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Abstract. LetΠ= (P,L,I) be a finite projective plane of ordern, and letΠ′ = (P ′,L′, I′) be
a subplane of Π with orderm which is not a Baer subplane (i.e., n≥m2+m). Consider the
substructure Π0 = (P0,L0, I0) with P0 = P\{X ∈ P |XIl, l∈ L′}, L0 = L\L′, where I0 stands
for the restriction of I to P0×L0. It is shown that everyΠ0 is a hyperbolic plane, in the sense
of Graves, if n≥m2+m+1+

√
m2+m+2. Also we give some combinatorial properties of

the line classes in Π0 hyperbolic planes, and some relations between its points and lines.
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1. Introduction. In this paper, points are denoted by capital letters (usually P,Q),
lines are denoted by lower-case letters (usually l), sets � and � denote the sets of

points and lines, respectively, � denotes the incidence relation on points and lines

(therefore � ⊂ �×�). The triple (�,�,�) is called a geometric structure, if �∩� =Φ.
If (P,l) ∈ � then P is on l or l passes through P and it is denoted by P ∈ l or P�l.
Similarly if (P,l) ∉ � then P is not on l and it is denoted by P ∉ l. If � and � are finite

sets, the geometric structure (�,�,�) is called finite.

It is well known that there are alternative systems of axioms for hyperbolic spaces.

For instance, Graves [3] introduced the following definition (see [1, 2, 5, 6]).

A finite hyperbolic plane is a finite geometric structure (�,�,�) such that

(G1) Two distinct points lie on one and only one line.

(G2) There are at least two points on each line.

(G3) Through each point X not on a line l there pass at least two lines not meeting

(parallel to) l.
(G4) There exist at least four points, no three of which are collinear.

(G5) If a subset of � contains three non-collinear points and all the lines through

any pair of its points, then this subset contains all points of �.

In this paper, we construct a class of hyperbolic planes using the non-Baer subplanes

of the projective planes of finite order. Thus, in a sense, we find a connection between

the non-Baer subplanes of finite projective plane and some hyperbolic planes from

that plane by certain deletion.

2. Construction of finite hyperbolic spaces Π0. Let Π = (�,�,�) be a finite pro-

jective plane of order n with a non-Baer subplane Π′ = (�′,�′,�′) of orderm. Then it

is well known that

n≥ (m2+m). (2.1)
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Let � = {X ∈ � | X ∈ l, l ∈ �′} and consider the incidence structure Π0 = (�0,�0,�0)
obtained by removing all lines ofΠ0 with incidence points. Thus,�0 =�\�,�0 =�\�′,
�0 = �∩�0×�0.

The following theorem is an immediate consequence of the construction of Π0.

Theorem 2.1. The following properties are valid:

(i) Two distinct points of Π0 lie on one and only one line of Π0.
(ii) There are exactly n2+n−m2−m lines in Π0.
(iii) There are exactly (n−m)(n−m2) points in Π0.
(iv) At least n−m2−m points lie on any line of Π0.

A line which contains exactly one point of Π0 is said to be a tangent line and a line

which contains no points of Π0 is called an exterior line.

Theorem 2.2. Any line of Π0 contains exactly either n−m2−m points or n−m2

points.

Proof. Let l0 ∈ �0 and l denotes the extended line of l0 in Π. Then l is either a
tangent or an exterior line. If l is an exterior line, then l hasm2+m+1 deleted points.
Thus l0 has n−m2−m points. Otherwise l must be a tangent line and therefore it

hasm2+1 deleted points. Thus, if l is a tangent line, then it has n−m2 points.

It is trivial fromTheorem 2.1(i) that, inΠ0, (G1) is satisfied. Any line ofΠ0 contains at

least n−m2−m points, by Theorem 2.1(iv). By (G2), it must be greater than 2, that is,

n−m2−m≥ 2. (2.2)

Notice that (2.2) is stronger than (2.1).

Hence, any line l of Π0 has at least m2+1 deleted points, in Π0 there are at least

m2+1 parallel lines through any point X, X ∈ l. Since m ≥ 2, through each point X
not on a line l there pass at least five lines parallel to l. Hence, Π0 satisfies properties

(G1), (G2), and (G3), if (2.2) holds. That existence of four points no three of which are

collinear is obvious from the definition of Π0.

