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Abstract. For an integer n≥ 2, let p(z)=∏nk=1(z−αk) and q(z)=
∏n
k=1(z−βk), where

αk,βk are real. We find the number of connected components of the real algebraic curve
{(x,y)∈R2 : |p(x+iy)|−|q(x+iy)| = 0} for some αk and βk. Moreover, in these cases,
we show that each connected component contains zeros of p(z)+q(z), and we investigate
the locus of zeros of p(z)+q(z).
2000 Mathematics Subject Classification. Primary 26C10; Secondary 30C15.

1. Introduction. Throughout the paper, n is an integer ≥ 2. Let f(x,y) be an inte-
gral polynomial of degree n. Let A be the real algebraic curve defined by A= {(x,y)∈
R2 : f(x,y)= 0}. It is known that A consists of at most finitely many connected com-
ponents. More precisely, when the curve is real nonsingular, each unbounded compo-

nent is homeomorphic to a line and each bounded component is homeomorphic to

a circle. We will call a bounded component an oval, and an unbounded component

an∞-component. Also, we will write “component” instead of “connected component”
for convenience. Let p(z) =∏nk=1(z−αk) and q(z) =∏nk=1(z−βk), where αk,βk are
real. The zeros of g(z) := p(z)+q(z) are clearly contained in the locus of the real
algebraic curve

C := {(x,y)∈R2 : ∣∣p(x+iy)∣∣−∣∣q(x+iy)∣∣= 0}. (1.1)

In fact, in their study of “cylindrical algebraic decomposition,” Arnon, Collins, and

McCallum [1, 2] provide an algorithm for calculating the number of components given

a specific example. However, we do not know the answer in the general case. We

provide a different idea in this paper from that in [1, 2]. With the above terminology,

here are some general questions.

(a) Given P(x,y)= 0 for real variables x and y , how many components are there?
It is still unclear how to describe all possibilities for the topological nature of all com-

ponents of an arbitrary P(x,y)= 0; this is the essence of the Hilbert’s 16th problem.
On the other hand, one of the most significant theorems of real algebraic geometry

(Harnack (see [3, pages 257–258]), 1876) tells us that the number of components is at

most one more than the genus.

(b) The curve C has finitely many components. Must each component have zeros of
g(z)= 0?
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We answer the questions (a) and (b) for some real algebraic curves of the form (1.1).

Define, for real variables x and y ,

P(x,y) := ∣∣p(x+iy)∣∣2−∣∣q(x+iy)∣∣2, (1.2)

where {α1, . . . ,αn,β1, . . . ,βn} ⊆ {1,2, . . . ,2n}. The simplest case for the questions (a)
and (b) is {αk} = {1,2,3, . . . ,n} and {βk} = {n+ 1,n+ 2, . . . ,2n}. Then all zeros of
P(x,y) obviously lie on the vertical line x =n+1/2, so P(x,y) has only one compo-
nent. We will study the case {αk} = {2,2, . . . ,2} and {βk} = {1,n+1,n+1, . . . ,n+1} in
Section 3. Moreover, in Section 2, we will investigate the locus of zeros of the more

general polynomial equation

g(x,t) := (x−2)n+(x−1)(x−t)n−1 = 0, t ≥ 3. (1.3)

2. The zeros of g(x,t) = 0. We need the following two lemmas. First, Lemma 2.1

easily follows from the theorems of Hurwitz (see [4, page 4]) and Rouché (see [4,

page 2]).

Lemma 2.1. Let n>m> 0 be integers. Let A, B, and C be real numbers with C ≠ 0.
If a trinomial equation

Azn+Bzm+C = 0 with |B| ≥ |A|+|C| (2.1)

has no zeros on |z| = 1, then it has exactlym zeros strictly inside |z| = 1.
Lemma 2.2. The zeros of g(x,t) are (2+an,t)/(1+an,t), where each a−1/(n−1)n,t is a

zero of the trinomial equation (2−t)zn+(1−t)z+1= 0.
Proof. From g(x,t)= 0, we obtain −(x−2)/(x−1)= ((x−t)/(x−2))n−1. Let

−x−2
x−1 =

(
x−t
x−2

)n−1
= a, (2.2)

where a := an,t is a complex number. From −(x − 2)/(x − 1) = a, we find that
x = (2+ a)/(1+ a), and it easily follows from ((x − t)/(x − 2))n−1 = a that x =
(2a1/(n−1) − t)/(a1/(n−1) − 1). Equating these two formulae for x leads to an/n−1 +
(1−t)a+2−t = 0. The result follows by multiplying each side by a−n/(n−1).
Now we find a relation between x (a zero of g(x,t)= 0) and z (a zero of (2−t)zn+

(1−t)z+1= 0) as follows:

x = 2z
n−1+1

zn−1+1 = 1+ 1
1+1/zn−1 . (2.3)

So

zn−1 = x−1
2−x , that is, z =

(
x−1
2−x

)1/(n−1)
. (2.4)

Using Lemmas 2.1 and 2.2, we have the following proposition.

