpha}^{\neq})$, then

$$\tilde{j}_{\beta}^{*}\tilde{\pi}_{\alpha'\beta}^{*}\tilde{\ell}_{\alpha}^{*}[\varphi] = \tilde{j}_{\beta}^{*}[\{(\varphi^{\tau} \mid \alpha'^{q(\tau)+1}) \mid \beta^{q(\tau)+1}\}] = [\{\varphi^{\tau} \mid \tilde{\alpha}^{q(\tau)+1}\}],$$
(3.25)

that is,

$$\tilde{j}^*_{\beta}\tilde{\pi}^*_{\alpha'\beta}\tilde{\ell}^*_{\alpha} = \tilde{i}^*_{N,\alpha},\tag{3.26}$$

where $\tilde{i}_{N,\alpha}^{\neq} : M_{\alpha}^{\neq} \to M_{\tilde{\alpha}}^{\neq}$ is induced by $i_N : A \hookrightarrow N$.

On the other hand, $(j\tau)u_{\beta} \subseteq u_{\beta}$ and so $j\tau$, $id_{V}: V \to V$ are $\beta - \beta$ -contiguous [7].

It follows that $(\widetilde{id}_V)^q_{\beta-\beta}, (\widetilde{jr})^q_{\beta-\beta} : M^q_\beta \to M^q_\beta$ are cochain homotopic [7]. Then $(\widetilde{id}_V)^*_{\beta-\beta} = (\widetilde{jr})^*_{\beta-\beta} = \widetilde{r}^*_{\alpha-\beta}\widetilde{j}^*_{\beta}$, which yields that \widetilde{j}^*_{β} is a monomorphism. Because $\widetilde{t}^*_{N,\alpha}h_\alpha = 0$, equation (3.26) yields that $\widetilde{\pi}^*_{\alpha'\beta}\widetilde{\ell}^*_{\alpha}h_\alpha = 0$. Since $\widetilde{\ell}^*_{\alpha}h_\alpha, \widetilde{\pi}^*_{\alpha'\beta}(\widetilde{\ell}_{\alpha}h_\alpha)$ represent the zero element of $\underline{\lim}\{H^q(M^*_\alpha), \widetilde{\pi}^*_{\alpha\beta}\}_{\Omega(N)}$, it follows that $\widetilde{\pi}^*_{NV}h = [\widetilde{\ell}^*_{\alpha}h_\alpha] = 0$.

The rest of this article is centered around a special case of the continuity property for \tilde{H}_{K}^{*} . As an application of the continuity property the cohomology groups satisfy a much stronger form of the excision axiom.

The following results can be deduced from those given in [9].

LEMMA 3.5. Let X be the intersection of a nested system $\{X_{\alpha}, \pi_{\beta\alpha}\}_{\Lambda}$, then

(i) X and $\lim_{\alpha \to \alpha} \{X_{\alpha}, \pi_{\beta\alpha}\}_{\Lambda}$ are homeomorphic.

(ii) If the nested system consists of compact Hausdorff spaces then X is a closed subset of each X_{α} .

(iii) If N is an open neighborhood of X in X_{α} (for some $\alpha \in \Lambda$), then there is $\beta > \alpha$ in Λ such that $X_{\beta} \subseteq N$.

The inclusions i_{α} : $X \hookrightarrow X_{\alpha}$ *define a map*

$$I: \{\bar{H}_{K}^{q}(X_{\alpha}), \bar{\pi}_{\alpha\beta}^{*}\}_{\Lambda} \longrightarrow \bar{H}_{K}^{q}(X), \qquad (3.27)$$

its direct limit is denoted by \overline{I}^{∞} .

THEOREM 3.6 (weak continuity). If X is the intersection of a nested system $\{X_{\alpha}, \pi_{\beta\alpha}\}_{\Lambda}$ of compact Hausdorff spaces, then \overline{I}^{∞} is an isomorphism.

