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1. Introduction. Hecke groups H(λ) have been introduced by E. Hecke (see [2]).

They are subgroups of PSL(2,R) generated by R(z) = −1/z and T(z) = z+λ. Hecke

asked the question, “For what values of λ these groups are discrete?” In answering

this question he proved that

Fλ =
{
z ∈U : |z|> 1, |Rez|< λ

2

}
(1.1)

is a fundamental region for H(λ) if and only if λ≥ 2 and real or λ= λq = 2cos(π/q),
q ∈N, q ≥ 3. Therefore,H(λ) is discrete only for these values of λ. Themost important

and interesting Hecke group is the modular group H(λ3)= PSL(2,Z). Next two inter-

esting Hecke groups are obtained for q = 4 and q = 6. As λ4 =
√
2 and λ6 =

√
3, H(

√
2)

and H(
√
3) denote the Hecke groups corresponding to λ4 and λ6, respectively. One of

the main reasons forH(
√
2) andH(

√
3) to be two of the most important Hecke groups

is that apart from modular group, they are the only Hecke groups H(λq) whose ele-

ments can be completely described. Here we deal with the casesH(
√
n), n square-free

integer. H(
√
n) consists of the set of all matrices of the following types:

(i)
(
a b

√
n

c
√
n d

)
; a,b,c,d∈ Z, ad−nbc = 1,

(ii)
(
a
√
n b
c d

√
n

)
; a,b,c,d∈ Z, nad−bc = 1.

Those of type (i) are called even while those of type (ii) are called odd. Even elements

form a subgroup of index 2 called the even subgroup [1].

Let S = RT so that S(z)=−1/(z+λ). In the cases H(
√
n), n= 2,3, S is an element

of order q = 2n. Thus R2 = Sq = I and RS = T is parabolic. It is known that H(
√
n) is

isomorphic to the free product C2∗Cq. ThereforeH(√n) has the signature (0;2,q,∞),
[1]. In the case n> 3 square-free integer, S is an element of infinite order and H(

√
n)

is isomorphic to the free product C2∗Z, [6]. The signature of H(
√
n) is (0;2,∞;1).

That is, all the groups H(
√
n), n square-free integer, are triangle groups containing a

parabolic element. It is well known that a triangle group (2,m,n) acts on the sphere,

Euclidean plane or hyperbolic plane according to 1/m+1/n > 1/2, 1/m+1/n= 1/2,
and 1/m+1/n < 1/2, respectively, [3].
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The purpose of this paper is to determine the structure of the groups Hm(
√
n) of

the Hecke groups H(
√
n), n is a square-free integer. The groups Hm(

√
n) are defined

to be the subgroups generated by the mth powers of all the elements of H(
√
n), for

some positive integer m. Hm(
√
n) is called the mth power subgroup of H(

√
n). As

fully invariant subgroups, they are normal in H(
√
n).

From the definition, one can easily deduce that

Hm
(√
n
)
>Hmk

(√
n
)
, (1.2)

and that (
Hm

(√
n
))k > Hmk(√n). (1.3)

Using (1.2), it is easy to deduce that

Hm
(√
n
)·Hk(√n)=H(m,k)(√n). (1.4)

Here (m,k) denotes the greatest common divisor ofm and k.

2. Structure of power subgroups. We now discuss the group theoretical structure

of these subgroups. First we have the following theorem.

Theorem 2.1. (i) Let n= 2 or 3. The normal subgroup H2(
√
n) is isomorphic to the

free product of infinite cyclic group Z and two finite cyclic groups of order n. Also

H
(√
n
)
/H2(√n)� C2×C2,

H
(√
n
)=H2(√n)∪RH2(√n)∪SH2(√n)∪RSH2(√n),
H2(√n)= 〈S2〉∗〈RS2R〉∗〈RSRS2n−1〉.

(2.1)

The elements of H2(
√
n) are characterized by the property that the sums of the expo-

nents of R and S are both even.

(ii) Let n > 3 square-free integer. The normal subgroup H2(
√
n) is the free product

of three infinite cyclic groups.

Also

H
(√
n
)
/H2(√n)� C2×C2,

H
(√
n
)=H2(√n)∪RH2(√n)∪SH2(√n)∪RSH2(√n),
H2(√n)= 〈S2〉∗〈RS2R〉∗〈RSRS−1〉.

(2.2)

The elements of H2(
√
n) can be characterized by the requirement that the sums of the

exponents of R and S are both even.