Finally, we investigate when the last axiom is satisfied inΠ0. Let�⊂�0 contain three

non-collinear points A,B,C . We consider the lines AB,AC , and BC . Then � contains all

of the points on the lines AB,AC , and BC, and all points on the lines through pairs of

distinct points of �. Each of the lines has at least n−m2−m points in �. Thus, there

are at least n−m2−m lines in Π0 through A and meeting the line BC . � contains at

least, (n−m2−m)(n−m2−m−1)+1 points, since each of the above lines contains

at least n−m2−m−1 points other than the point A. Now, let X be a point of Π0 not

on a line that joins the point A to a point of BC . X is in � if there exists a line which

contains X and at least two of the above (n−m2−m)(n−m2−m−1)+1 points. This
is possible if (n−m2−m)(n−m2−m−1)+1≥n+2, since X is on exactly n+1 lines
and these lines contains all points of Π0. This inequality is valid when

n≤m2+m+1−
√
m2+m+2, (2.3)

or

n≥m2+m+1+
√
m2+m+2. (2.4)
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But, equations (2.2) and (2.3) cannot be true at the same time. Therefore (2.3) is elim-

inated. Thus the following theorem is obtained.

Theorem 2.3. Let Π = (�,�,�) be a finite projective plane of order n with a non-
Baer subplane Π′ = (�′,�′,�′) of order m. Then the substructure Π0 = (�0,�0,�0),

�0 =�\{X ∈� |X ∈ l, l∈�′}, �0 =�\�′, �0 = �∩(�0×�0
)

(2.5)

is a hyperbolic plane, in the sense of Graves, if

n≥m2+m+1+
√
m2+m+2. (2.6)

3. Some properties of Π0. The following theorem is an immediate consequence of

the construction of Π0.

Theorem 3.1. (i) Through any point of Π′ there pass n−m lines in Π0.
(ii) There are exactly (m2+m+1)(n−m) tangent lines in Π0.

(iii) There are exactly n2+n+1−(m2+m+1)(n+1−m) exterior lines of Π0.
(iv) Π0 is not regular.

(v) Through any points of Π0 there passm2+m+1 tangent lines.
(vi) Through any points of Π0 there pass n−m2−m exterior lines.

We define the following line classes;

Ct =
{
l∈� | l ∉�′, P ∈ l, P ∈�′}, Ce =

{
l∈� | l ∉�′, P ∉ l, ∀P ∈�′}, (3.1)

which consist of tangent and exterior lines of Π0, respectively. We call Ct as tangent

lines class, Ce as exterior lines class.

Theorem 3.2. The line of Π0 which is contained in Ct or Ce contains at most n−4
or n−6 points, respectively.

Proof. It is clear, if the reality of m ≥ 2 is used with the definition of Ct and Ce.

In the next section, we give some combinatorial properties of the line classes in Π0

by using the technique of [4].

4. Parallel line classes of Π0 hyperbolic planes. A class of the lines every two

of which are parallel is called parallel line class. All lines of Π0 passing through any

deleted point P of Π form a parallel line class. This parallel line class is called parallel

class determined by P or parallel class of type (P). A line together with all lines passing

through a deleted pointQwhich is not on l and cutting l in the deleted points inΠ form

a parallel line class. But many parallel classes can be found containing this parallel

line class. The intersection of all parallel classes containing the mentioned class of

lines is called parallel class determined by l and Q, or parallel class of type (l,Q).
As, there might be other parallel classes apart from the above ones, it is convenient

to call the parallel classes of type (P) and (l,Q) as obvious parallel classes.

Theorem 4.1. There are n or n−m lines in a parallel line class of type (P) of Π0.
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Proof. The necessary and sufficient condition for a point P to be a deleted point

is that either P ∈�′ or P ∉�′, P�l∈�′. Therefore,
(i) if P ∈�′, then the number of lines of �0 passing through P is n−m. As all of

these n−m lines pass through the deleted point P, |(P)| =n−m.

(ii) If P ∉ �′, P�l ∈ �′, then the number of lines of Π0 passing through a deleted

external point is the required number. n+1 lines pass through P except one, none of

these lines do not belong to Π′. Therefore, the number of lines of Π0 passing through

P in Π is n.

Theorem 4.2. We denote the minimum number of lines belonging to the parallel

class of (l,P) type by min|(l,P)|. Then,

min
∣∣(l,p)

∣∣=




m2+1 if P ∉�′, l∈ Ct or P ∈�′, l∈ Cd,

m2+m+1 if P ∉�′, l∈ Cd,

m2−m+1 if P ∈�′, l∈ Ct .

(4.1)

Proof. Let l be any line of Π0. Then either l ∈ Ct or l ∈ Cd, since �0 = Ct ∪Cd,
Ct∩Cd = Φ.
(i) If l∈ Ct , then

(a) if P ∈ �′, the number of deleted points on l is m2+1. Furthermore, m+1

lines pass through P in Π′ and these lines are the deleted lines. Therefore, together

with the line l at leastm2+1−(m+1)+1=m2−m+1 lines belong to (l,P) type.
(b) If P ∉ �′, the number of deleted points on l is m2+1. If we join this m2+1

points with P not incident on l, then the obtainedm2+1 lines meet l at deleted points
in Π. Since one of these lines is a deleted line, there are at leastm2+1 (l,P)-type lines.
(ii) If l∈ Cd, then

(a) if P ∉�′, thenm2+m+1 points are deleted from l. Join these points to P ∉l.
The m2 +m+ 1 lines which are obtained by joining P ∉ l to deleted points from l
meets l on deleted points in Π. Since one of these lines is a deleted line, together with

l at leastm2+m+1 lines are in type (l,P).
(b) If P∈�′, then there arem+1 lines passing through P in Π′. For this, there are

m+1 deleted lines among the m2+m+1 lines obtained by joining P to the deleted

m2 +m+ 1 points from l. Hence, together with l there are at least m2 + 1 lines in

type (l,P).