Proposition 2.3. The function g(x,t) has only one zero x0 in �x < 3/2, and has

no zeros in 3/2≤�x ≤ (t+2)/2.
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Proof. Observe that the strip 3/2 ≤ �x ≤ (t+2)/2 is zero-free, since, for such
x, |x − 2| ≤ |x − t| and |x − 2| < |x − 1|. Now we consider the trinomial equation

(2−t)zn+(1−t)z+1= 0. It has no zero on |z| = 1, since, if there were such a zero
z, then by (2.4), 1 = |zn−1| = |(x − 1)/(2−x)|, that is, x = 3/2+ iβ for some real
number β. This is a contradiction. Hence, by Lemma 2.1, the trinomial equation (2−
t)zn+(1−t)z+1 = 0 has exactly one zero z0 interior to |z| = 1. Then |z0| = |((x0−
1)/(2−x0))1/(n−1)| < 1, that is, |x0−1| < |2−x0| for some real number x0. Hence
�x0 < 3/2 which proves the proposition.
Next, we study further the unique zero x0 given by Proposition 2.3.

Proposition 2.4. Let n be an integer ≥ 3 and t ≥ 3. Then the only zero x0 of g(x,t)
in �x ≤ (t+2)/2 is real and

1+2(−ε+1/n)n−1
1+(−ε+1/n)n−1 <x0 <

1+2(ε+1/n)n−1
1+(ε+1/n)n−1 , (2.5)

where ε= ε(n,t)= 2n(t−2)/(t−1)n+1.
Proof. For n an integer ≥ 3, let ε = ε(n,t) = 2n(t−2)/(t−1)n+1. Then 0 < ε ≤

1/(t − 1), since (2/(t − 1))n < 1/(t − 2) and n ≥ 3. Then the trinomial equation

(2−t)zn+(1−t)z+1= 0 has at least one real zero z0 in (1/(t−1)−ε,1/(t−1)+ε).
In fact, by algebra, we can see that the left side of the trinomial equation is

−(2n+(1+2n(−2+t)(−1+t)−n)n)(−2+t)(−1+t)−n < 0 (2.6)

at z = 1/(t−1)+ε, and
−(−2n+(1−2n(−2+t)(−1+t)−n)n)(−2+t)(−1+t)−n > 0 (2.7)

at z = 1/(t−1)−ε. Set z0 = ((x0−1)/(2−x0))1/(n−1). Since z0 is real, so is x0. Now
we obtain the inequality |((x0−1)/(2−x0))1/(n−1)−1/(t−1)| < ε, and from this we

have the inequality (2.5). A simple calculation yields that (1+2A)/(1+A) < (t+2)/2
for A> 0. This proves the result.

Remark 2.5. (a) For n = 2 and t ≥ 3, we can easily check that g(x,t) has two real
zeros. Here the smaller zero is ≤ (t+2)/2, but it does not satisfy (2.5).
(b) In Lemma 2.2, we encountered a trinomial equation (t−2)zn+ (t−1)z−1 = 0

(t ≥ 3). Here we define a more general polynomial
h(z)= (t−2)zn+(t−1)z−s (s ≥ 0). (2.8)

Then we have the following zero distributions. The function h(z) has



all its zeros with modulus> 1 if s > 2t−3,
one (real) zero with modulus= 1 and all others> 1 if s = 2t−3,
one (real) zero with modulus< 1 and all others> 1 if 0≤ s ≤ 1.