Proof. Weuse the Reidemeister-Schreier process to find a presentation ofH2(
√
n),

[5]. We add the relation X2 = 1 to the presentation ofH(
√
n). This gives a presentation

of H(
√
n)/H2(

√
n) the order of which is the index. We have

H
(√
n
)
/H2(√n)= 〈R,S;R2 = S2 = (RS)2 = 1

〉= C2×C2. (2.3)
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Thus |H(√n) :H2(
√
n)| = 4. Now we choose {I,R,S,RS} as a Schreier transversal for

H2(
√
n). Then we can form all possible products

SIR = IRR−1 = I, SIS = ISS−1 = I, SR2 = RRI = I,
SRS = RS(RS)−1 = I, SSR = SR(RS)−1 = SRS−1R,

SS2 = SSI = S2, SRSR = RSR(S)−1 = RSRS−1, SRS2 = RS2R.
(2.4)

Since (RSRS−1) = SRS−1R, we get x1 = S2, x2 = RS2R, and x3 = RSRS−1 as the gen-

erators of H2(
√
n). Clearly the elements of H2(

√
n) satisfy the requirements of the

theorem, that is, the sums of the exponents of R and S are both even for each ele-

ment. Note that we have S−1 = S3, S−1 = S5 for n = 2, n = 3, respectively. Using the

Reidemeister rewriting process, we get the relations

τ(IRRI)= τ(RR)= SIR ·SR2 = I,
τ(RRRR)= SIR ·SR2 ·SIR ·SR2 = I,

τ
(
SRRS−1

)= SIS ·SSR ·SRSR ·S−1IS = ISRS−1RRSRS−1 = I,
τ
(
RSRRS−1R

)= SIR ·SRS ·SRSR ·SSR ·S−1RS ·SR2 = IIRSRS−1SRS−1RII = I.
(2.5)

Therefore there are no nontrivial relations and H2(
√
n) is the free product of three

infinite cyclic groups generated by x1,x2, and x3. As each of R,S, and T goes to

elements of order 2, they have the following permutation representations:

R �→ (1 2)(3 4), S �→ (1 3)(2 4), T �→ (1 4)(2 3). (2.6)

By the permutation method (see [4, 7]), the signature of H2(
√
2) is (g;2,2,∞,∞) =

(g;2(2),∞(2)) and the signature ofH2(
√
3) is (g;3(2),∞(2)). Since the signature of all the

Hecke groups H(
√
n), n > 3 square-free integer, is (0;2,∞;1), we find the signature

of H2(
√
n), n > 3 square-free integer, as (g;∞(2);2). Now by the Riemann-Hurwitz

formula, we have g = 0 in all cases. Hence H2(
√
n), n > 3 square-free integer, is

isomorphic to the free product of three Z’s and H2(
√
2) is isomorphic to the free

product of Z and two finite cyclic groups of order 2 and H2(
√
3) is isomorphic to the

free product of Z and two finite cyclic groups of order 3.

Theorem 2.2. Let m be a positive odd integer. Then Hm(
√
2)=H(√2).

Proof. Teh proof is clear as the quotient is trivial.

Theorem 2.3. Let m be a positive integer such that m≡ 2 mod4. Then Hm(
√
2) is

the free product of the infinite cyclic group Z and m finite cyclic groups of order two.

Proof. It is easy to show that the quotient group is isomorphic to the dihedral

group Dm of order 2m. The permutation representations of R,S, and T are

R �→ (1 2)(3 4)···(2m−1 2m),

S �→ (2 3)(4 5)···(2m 1),

T �→ (1 3 5···2m−1)(2m 2m−2···4 2).
(2.7)



706 N. YILMAZ AND İ. N. CANGÜL

ThenHm(
√
2) has signature (0;2(m),∞,∞), that is,Hm(√2) is the free product given

in the statement of the theorem. If we denote the normal subgroup by Wm(
√
2), we

have Wm(
√
2)� Z∗C2∗···∗C2︸ ︷︷ ︸

m times

.

We have already proved that

Hm
(√

2
)=



H
(√

2
)

ifm is odd,

Wm
(√

2
)

ifm≡ 2 mod4.
(2.8)

Because of this we are only left to consider the case wherem is a multiple of four.

Now let m = 4k, k ∈ N. Then in H(
√
2)/Hm(

√
2) we have the relations r 2 = s4 = 1,

where r and s are the images of R and S, respectively, under the homomorphism of

H(
√
2) to H(

√
2)/Hm(

√
2). These relations imply that Hm(

√
2) is a free group.

