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Abstract. Using ergodicity of functions, we prove the existence and uniqueness of
(asymptotically) almost periodic solution for some nonlinear differential equations. As
a consequence, we generalize a Massera’s result. A counterexample is given to show that
the ergodic condition cannot be dropped.
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1. Introduction. The asymptotically almost periodic functionswere first introduced

in [10, 11] by Fréchet. In the modern theory of differential (integral) equations, many

authors [5, 9, 12, 13, 14, 25] apply the asymptotic property of the functions to deter-

mine the existence of almost periodic solutions. Along with the development of such

equations as evolution partial differential equations, retarded functional differential

equations, and so forth, where the phase spaces are infinite, the theory of Banach-

valued (asymptotically) almost periodic functions has been developed [2, 18, 20, 21,

22, 23]. Some techniques in functional analysis and harmonic analysis are applied

to such equations, for example, [3, 24] apply spectrum theory to get almost periodic

solutions for some linear abstract evolution differential equations.

Let X be a Banach space. In this paper, we apply ergodicity to get asymptotically

almost periodic solutions of the following nonlinear differential equation:

dx
dt

=A(t,x)+f(t), (1.1)

where

A :R×X �→X, f :R �→X. (1.2)

What motivates us is recent development of (1.1). For x,y ∈X, define

[x,y]= lim
h→0+

1
h
(‖x+hy‖−‖x‖). (1.3)

In the case X =Rn, [16] assumes the following conditions:

(K1) A(t,x) is a continuous mapping;
(K2) f(t) is a continuous mapping and ‖f(t)−A(t,0)‖ ≤ N for all t ∈ R, where

N > 0;
(K3) there exists a function p ∈ �(R), the space of bounded continuous functions

on R, such that for some positive constants δ, γ, and T0, the following two
properties hold:

(1) P(t)≤−δ for t ∈ (−∞, t0],
(2) limt→∞

∫ t
s p(u)du/(t−s)=−γ (uniformly for s > T0);
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(K4) for all (t,x,y)∈R×Rn×Rn

[
x−y,A(t,x)−A(t,y)

]≤ p(t)‖x−y‖. (1.4)

Note that (K4) is a strong dissipativity condition.

The main result in [16] is: suppose that conditions (K1)–(K4) are satisfied. Suppose,

furthermore, that A(t,x) is almost periodic in t uniformly for x ∈Rn and f is almost
periodic. Then equation (1.1) has a unique almost periodic solution on R.
[1] extended the result in [16] by allowing X to be a Banach space and instead of

(K3), using the following equivalent condition:

(H3) there exist a function p ∈ �(R) and positive constants δ, δ1, T0, and T1 such
that

p(t)≤−δ, (
t ∈ (−∞,T0

])
p(t)≤−δ1,

(
t ∈ [T1,+∞)). (1.5)

Massera [19] considered the following special case of (1.1) in the case X =Rn:

dx
dt

=A(t)x+f(t), (1.6)

and gave the statement: let the matrix A(t) in (1.6) be real almost periodic such that
aij = 0 for all i > j, then (1.6) has a unique solution for every f ∈ �(R)n if and only
if the mean value limT→∞

∫ T
−T aii(t)dt/2T 
= 0 for 1≤ i≤n; in this case, if f is almost

periodic, then the unique bounded solution of (1.6) is also almost periodic.

Note that, the Massera’s result is not a consequence of [1, 16] because in general,

aii do not satisfy (H3) or (K3), i = 1,2, . . . ,n. For example, g(t) = −1/2+ sint, then
limT→∞

∫ T
−T g(t)dt/2T =−1/2, but obviously g does not satisfy either (H3) or (K3).

In this paper, we unify all the results above by ergodicity (for the definition, see

Definition 3.1). In Section 2, we show some results on asymptotically almost periodic

functions. We then apply ergodicity to investigate asymptotically almost periodic so-

lutions of (1.1) in Section 3. (K3) and (H3) are regarded novel assumptions in [16] and

[1], respectively. We point out that both conditions (K3) and (H3) are special cases of

ergodicity. At the same time, we also point out that Massera’s result does not depend

on the almost periodicity, but the ergodicity. The almost periodicity is also a special

case of ergodicity. Thus, as a corollary we get result of [1] in Section 3 and generalize

the result of [19] in Section 4, respectively. Finally, a counterexample is given to show

that the ergodic condition cannot be dropped.