Theorem 4.3. The line l∈ Ct of Π0 belongs tom2+1 (P)-type andm(m+1)(n−m)
+n (l,P)-type parallel classes.

Proof. Since l∈ Ct , the intersection of l and Π′ has one and only one point. Since

m+1 lines pass through this point, the remainingm2 lines meet l on different points.
Since every deleted point corresponds to a parallel line class of type (P) and l has
m2+1 deleted points, line l0 belongs tom+1(P)-type parallel class.
On the other hand, the number of deleted points which is not on l is,

(
m2+m+1)(n+1−m)−m2−1=m(m+1)(n−m)+n. (4.2)

Therefore line l belongs tom(m+1)(n−m)+n(l,P)-type parallel class.
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Now we give a theorem which can be proved like the previous theorem.

Theorem 4.4. The line l ∈ Cd of Π0 belongs to m2 +m+ 1(P)-type and (m2 +
m+1)(n−m)(l,P)-type parallel classes.

Theorem 4.5. Let �0 denotes the set of lines of Π0, i be any parallel line class
type and fi(l), l∈�0 be the number of parallel line classes type i. Then the following
equations are valid:

f(P)(l)+f(l,P)(l)=
(
m2+m+1)(n−m+1),

∑

l∈�

f(P)(l)=
(
m2+m+1)(n+1)(n−m),

∑

l∈�

f(l,P)(l)=
(
m2+m+1)(n−m)(n2−m2+n).

(4.3)

Proof. Any line l∈�0 belongs to a parallel line class of type (P), as much as the

number of deleted points from l and type (l,P) as much as the number of deleted

points from Π which is not on l. Therefore, there are parallel line classes of type (P)
or type (l,P) as much as the number of deleted points from Π. Since the number of

deleted points from Π is (m2+m+1)(n+1−m), we obtain

f(P)(l)+f(l,P)(l)=
(
m2+m+1)(n−m+1); ∀l∈�0. (4.4)

The sum
∑
l∈�f(P)(l) is the number of total flags which are obtained from deleted

points and the lines of Π0 passing through these deleted points. This sum can be

written as follows:

∑

l∈�0

f(P)(l)=
∑

l∈�0
P∈�′

f(P)(l)+
∑

l∈�0
P∉�′ deleted points

f(P)(l). (4.5)

Therefore,

∑

l∈�0

f(P)(l)= |�′|(n−m)+(|�|−|�′|)n= (m2+m+1)(n−m)(n+1). (4.6)

Total anti-flag numbers of deleted points and lines of Π0 not passing through these

points is
∑
l∈�0

f(l,P)(l). Hence,
∑

l∈�0

f(l,P)(l)=
∑

l∈Ct
f(l,P)(l)+

∑

l∈Cd
f(l,P)(l)

= |Ct|
[(
m2+m+1)(n−m)+m]+|Cd|

(
m2+m+1)(n−m)

= (m2+m+1)(n−m)(n2−m2+n).

(4.7)

5. Isomorphism. Let Π be a projective plane of order n and Π′, Π′′ be subplanes of
Π with orderm, and n ≥m2+m+1+√m2+m+2. Then according to Theorem 2.1,

we can construct the hyperbolic planesΠ′0,Π
′′
0 by deleting, respectively, the lines ofΠ′,

Π′′ together with incident points. Thenwe can give the following obvious consequence.



762 BASRI CELIK

Consequence 5.1. If there exists a collination of Π which transforms Π′ to Π′′,
then the hyperbolic planes Π′0 and Π

′′
0 are isomorphic.

6. Some open questions. In this paper, it is shown that a structure obtained by

deletion of a subplane from a projective plane of finite order is a hyperbolic plane,

when the order of the subplane is suitably small relative to the order of superplane

(see Theorem 2.3). But now we give some outstanding problems.

(1) When is a hyperbolic plane with appropriate order restriction a subplane-deleted

projective plane?

(2) Is there a way to distinguish the subplane deleted Desarguesian hyperbolic plane

from all other such hyperbolic planes?

(3) Is there a way to distinguish subplane-deleted translation hyperbolic planes from

other planes?
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