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MULTIMODAL CYCLES WITH LINEAR MAP
HAVING EXACTLY ONE FIXED POINT
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Abstract. We describe a class of cycles that cannot be forced by a cycle whose linear map
has exactly one fixed point.
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1. Introduction. This note is concerned with the forcing relation on cycles. In par-

ticular, we consider cycles θ for which the θ-linear map has exactly one fixed point.

We prove a theorem which describes a large class of cycles that cannot be forced by θ.

2. Definitions. Throughout this note, f : I → I denotes a continuous map of a com-

pact interval. For x ∈ I, f 0(x) = x, and for n ∈ N, fn(x) = f(fn−1(x)). An element

x ∈ I is a periodic point for f if there exists k ∈ N satisfying fk(x) = x. The least

such k is called the period of x. A point of period 1 is called a fixed point. The orbit

of x ∈ I is the set {fn(x)}∞n=0 and is denoted �(x). If x is periodic with period k, then
�(x) is a finite set consisting of k distinct elements.

A cycle of order n is a bijection θ : {1,2, . . . ,n} → {1,2, . . . ,n} satisfying θk(1) ≠
1 for 1 ≤ k < n. Let x be a periodic point for f with least period n and �(x) =
{x1 < x2 < ··· < xn}. We say that x has orbit type θ if θ is a cycle of order n and

f(xi) = xθ(i) for 1 ≤ i ≤ n. In this case, we also say that the periodic orbit �(x)
has orbit type θ. We say that f has a periodic orbit of orbit type θ if there exists a

periodic point x ∈ I which has orbit type θ. A cycle θ forces a cycle η if whenever f
has a periodic orbit of type θ, f has a periodic point of type η.
For a cycle θ of order n, the θ-linear map Lθ : [1,n]→ [1,n] is defined by

Lθ(k)= θ(k), for 1≤ k≤n,
Lθ is linear on [i,i+1], for 1≤ i≤n−1. (2.1)

The graph of Lθ consists of at most n−1 linear segments, each having a slope m
satisfying |m| ≥ 1. A cycle η is forced by θ if and only if Lθ has a periodic orbit of

type η [1].

Baldwin [2] defined the forcing relation and proved that the forcing relation induces

a partial order on the set of cycles. He provided an exhaustive but inefficient algorithm

for determining whether one cycle forces another. Jungreis [6] provided a combinato-

rial method to determine if one cycle forces another in certain cases. In [3] a geometric

version of Jungreis’s algorithm is given and in [4] this algorithm is generalized to any
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two cycles. In [8], another geometric algorithm is given to determine the forcing re-

lation. This algorithm is similar to Baldwin’s original algorithm but more efficient. A

cycle is called unimodal if Lθ has exactly one turning point (a maximum, say). In [5]

the forcing relation on the set of unimodal cycles is studied. In particular, it is shown

that the forcing relation induces a total order on the set of unimodal cycles. In [7, 9]

the structure of this totally ordered set is investigated.

3. Preliminaries. In this section, we define the RL-pattern for any cycle, and we

define the step number for a cycle θ for which Lθ has exactly one fixed point.

Definition 3.1. Let η be any cycle of order k. The RL-pattern for η is the sequence

G =G1G2 ···Gk ∈ {R,L}k (3.1)

defined by

Gi =


R if ηi(1) > ηi−1(1),

L if ηi(1) < ηi−1(1).
(3.2)

Let R(η) denote the length of the longest string of consecutive R’s in the RL-pattern
for η.

Obviously, every RL-pattern begins with an R and ends with an L.
Let θ be a cycle of order n such that Lθ has exactly one fixed point. Let p1 ∈ (1,n)

denote the unique fixed point and let E1 = {x < p1 | f(x) = p1}. If E1 
= ∅, we let

p2 =max{E1}. For i > 1, if the points p1,p2, . . . ,pi and nonempty sets E1, . . . ,Ei−1 have
been defined, we set

Ei =
{
x < pi | f(x)= pi

}
. (3.3)

If Ei 
= ∅, we let pi+1 =max{Ei}. We see that for some i≥ 1, Ei =∅, for otherwise,
there would exist a strictly decreasing sequence {pn}∞n=1 in [1,n], converging to a

point p < p1 but satisfying, for each n,

Lθ
(
pn
)= pn−1, (3.4)

so that by continuity,

lim
n→∞L

(
pn
)= L(p) (3.5)

and at the same time

lim
n→∞L

(
pn
)= lim

n→∞pn−1 = p. (3.6)

Thus L(p)= p, which would contradict the assumption that Lθ has exactly one fixed
point. Therefore we can make the following definition.

Definition 3.2. Let θ be a cycle of ordern such that Lθ has exactly one fixed point.
The step number of θ, denoted S(θ), is the (smallest) value of i for which Ei =∅.

Example 3.3. The cycle η1 = (1 2 3 4) has RL-pattern RRRL. The cycle η2 =
(1 4 7 2 6 8 5) has RL-pattern RRLRLRLL; R(η1)= 3 and R(η2)= 2.
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4. Results. For any cycle θ such that Lθ has exactly one fixed point, the following

theorem describes a large class of cycles that cannot be forced by θ.

Theorem 4.1. Let θ be a cycle of order n ≥ 2 such that Lθ has exactly one fixed

point. Let S(θ) denote the step number of θ. Let η be any cycle. If R(η) > S(θ), then θ
does not force η.

Proof. We have

1<pS(θ) < pS(θ)−1 < ···<p2 <p1 <n. (4.1)

We write

[1,n]=
S(θ)+1⋃

i=1
Ii, (4.2)

where
I1 =

[
p1,n

]
,

Ii =
[
pi,pi−1

]
for 2≤ i≤ S(θ),

IS(θ)+1 =
[
1,pS(θ)

]
.

(4.3)

For any x ∈ int(I1), Lθ(x) < x. So x cannot be the leftmost point in any periodic orbit.

For 2 ≤ i ≤ S(θ)+1, we argue inductively. If x ∈ int(Ii), then Lθ(x) > x and Lθ(x) ∈⋃i−1
j=1 Ij , so if x is the leftmost point of a periodic orbit of type γ, the RL-pattern of γ

consist of at most i−1 consecutive R’s followed by an L. That is, R(γ) ≤ i−1. This
shows that any cycle η forced by θ must have R(η)≤ S(θ).

Example 4.2. Let θ = (1 2 6 3 4 5). Lθ has exactly one fixed point and S(θ) = 3.

From Theorem 4.1, we know that for all n≥ 5, θ does not force (1 2 3 ··· n). Using
the technique developed in [8] it is seen that θ does force (1 2 3 4) and that there are

exactly two distinct orbits of type (1 2 3 4). Also, θ forces (1 2 3) and there are six

distinct orbits of type (1 2 3).

Example 4.3. Let θ = (1 3 5 2 8 4 7 6). Lθ has one fixed point and S(θ)= 2. From

Theorem 4.1, we see that for all n≥ 4, θ does not force (1 2 3 ··· n). Using [8], one
can find exactly two distinct orbits of type (1 2 4 3), exactly fourteen distinct orbits

of type (1 3 2 4), exactly eleven distinct orbits of type (1 4 2 3) and one can show that

there are now orbits of type (1 3 4 2) and no orbits of type (1 4 3 2). These are the
only orbit types of period 4 forced by θ.
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