PROOF. Since each X_{α} is a paracompact Hausdorff space [10] and X_{α} is closed in *X* (Lemma 3.5), it follows, by Theorem 3.2, that *X* is a taut subspace in X_{α} relative to \bar{H}_{κ}^* .

(1) \bar{I}^{∞} is an epimorphism. Let $h \in \bar{H}_{K}^{q}(X)$, then, according to Theorem 3.2, there exists an open neighborhood N of X in X_{α} and $h_{N} \in \bar{H}_{K}^{q}(N)$, such that $\bar{i}_{N}^{*}(h_{N}) = h$. By Lemma 3.5, there is $\beta > \alpha$ in Λ such that $X_{\beta} \subseteq N$. Let $i_{\beta} : X \hookrightarrow X_{\beta}, j_{\beta} : X_{\beta} \hookrightarrow N$. Because $\bar{i}_{\beta}^{*}(\bar{j}_{\beta}^{*}h_{N}) = (\bar{j}_{\beta}i_{\beta})^{*}h_{N} = \bar{i}_{N}^{*}h_{N} = h$, then $\bar{I}^{\infty}[\bar{j}_{\beta}^{*}h_{N}] = h$.

(2) \bar{I}^{∞} is a monomorphism. Let $[h_{\alpha}] \in \operatorname{Ker} \bar{I}^{\infty}$, that is, $\bar{i}^{*}_{\alpha}h_{\alpha} = 0$. The tautness of X in X_{α} yields, by Theorem 3.2, an open neighborhood N of X in X_{α} such that h_N is the unique element for which $\bar{i}^{**}_N h_N = 0$, where $i'_N : X \to N$. Because $\bar{i}'^*_N (\bar{i}^*_N h_{\alpha}) = \bar{i}^*_{\alpha}h_{\alpha} = 0$, then $\bar{i}^*_N h_{\alpha} = 0$. Let $\beta > \alpha$ in Λ such that $X_{\beta} \subseteq N$, then $\bar{\pi}^*_{\alpha\beta}h_{\alpha} = (\overline{i_N i_{\beta}})^* h_{\alpha} = \overline{j}^*_{\beta} (\overline{i}^*_N h_{\alpha}) = 0$, that is, $[h_{\alpha}] = 0$.

4. Applications. One of the good applications of the Alexander-Spanier cohomology of *K*-types is the study of the 0-dimensional cohomology groups and their relation with the connectedness of the space [7]. In this article, two applications are given. In a next work, we hope to give more applications. As a first application, we define the partially continuous *K*-Alexander-Spanier cohomology of an excision map and calculate its value for some dimensions.

Let $\tilde{f}^{\pm}: M_{K}^{\pm}(Y, B) \to M_{K}^{\pm}(X, A)$ be the cochain map induced by the map f in Q. Define $M_{K}^{\pm}(f)$ to be the mapping cone of \tilde{f}^{\pm} by

$$M_{K}^{q}(f) = M_{K}^{q}(Y, B) \oplus M_{K}^{q-1}(X, A)$$

= $M_{K}^{q}(Y) \oplus M_{K}^{q-1}(B) \oplus M_{K}^{q-1}(X) \oplus M_{K}^{q-2}(A),$ (4.1)

and the coboundary is

$$\begin{split} \tilde{\triangle}^{q}(\varphi_{2},\psi_{2},\varphi_{1},\psi_{1}) \\ &= (-\tilde{\triangle}^{q}(\varphi_{2},\psi_{2}),\triangle^{q}(\varphi_{1},\psi_{1}) + \tilde{f}^{q}(\varphi_{2},\psi_{2})) \\ &= \left(\delta^{q}\varphi_{2}, -\tilde{i}^{q}\varphi_{2} - \delta^{q-1}\psi_{2}, -\delta^{q-1}\varphi_{1} + \tilde{f}^{q}\varphi_{2}, \tilde{i}^{q-1}\varphi_{1} + \delta^{q-2}\psi_{1} + \widetilde{f\mid A}\right)^{q-1}\psi_{2}. \end{split}$$