2. Vector-valued asymptotically almost periodic functions. In this section, we

present some results on asymptotically almost periodic functions. We apply the re-

sults to get asymptotically almost periodic solutions in Section 3.

Let Ω be a closed subset of X, let J ∈ {R+,R}, and let �(J ×Ω,X) (respectively,
�(J,X)) be the space of bounded, continuous functions from J×Ω (respectively, J) to
X with supremum norm. When X = C, we will omit X in our notations. For example,

we write �(R) for �(R,C).
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Definition 2.1. A subset P of J is said to be relatively dense in J if there exists a
number l > 0 such that

[t,t+l]∩P 
= ∅ (t ∈ J). (2.1)

Definition 2.2. A function f ∈ �(R×Ω,X) is said to be almost periodic in t ∈ R
and uniform on compact subsets of Ω if for every ε > 0 and every compact subset K
of Ω, there exists a relatively dense subset P of R such that

∥∥f(t+τ,x)−f(t,x)
∥∥< ε (τ ∈ P, t ∈R, x ∈K). (2.2)

Denote by ��(R×Ω,X) all such functions.

For f ∈ �(J×Ω,X) and s ∈ J, the translate of f by s is the function Rsf(t,x) =
f(t+s,x), t ∈ J and x ∈ Ω. Then f is in ��(R×Ω,X) if and only if {Rsf : s ∈ R} is
relatively compact in �(R×Ω,X).

Definition 2.3. A function f ∈ �(J ×Ω,X) is said to be asymptotically almost
periodic in t ∈ J and uniform on compact subsets of Ω if for every ε > 0 and every
compact subset K of Ω, there exist a relatively dense subset P and a bounded subset
C of J such that

∥∥f(t+τ,x)−f(t,x)
∥∥< ε (τ ∈ P, t,t+τ ∈ J \C, x ∈K). (2.3)

Denote by ���(J×Ω,X) all such functions.

One sees that the asymptotically almost periodicity will reduce to the almost peri-

odicity if C =∅ and J =R.
Theorem 2.4. An f ∈ ���(J ×Ω,X) is uniformly continuous on J ×K and the

range f(J×K) is relatively compact.

Proof. For the case J = R+, this is [22, Lemma 3.2]. For compact K, there ex-
ists a natural identification between �(J ×K,X) and �(J,�(K ×X)); this identifies
���(J×K,X) and ���(J,�(K × X)). Note that if f ∈ ���(R,X) then f |R+ ∈
���(R+,X) and f |R− ∈ ���(R−,X). So the theorem is a consequence of [22,

Lemma 3.2].

As usual, �0(J×Ω,X) consists of the functions f ∈�(J×Ω,X) that vanish at infin-
ity. That is, for ε > 0 there exist a bounded subset C of J such that

∥∥f(t,x)∥∥< ε, (t ∈ J \C, x ∈K). (2.4)

Remark 2.5. (i) ���(J) was originally introduced in [10, 11] by Fréchet in the
case J =R+. It is well known (cf. [22, Theorem 3.4]) that f ∈���(R+,X) if and only
if f = g|R+ +ϕ, where g ∈��(R,X) and ϕ ∈�0(R+,X).
(ii) There is a difference of notation, as well as of meaning, between �0(R,X) here

and C+0 (R,X) in [24] by Ruess and Vu. Here, ϕ ∈ �0(R,X) if and only if ‖ϕ(t)‖ → 0

as |t| →∞; in [24] ϕ ∈ C+0 (R,X) if and only if ‖ϕ(t)‖→ 0 as t→∞.
(iii) This brings a difference in defining asymptotically almost periodicity on R be-

tween here and [24]. In [24], f is asymptotically almost periodic on R if and only
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if f = g+ϕ, where g ∈ ��(R,X) and ϕ ∈ C+0 (R,X); the function f will lose some
properties (e.g., ergodicity) that an asymptotically almost periodic function onR+ has.
However, if g ∈��(R×Ω,X) andϕ ∈�0(R×Ω,X), then the function f = g+ϕ satis-

fies the conditions in Definition 2.3; conversely Theorem 2.6 states that the function

in Definition 2.3 will have a unique such decomposition. Definition 2.3 is more natural

and consistent.