(2.9)

This can be proved by elementary calculation, Lemma 2.1, and Eneström-Kakeya the-

orem (see [4, page 136]). However, we did not consider the case 1 < s < 2t−3. We
conjecture that, for 1 < s < 2t−3, h(z) has one (real) zero with modulus < 1 and all
others > 1, as the case 0≤ s ≤ 1, but it remains an open problem.
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3. The number of components of |(z−2)n| = |(z−1)(z−(n+1))n−1|. Let

g(z) := (z−2)n+(z−1)(z−(n+1))n−1. (3.1)

If g(z) = 0, then |(z−1)(z−(n+1))n−1/(z−2)n|2 = 1. This motivates, for real vari-
ables x and y , the introduction of

G(x,y) :=
(
(x−1)2+y2)((x−(n+1))2+y2)n−1(

(x−2)2+y2)n −1. (3.2)

Here G(x,y) is obviously symmetric about the x-axis. In this section, we find the
number of components of G(x,y) = 0 and show that each component has zeros

of g(z) = 0. First, using Proposition 2.3, we find that the number of components of
G(x,y)= 0 is at least two.

Proposition 3.1. The locus of

∣∣(z−2)n∣∣= ∣∣(z−1)(z−t)n−1∣∣, t ≥ 3 (3.3)

has at least two components.

Proof. We showed in Proposition 2.3 that g(x,t) has one real zero < 2 and n−1
zeros with real part > (t+2)/2 > 2. So it suffices to show that, on z = 2+is (s real),
the two absolute values are never equal. On z = 2+is (s real),
∣∣(z−1)(z−t)n−1∣∣2−∣∣(z−2)n∣∣2=(1+s2)((t−2)2+s2)n−1−s2n ≥ (t−2)2>0. (3.4)

Next, we show that the points where the locus of G(x,y)= 0 has vertical tangents
lie on the real axis. We use this later to show that the locus consists of either one

oval, one ∞-component or three ∞-components. In order to prove this, we need the
following lemma.

Lemma 3.2. Let n be an integer ≥ 3. Define

f(x) :=
( −2x+3
(n−1)(−2x+n+2)

)n−1
− −2x+n+2
(n−1)(−2x+n+3) . (3.5)

Then all real zeros of f(x) are



n2+n−5
2n−4 , n even,

n2+n−5
2n−4 ,r (n), n odd,

(3.6)

where (n2 +n− 5)/(2n− 4) is a double zero in each case and 3/2 < r = r(n) <
(n2+n+1)/2n.

Proof. From f(x)= 0, we find that
( −2x+3
(n−1)(−2x+n+2)

)n−1
= −2x+n+2
(n−1)(−2x+n+3) = a, (3.7)
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where a := an is a complex number. From (−2x+3)/(n−1)(−2x+n+2) = a1/(n−1),
we get

x =−3−a
1/(n−1)(n−1)(n+2)

−2+2a1/(n−1)(n−1) , (3.8)

and also

x =−n+2−a(n−1)(n+3)−2+2a(n−1) (3.9)

from (−2x+n+2)/(n−1)(−2x+n+3)= a. Equating these two formulae for x leads
to (n− 1)an/(n−1) −na+ 1 = 0, and so a1/(n−1) is a zero of the trinomial equation
w(y) := (n−1)yn−nyn−1+1= 0. Now, we have

w(y)
(y−1)2 = (n−1)y

n−2+(n−2)yn−3+(n−3)yn−4+···+2y+1. (3.10)

Since a1/(n−1) is real if and only if the corresponding x in (3.7) is real, the number of
real zeros of f(x) is equal to that ofw(y). By (3.10),w(y) has a real double zero at 1,
and its corresponding x is (n2+n−5)/(2n−4), since (−2x+3)/(n−1)(−2x+n+2)=1.
On the other hand, it follows from Eneström-Kakeya theorem thatw(y)/(y−1)2 has
no zero for |y| > 1. Also it is obvious that w(y)/(y−1)2 has no real zero ≥ 0. In
order to find the real zeros of f(x), we first need to determine whether w(y) has
a real zero on (−1,0) or not. We see that w′(y) = n(n−1)yn−2(y −1). So if n is
even, then w′(y) < 0 for −1 < y < 0. Moreover, w(0) = 1 > 0, which implies there
are no real zeros of w(y) other than 1. Hence f(x) has only one (double) real zero
(n2+n−5)/(2n−4). Suppose that n is odd. Thenw′(y) > 0 on −1<y < 0,w(−1)=
2(1−n) < 0, and w(0) > 0. This implies that there must be exactly one real zero on
(−1,0). Say x0 is its corresponding real number. Then by (3.7)

−1< −2x0+3
(n−1)(−2x0+n+2) < 0. (3.11)

Simple calculations yield that 3/2 < x0 < (n2+n+1)/2n. This completes the proof.

