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MULTIMODAL CYCLES WITH LINEAR MAP
HAVING EXACTLY ONE FIXED POINT
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ABSTRACT. We describe a class of cycles that cannot be forced by a cycle whose linear map
has exactly one fixed point.
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1. Introduction. This note is concerned with the forcing relation on cycles. In par-
ticular, we consider cycles 0 for which the 6-linear map has exactly one fixed point.
We prove a theorem which describes a large class of cycles that cannot be forced by 9.

2. Definitions. Throughout this note, f : I — I denotes a continuous map of a com-
pact interval. For x €I, fO(x) = x, and for n € N, f"(x) = f(f* 1(x)). An element
x €I is a periodic point for f if there exists k € N satisfying f*(x) = x. The least
such k is called the period of x. A point of period 1 is called a fixed point. The orbit
of x e Iis the set {f"(x)};;—, and is denoted O(x). If x is periodic with period k, then
O(x) is a finite set consisting of k distinct elements.

A cycle of order n is a bijection 0 : {1,2,...,n} — {1,2,...,n} satisfying 6%(1) =
1 for 1 < k < n. Let x be a periodic point for f with least period n and O(x) =
{x1 <x2 <--- < xp}. We say that x has orbit type 0 if 0 is a cycle of order n and
f(xi) = xo4) for 1 < i < n. In this case, we also say that the periodic orbit 0(x)
has orbit type 0. We say that f has a periodic orbit of orbit type 0 if there exists a
periodic point x € I which has orbit type 0. A cycle 0 forces a cycle n if whenever f
has a periodic orbit of type 0, f has a periodic point of type n.

For a cycle 0 of order n, the O-linear map Lo : [1,n] — [1,n] is defined by

Lo(k) =0(k), forl=<k=<n,

Lo islinearon [i,i+1], forl<i<n-1. (2.1)

The graph of Ly consists of at most n — 1 linear segments, each having a slope m

satisfying |m| = 1. A cycle n is forced by 0 if and only if Lo has a periodic orbit of
type n [1].

Baldwin [2] defined the forcing relation and proved that the forcing relation induces

a partial order on the set of cycles. He provided an exhaustive but inefficient algorithm

for determining whether one cycle forces another. Jungreis [6] provided a combinato-

rial method to determine if one cycle forces another in certain cases. In [3] a geometric

version of Jungreis’s algorithm is given and in [4] this algorithm is generalized to any
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two cycles. In [8], another geometric algorithm is given to determine the forcing re-
lation. This algorithm is similar to Baldwin’s original algorithm but more efficient. A
cycle is called unimodal if Ly has exactly one turning point (a maximum, say). In [5]
the forcing relation on the set of unimodal cycles is studied. In particular, it is shown
that the forcing relation induces a total order on the set of unimodal cycles. In [7, 9]
the structure of this totally ordered set is investigated.

3. Preliminaries. In this section, we define the RL-pattern for any cycle, and we
define the step number for a cycle € for which Ly has exactly one fixed point.

DEFINITION 3.1. Let n be any cycle of order k. The RL-pattern for n is the sequence

G=G1Gy--Gre{R,L}¥ (3.1)
defined by

: i i—-1
_=1R if ni(1) > ni-1(1), (3.2)

L if ni(1) < ni=1(1).

Let R(n) denote the length of the longest string of consecutive R’s in the RL-pattern
for n.

Obviously, every RL-pattern begins with an R and ends with an L.

Let 0 be a cycle of order n such that Ly has exactly one fixed point. Let p; € (1,n)
denote the unique fixed point and let E; = {x < p1 | f(x) = p1}. If E1 # @, we let
p2 = max{E,}. For i > 1, if the points p,, p2,...,p; and nonempty sets Ei,...,E;_; have
been defined, we set

Ei={x<pil f(x)=pi}. (3.3)

If E; # @, we let p;,1 = max{E;}. We see that for some i > 1, E; = @, for otherwise,
there would exist a strictly decreasing sequence {p,},-; in [1,n], converging to a
point p < p; but satisfying, for each n,

Lo(pn) = pn-1, (3.4)

so that by continuity,
lim L(py) = L(p) (3.5)

and at the same time
lim L(py) = lim pyy = p. (3.6)

Thus L(p) = p, which would contradict the assumption that Ly has exactly one fixed
point. Therefore we can make the following definition.

DEFINITION 3.2. Let 0 be a cycle of order n such that Ly has exactly one fixed point.
The step number of 6, denoted S(0), is the (smallest) value of i for which E; = &.

EXAMPLE 3.3. The cycle n; = (1 2 3 4) has RL-pattern RRRL. The cycle n, =
(1472685)has RL-pattern RRLRLRLL; R(n;) =3 and R(ny) = 2.
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4. Results. For any cycle 0 such that Ly has exactly one fixed point, the following
theorem describes a large class of cycles that cannot be forced by 6.

THEOREM 4.1. Let 0 be a cycle of order n = 2 such that Ly has exactly one fixed
point. Let S(0) denote the step number of 6. Let n be any cycle. If R(n) > S(0), then 0
does not force n.

PROOF. We have

1<pso) <Ps@-1<---<p2<p1 <n. 4.1)
We write
S(0)+1
[1,nl= U L 4.2)
i=1
where
Il = [pl:n]y
Ii=[pi,pi-1] for2=<i<S(0), (4.3)

Isioy1 = [1,Pso)]-

For any x € int(I), Lo(x) < x. So x cannot be the leftmost point in any periodic orbit.
For 2 <i < S(0) +1, we argue inductively. If x € int(I;), then Lo(x) > x and Ly (x) €
U;;ll I;, so if x is the leftmost point of a periodic orbit of type y, the RL-pattern of y
consist of at most i — 1 consecutive R’s followed by an L. That is, R(y) < i—1. This
shows that any cycle n forced by 6 must have R(n) < S(6). O

EXAMPLE 4.2. Let 0 = (1 2 6 3 45). Ly has exactly one fixed point and S(6) = 3.
From Theorem 4.1, we know that for all n > 5, € does not force (12 3 --- n). Using
the technique developed in [8] it is seen that € does force (1 2 3 4) and that there are
exactly two distinct orbits of type (1 2 3 4). Also, 0 forces (1 2 3) and there are six
distinct orbits of type (1 2 3).

EXAMPLE 4.3. Let 6 = (1 35284 76). Ly has one fixed point and S(6) = 2. From
Theorem 4.1, we see that for all n > 4, 6 does not force (1 2 3 --- n). Using [8], one
can find exactly two distinct orbits of type (1 2 4 3), exactly fourteen distinct orbits
of type (1 3 2 4), exactly eleven distinct orbits of type (1 4 2 3) and one can show that
there are now orbits of type (1 3 4 2) and no orbits of type (1 4 3 2). These are the
only orbit types of period 4 forced by 6.
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