Theorem 2.4. The normal subgroupH3(
√
3) is the free product of four cyclic groups

of order 2. Also
H
(√

3
)
/H3(√3)� C3,

H
(√

3
)=H3(√3)∪SH3(√3)∪S2H3(√3),

H3(
√
3)= 〈R〉∗〈S3〉∗〈SRS5〉∗〈S2RS4〉.

(2.9)

Proof. The proof is similar to that of Theorem 2.1.

The following results are easy to see.

Theorem 2.5. Let m≡±1 mod6. Then Hm(
√
3)=H(√3).

Theorem 2.6. Let m≡±2 mod6. Then Hm(
√
3)=Wm(

√
3).

Theorem 2.7. Let m≡ 3mod6. Then Hm(
√
3)=H3(

√
3).

Therefore the only case left is that when m is divisible by 6. A similar discussion

will show that Hm(
√
3) is free in this case.

Theorem 2.8. The normal subgroup H3(
√
n), n> 3 square-free integer, is the free

product of three cyclic groups of order 2 and an infinite cyclic group. Also

H
(√
n
)
/H3(√n)� C3,

H
(√
n
)=H3(√n)∪SH3(√n)∪S2H3(√n),

H3(√n)= 〈R〉∗〈S3〉∗〈SRS−1〉∗〈S2RS−2〉.
(2.10)

Proof. If we add the relation X3 = 1 to the presentation of H(
√
n) we have

H
(√
n
)
/H3(√n)= 〈R,S;R2 = 1, X3 = 1

〉= 〈S;S3 = 1
〉� C3. (2.11)

Thus |H(√n) :H3(
√
n)| = 3. Let {I,S,S2} be a Schreier transversal for H3(

√
n). Then

all the possible products are

SIR = IRI = R, SIS = ISS−1 = I, SSR = SRS−1,
SS2 = SSS−2 = I, SS2R = S2RS−2, SS3 = S3I = S3.

(2.12)
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Therefore, H3(
√
n) is generated by x1 = R, x2 = S3, x3 = SRS−1, and x4 = S2RS−2.

Using the Reidemeister rewriting process, we get the relations

τ(IRRI)= τ(RR)= SIR ·SR2 = R2 = I,
τ
(
SRRS−1

)= SIS ·SSR ·SSR ·S−1IS = ISRS−1SRS−1I = I,
τ
(
SSRRS−1S−1

)= SIS ·SS2 ·SS2R ·SS2R ·S−1S2 ·S−1IS = IIS2RS−2S2RS−2II = I.
(2.13)

The permutation representations of R,S, and T are

R �→ (1)(2)(3), S �→ (1 2 3), T �→ (1 2 3). (2.14)

Then H3(
√
n) has the signature (0;2(3),∞;1), that is, H3(

√
n) is the free product

given in the statement of the theorem.

Theorem 2.9. Let m be a positive odd integer and n > 3 is a square-free integer.

Then

Hm
(√
n
)� Z∗C2∗···∗C2︸ ︷︷ ︸

m times

. (2.15)

Proof. Since H(
√
n)/Hm(

√
n) = 〈S;Sm = I〉 � Cm, the permutation representa-

tions of R,S, and T are

R �→ (1)(2)···(m), S �→ (1 2···m), T �→ (1 2···m). (2.16)

By the permutation method, we find the signature of Hm(
√
n) as (0;2(m),∞;1).

Therefore, Hm(
√
n) is isomorphic to the free product of m cyclic groups of order 2

and an infinite cyclic group.

Letm be a positive even integer and n> 3 is a square-free integer. Then we have

H
(√
n
)
/Hm

(√
n
)= 〈R,S;R2 = Sm = (RS)m = I〉, (2.17)

that is, the factor group is the group whose signature (2,m,m). If m = 2, we have

already seen that H2(
√
n) � Z∗Z∗Z which is a normal subgroup of genus 0, then

H(
√
n)/H2(

√
n) is a group of automorphisms of a sphere with two boundary compo-

nents and two punctures. Ifm= 4, we have a normal subgroup acting on the Euclidean

plane. Because, in this case the factor group (2,4,4) is a group of infinite order and

1/4+1/4 = 1/2. If m ≥ 6 and even, the factor group (2,m,m) is a group of infinite

order and 1/m+1/m= 2/m< 1/2. Therefore, in this case we have a normal subgroup

acting on the hyperbolic 2-space (i.e., upper half plane).
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