Now we have the following Proposition.

Proposition 3.3. The points where the locus of G(x,y) = 0 has vertical tangents

lie on the real axis.

Proof. It suffices to show that 〈0,1〉·�G(x,y)= 0 and G(x,y)= 0 implies y = 0.
A calculation shows that 〈0,1〉 ·�G(x,y) = ∂G/∂y = 0 if and only if y = 0 or y2 =
A(x), where

A(x)= 2(n−2)x
3−(n2+5n−17)x2+2(n2+n−12)x−(n2−2n−11)

−2(n−2)x+n2+n−5 . (3.12)

Suppose that y2 =A(x). Then

f(x) :=G(x,y)=




1
4x2−16x+15 , n= 2,
( −2x+3
(n−1)(−2x+n+2)

)n−1
− −2x+n+2
(n−1)(−2x+n+3) , n≥ 3,

(3.13)
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by simplifying the equations. So it is clear that there are no zeros of f(x) in the
case of n = 2. Suppose that n ≥ 3. By Lemma 3.2, (n2 +n− 5)/(2n− 4) is a (dou-
ble) real zero of f(x) and, in particular, if n is even, such a real zero is unique. But
A((n2 +n− 5)/(2n− 4)) is not defined. So this is a contradiction. Suppose that n
is odd. Then by Lemma 3.2, all zeros of f(x) are (n2 +n− 5)/(2n− 4) and r(n),
where 3/2 < r(n) < (n2+n+1)/2n. As above, A((n2+n−5)/(2n−4)) is not de-
fined. So it is enough to consider r(n). Now, we have that A(3/2) = −1/4 < 0 and
A((n2+n+1)/2n)=−(n4−2n3+5n2−4n+1)/4n2 < 0. So if we show that A′(x) < 0
on 3/2<x < (n2+n+1)/2n, theny2 =A(x) < 0, which is a contradiction. We see that

A′(x)=− 2s(x)(−2(n−2)x+n2+n−5)2 , (3.14)

where s(x)= 4(n−2)2x3−4(n−2)2(n+4)x2+(n2+5n−17)(n2+n−5)x−n4−n3+
12n2+10n−38. So it is enough to show that s(x) > 0 on 3/2 < x < (n2+n+1)/2n.
Now

s
(
3
2

)
= 1
2
(n−1)3(n+1) > 0,

s
(
n2+n+1

2n

)
= (n−1)

3(2n−1)(n2−2n+2)
n3

> 0,

s′(x)= (6(2−n)x+n2+5n−17)(2(2−n)x+n2+n−5).

(3.15)

Hence, (n2+5n−17)/6(n−2) and (n2+n−5)/2(n−2) are the zeros of s′(x), and
we can check that




n2+5n−17
6(n−2) <

3
2
<
n2+n+1

2n
<
n2+n−5
2(n−2) , n= 3,

3
2
<
n2+5n−17
6(n−2) <

n2+n+1
2n

<
n2+n−5
2(n−2) , n≥ 4.

(3.16)

This proves the result, since s(3/2) > 0 and s((n2+n+1)/2n) > 0.
Next we establish the following Proposition.

Proposition 3.4. For fixed y0 ≠ 0,
(a) limx→±∞G(x,y0)= 0,
(b) for |x| large, the limit is approached from above for x → −∞ and the limit is

approached from below for x→+∞,

(c) G(x,0) has exactly three real zeros. Moreover, (∂G/∂x)(x,y0) has at most four

real zeros,

(d)

∂2G
∂x2

(
x,y0

)


≥ 0 as x �→−∞,
≤ 0 as x �→∞. (3.17)

Proof. Let y0 be nonzero and fixed. It is obvious that limx→±∞G(x,y0) = 0. By a
calculation, we have

∂G
∂x
(
x,y0

)= −2n((x−n−1)2+y20 )nB(x,y0)(
(x−2)2+y20

)n+1((x−n−1)2+y20 )2
, (3.18)
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where

B(x)=B(x,y0)
=(n−2)y40+

(
n2−n+1)(x−2)y20−(x−1)(x−2)(x−(n+1))((n−2)x−n+3)