$$(4.2)$$

Then there is a short exact sequence

$$0 \longrightarrow \stackrel{+}{M_{K}^{*}}(X,A) \xrightarrow{\lambda^{\pm}} M_{K}^{\pm}(f) \xrightarrow{x^{\pm}} \tilde{M}_{K}^{\pm}(Y,B) \longrightarrow \underline{O}_{2}, \tag{4.3}$$

where λ^{\pm} , χ^{\pm} are injection, projection, respectively; $\dot{M}^{\pm}(X,A)$ is the complex $M_{K}^{\pm}(X,A)$ with the dimensions all raised by one, and $\bar{M}^{\pm}(Y,B)$ is the complex $M^{\pm}(Y,B)$ with the sign of the coboundary changed [12]. Note that $H^q(\tilde{M}_K^{\pm}(Y,B)) = \tilde{H}_K^q(Y,B)$. Let *V* be an open subset of *X* such that $\tilde{V} \subseteq \text{Int } A, B = X - V$, and C = A - V. Put the excision map $e : (B, C) \hookrightarrow (X, A)$ in (4.3) instead of *f*, and then apply the cohomology functor to get the long exact sequence

$$\cdots \longrightarrow \tilde{H}_{K}^{q}(e) \xrightarrow{\tilde{\lambda}^{*}} \tilde{H}_{K}^{q}(X, A) \xrightarrow{\tilde{e}^{*}} \tilde{H}_{K}^{q}(B, C) \xrightarrow{\tilde{\lambda}^{*}} \tilde{H}_{K}^{q+1}(e) \longrightarrow \cdots$$
(4.4)

Thus the groups $\tilde{H}_{K}^{q}(e)$, $\tilde{H}_{K}^{q+1}(e)$ measure how much the cohomological groups deviate from the excision axiom.

THEOREM 4.1. If dim K = 0, $e: (B, C) \hookrightarrow (X, A)$ is an excision map, where A is closed and (G, G') any pair of topological abelian groups, then $\tilde{H}_{K}^{q}(e) = 0$ when q = 0 or q = 1.

PROOF. (1) Case q = 0. We have

$$M_K^0(e) = M_K^0(X, A) = M_K^0(X) = L_K^0(X).$$
(4.5)

Let $\varphi \in M_K^0(e)$ such that $\tilde{\Delta}_{\varphi} = 0$, then $\tilde{i}^0 \varphi = 0$, $\tilde{e} \varphi = 0$. Then $\varphi = 0$ [7], which means that Ker $\tilde{\Delta}^0 = 0$.

(2) Case q = 1. We have

$$M_{K}^{1}(e) = M_{K}'(X) \oplus L^{0}(A) \oplus L^{0}(B).$$
(4.6)

It is sufficient to show that $\operatorname{Ker} \tilde{\bigtriangleup}^1 \subseteq \operatorname{Im} \tilde{\bigtriangleup}^0$. Let $(\varphi_2, \psi_2, \varphi_1, 0) \in \operatorname{Ker} \tilde{\bigtriangleup}^1$, then

$$\delta^1 \varphi = 0, \qquad \tilde{i}' \varphi_2 = -\delta^0 \psi_2, \tag{4.7}$$

$$\tilde{e}^1 \varphi_2 = \delta^0 \varphi_1, \tag{4.8}$$

$$\tilde{e}_1^0(-\psi_2) = \tilde{j}\varphi_1, \tag{4.9}$$

where $i : A \hookrightarrow X$, $j : C \hookrightarrow B$ and $e_1 = e \mid C$.

By (4.9), there exists $\varphi \in M_K^0(X)$ [7] such that

$$\tilde{i}^0 \varphi = -\psi_2, \qquad \tilde{e}^0 \varphi = \varphi_1. \tag{4.10}$$

By (4.8), (4.9), and (4.10), we get

$$\tilde{i}^{1}(\delta^{0}\varphi - \varphi_{2}) = 0, \qquad \tilde{e}^{1}(\delta^{0}\varphi - \varphi_{2}) = 0.$$
 (4.11)

Then $\delta^0 \varphi = \varphi_2$ [7], which together with (4.11) yield $(\varphi, 0, 0, 0) \in M_K^0(e)$ such that $\tilde{\Delta}^0(\varphi, 0, 0, 0) = (\varphi_2, \psi_2, \varphi_1, 0)$.

Combining the sequence (4.4) and the above theorem, we get the following result.

COROLLARY 4.2. Under the assumptions of Theorem 4.1, the map \tilde{e}^{*0} : $\tilde{H}_{K}^{0}(X,A) \rightarrow \tilde{H}_{K}^{0}(B,C)$ is an isomorphism but \tilde{e}^{*1} is a monomorphism.

Next we give a second application to the work introduced in this paper.

Let $\eta : (G, G') \to (F, F')$ be a homeomorphism of pairs of (discrete) abelian groups, which is an epimorphism, $(L, L') = \text{Ker } \eta$ and $\lambda : (L, L') \to (G, G')$. Then for each $\bar{\alpha} \in \Omega(X, A)$, the maps η, λ define naturally a short exact sequence

$$0 \longrightarrow C^{q}(\bar{\alpha}, L, L') \longrightarrow C^{q}(\bar{\alpha}; G, G') \longrightarrow C^{q}(\bar{\alpha}; F, F') \longrightarrow 0;$$
(4.12)

its cohomology is a long exact sequence [12] denoted by $S_{\tilde{\alpha}}$. One can show that $\{S_{\tilde{\alpha}}\}_{\Omega(X,A)}$ is a direct system, its direct limit [7, 8] is

$$\cdots \longrightarrow \bar{H}_{K}^{q-1}(X,A;F,F') \longrightarrow \bar{H}_{K}^{q}(X,A';L,L') \longrightarrow \bar{H}_{K}^{q}(X,A;G,G')$$

$$\longrightarrow \bar{H}_{K}^{q}(X,A,F,F') \longrightarrow \bar{H}_{K}^{q+1}(X,A;L,L') \longrightarrow \cdots .$$
(4.13)

Now instead of *F* take the factor group G/G' and so *F'* will be the null subgroup of G/G'. Then the above sequence yields the following result.

THEOREM 4.3. Consider (X, A) has a trivial (q-1)-dimensional space K-Alexander-Spanier cohomology group with finite cochains, and a trivial (q+1)-dimensional K-Alexander-Spanier cohomology with infinite cochains, taken over the coefficient groups G/G' and G', respectively. Then the group $\tilde{H}_{K}^{q}(X,A;G,G')$ defined over an arbitrary pair (G,G') of coefficient groups is the extension of the cohomology group $\tilde{H}_{K}^{q}(X,A;G')$ with infinite cochains over G' by the group $\tilde{H}_{K}^{q}(X,A,G/G')$ with finite cochains over G/G'.

ACKNOWLEDGEMENT. The first author would like to thank the Abdus Salam International Centre for Theoretical Physics, Trieste, Italy, for hospitality.