(3.19)

is a polynomial in x of degree 4 whose leading coefficient is 2−n. So it follows from
the positivity of the leading coefficient of the numerator of the right side of (3.18)

that, for |x| large, (∂G/∂x)(x,y0) > 0, that is, G(x,y0) is increasing on (x1,∞) and
(−∞,−x1) for x1 is sufficiently large. On the other hand, by (a), limx→±∞G(x,y0) =
0. Hence (b) holds. For (c), we observe that (∂G/∂x)(x,0) has the three real zeros
1,n+ 1,(n− 3)/(n− 2), and we can check that G(1,0) = G(n+ 1,0) = −1 < 0 and
G((n−3)/(n−2),0) > 0. So G(x,0) has exactly three real zeros. The second assertion
of (c) is easily seen from degB(x)= 4, since (x,y)≠ (n+1,0). Finally, we see that

∂2G
∂x2

(
x,y0

)= 2n
(
(x−n−1)2+y20

)nC(x)(
(x−2)2+y20

)n+2((x−n−1)2+y20 )3
, (3.20)

where C(x) is a polynomial in x of degree 7 whose leading coefficient is 2(2−n). So
it follows from the negativity of the leading coefficient of the numerator of the right

side of (3.20) that (d) holds.

By Proposition 3.4(c), G(x,0) has exactly three real zeros, and for fixed y ≠ 0 the
graph of G(x,y) indicates that the value 0 can be taken on at most three times. Thus,
by Propositions 3.1 and 3.3, the locus consists of

{one oval, one ∞-component} or {three ∞-components}. (3.21)

Next we examine the number of real zeros of (∂G/∂x)(x,y) for |y| sufficiently large.
Lemma 3.5. For |y0| sufficiently large, (∂G/∂x)(x,y0) has exactly two real zeros.

Proof. Let y0 be sufficiently large and fixed. From (3.18),

∂G
∂x
(
x,y0

)= −2n((x−n−1)2+y20 )nB(x,y0)(
(x−2)2+y20

)n+1((x−n−1)2+y20 )2
. (3.22)

Since (x−n−1)2+y20 ≠ 0, (∂G/∂x)(x,y0)= 0 is equivalent to B(x,y0)= 0. Then

B(x)= B(x,y0)= (ux+v)−(x−1)(x−2)(x−(n+1))((n−2)x−n+3), (3.23)

where u and v are positive numbers with v/u large. Observe that the zeros of ux+v
and −(x−1)(x−2)(x− (n+1))((n−2)x−n+3) are −v/u, (n−3)/(n−2), 1, 2,
n+1. By sign changes, we observe that there are no real zeros of B(x) on (−∞,−v/u)∪
((n−3)/(n−2),1)∪(2,n+1), and there is at least one real zero of B(x) on (−v/u,(n−
3)/(n−2)). Also there are no real zeros of B(x) on [0,(n−3)/(n−2)]∪(1,2), since
v/u is large. On the other hand, we can check that B(−x) has only one sign change
in its coefficients. Hence, by Descartes’ rule of signs and the above, there is only one

real zero of B(x) on (−v/u,0). But the degree of B(x) is four, so the number of real
zeros on (n+1,∞) is either one or three. It is obvious that more than two real zeros
are not on (n+1,∞). Hence (∂G/∂x)(x,y0) has exactly two real zeros.
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By Proposition 3.4(a), (b) and Lemma 3.5, there is only one real x with G(x,y) = 0
for |y| sufficiently large. This shows that originally there could have been at most one
∞-component. Hence, by the above, equation (3.21), Proposition 2.3, and the proof of
Proposition 3.1, we have the following theorem.

Theorem 3.6. The locus of

∣∣(z−2)n∣∣=
∣∣∣(z−1)(z−(n+1))n−1

∣∣∣ (3.24)

has exactly two components; one oval and one∞-component. Each component has zeros

of (z−2)n+(z−1)(z−(n+1))n−1 = 0.
Here Figure 3.1 (n= 3) is enlightening.

x

y
2

1

−1

−2

1 2 3 4

Figure 3.1. |(z−2)3| = |(z−1)(z−4)2|.

Remark 3.7. Let n andm be positive integers with 1≤ k <n. If we choose {αk} =
{1,2, . . . ,m,n+m+1,n+m+2, . . . ,2n} and {βk} = {m+1,m+2, . . . ,m+n} in (1.2),
we can show that the locus of P(x,y)= 0 has at least two components.
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