REFERENCES

- [1] N. Berikashvili, *On axiomatic theory of spectra and duality laws for arbitrary space*, Trudy Tbilisi Mat. Inst. **24** (1957).
- [2] E. H. Brown Jr. and R. H. Szczarba, *Continuous cohomology and real homotopy type*, Trans. Amer. Math. Soc. **311** (1989), no. 1, 57–106. MR 89f:55005. Zbl 671.55006.
- [3] _____, Continuous cohomology and real homotopy type. II, Astérisque (1990), no. 191, 45-70, International Conference on Homotopy Theory (Marseille, Luminy, 1988). MR 92d:55004. Zbl 731.55008.
- G. S. Chogoshvili, Ueber Homologieapproximationen und Dualitaetssaetze fuer beliebige Mengen [On homological approximation and duality laws for arbitrary space], Mat. Sb. (N.S.) 28 (1951), no. 70, 89–118 (Russian). Zbl 042.16903.
- [5] A. E. A. Dabbour, Ueber die Baladzeschen Homologiegruppen kompakter Raeume [On The Baladze homology groups of compact spaces], Soobshch. Akad. Nauk Gruzin. SSR 77 (1975), no. 3, 541-544 (Russian). MR 52#9213. Zbl 323.55012.
- [6] _____, On the K-Kolmogorov homology and cohomology construction, Simon Stevin 66 (1992), no. 3-4, 357–387. MR 94k:55013. Zbl 780.55005.
- [7] A. E. A. Dabbour and Hijazi R. A., Axiomatic characterization of Alexander-Spanier Ktypes, ICTP preprint IC/96/152, Bull. Pure Appl. Sci. Sec. E Math. 17 (1998).
- [8] _____, *The K-Alexander-Spanier cohomology*, ICTP preprint IC/95/231, Bull. Pure Appl. Sci. Sec. E Math. 17 (1998).
- S. Eilenberg and N. Steenrod, *Foundations of Algebraic Topology*, Princeton Mathematical Series No.15, Princeton University Press, Princeton, 1952. MR 14,398b. Zbl 047.41402.
- [10] R. Engelking, *General Topology*, PWN—Polish Scientific Publishers, Warsaw, 1977, translated from the Polish by the author. Monografie Matematyczne, Tom 60. [Mathematical Monographs, vol. 60]. MR 58#18316b. Zbl 373.54002.
- [11] S.-t. Hu, Cohomology theory in topological groups, Michigan Math. J. 1 (1952), 11–59. MR 14,449b. Zbl 048.25802.
- [12] S. Mac Lane, *Homology*, Classics in Mathematics, Springer-Verlag, Berlin, 1995, Reprint of the 1975 edition. MR 96d:18001. Zbl 818.18001.

A. E. DABBOUR AND R. A. HIJAZI

- [13] W. S. Massey, A Basic Course in Algebraic Topology, Graduate Texts in Mathematics, 127, Springer-Verlag, New York, 1991. MR 92c:55001. Zbl 725.55001.
- [14] L. M. Mdzinarishvili, *Partially continuous Alexander-Spanier cohomology theory*, 130 (1996), 1-39, Mathematical Institute of University Heidelberg.
- M. A. Mostow, *Continuous cohomology of spaces with two topologies*, Mem. Amer. Math. Soc. 7 (1976), no. 175, x+142. MR 54#1253. Zbl 343.55004.
- [16] C. W. Patty, *Foundations of Topology*, The Prindle, Weber and Schmidt Series in Advanced Mathematics, PWS-KENT Publishing Co., Boston, 1993. MR 94d:54002. Zbl 931.54001.
- [17] E. H. Spanier, *Cohomology theory for general spaces*, Ann. of Math. (2) 49 (1948), 407–427.
 MR 9,523d. Zbl 035.24801.
- [18] _____, Algebraic Topology, McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book, New York, 1966. MR 35#1007. Zbl 145.43303.

ABD EL-SATTAR A. DABBOUR: DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, AIN-SHAMS UNIVERSITY, ABBASIA, CAIRO, EGYPT

Current address: The Abdus Salam International Centre for Theoretical Physics, Trieste, Italy

E-mail address: sherif@sunet.shams.eg

ROLA A. HIJAZI: DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, KING ABDULAZIZ UNI-VERSITY, P.O. BOX 14466, JEDDAH 21424, SAUDI ARABIA

688