Theorem 2.6. A function f ∈ �(J×Ω,X) is asymptotically almost periodic if and

only if there is a unique function g ∈��(R×Ω,X) such that f −g|J×K ∈ �0(J×Ω,X)
for every compact subset K of Ω.

For J =R+ this is [22, Theorem 3.4]. For the general case, see [28, Theorem 11 and

Remark 12(2)].

Lemma 2.7 generalizes [7, Theorem 2.8] from finite-dimensional space Cn to a Ba-

nach space. The proof is similar; so we omit it.

Lemma 2.7. If g ∈��(R×Ω,X) and G ∈��(R,Ω), then the composition g(·,G(·))
is in ��(R,X).

Theorem 2.8. If f ∈ ���(J ×Ω,X) and F ∈ ���(J,Ω), then the composition

f(·,F(·)) is in ���(J,X).

Proof. We show the case J = R only. Similarly, one shows the case J = R+. Since
F(J) is relatively compact, we may assume that Ω is compact. By assumptions,

f = g+ϕ, F =G+Φ, (2.5)

where g ∈��(R×Ω,X), G ∈��(R,X), ϕ ∈�0(R×Ω,X), and Φ ∈�0(R,X). So

f
(
t,F(t)

)= g
(
t,G(t)

)+[f (t,F(t))−g
(
t,G(t)

)]
= g

(
t,G(t)

)+[g(t,F(t))−g
(
t,G(t)

)+ϕ
(
t,F(t)

)]
.

(2.6)

By Lemma 2.7, g(t,G(t)) ∈ ��(R,X). Obviously ϕ(t,F(t)) ∈ �0(R,X). To prove the
theorem, we need to show that the function g(t,F(t))−g(t,G(t)) is in �0(R,X). Note
that F(R) ⊃ G(R) (see [27, Lemma 1.3] or [26]). Since g is uniformly continuous on
R×Ω and Φ ∈�0(R,X), for ε > 0 there exists T > 0 such that

∥∥g(t,F(t))−g
(
t,G(t)

)∥∥< ε
(|t|> T

)
. (2.7)

The proof is complete.

Lemma 2.9. Suppose that both f and f ′ are in ���(J,X). That is, f = g+ϕ and

f ′ = α+β with g,α∈��(R,X) and ϕ,β∈ �0(J,X). Then g and ϕ are differentiable

so that

g′ =α, ϕ′ = β. (2.8)

For the proof, see [9, Theorem 9.2].

As a consequence of Theorem 2.8 and Lemma 2.9, one gets the following theorem.
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Theorem 2.10. Let f ∈���(J×Ω,X), that is, f = g+ϕ, where g ∈��(R×Ω,X)
and ϕ ∈�0(J×Ω,X). Consider the following equations:

dx
dt

= f(t,x), (2.9)

dy
dt

= g(t,y). (2.10)

If (2.9) has an asymptotically almost periodic solution F , then the almost periodic com-

ponent of F is a solution of (2.10).

3. Ergodicity and solutions of (1.1). The ergodicity of a scalar function was dis-

cussed in [8]. The ergodicity of a vector-valued function was defined in [4]. Now we

present it in the following definition.

Definition 3.1. A function f ∈�(J) is said to be ergodic if there exists a number
M(f)∈ C (is called mean of f ) such that

lim
T→∞

1
T −a

∫ T

a
f (t+s)dt =M(f) (3.1)

uniformly with respect to s ∈R, where a= 0 when J =R+ and a=−T when J =R.
An ergodic function in Eberlein’s meaning [8] and Basit’s meaning [4] is required to

be uniformly continuous on J. But we do not need the requirement here.
Many function spaces are ergodic, for example, the space of almost periodic func-

tions ��(R) [7], the space of asymptotically almost periodic functions ���(R) [8],
and the space of weakly almost periodic functions ���(R) [8].
Note that (3.1) is equivalent to

lim
T→∞

1
T −a

∫ T+s

a+s
f (t)dt =M(f) (3.2)

uniformly with respect to s ∈ J. That is, for ε > 0 there exists T > 0 such that whenever
a,b ∈ J and b−a> T , then

∣∣∣∣ 1
b−a

∫ b

a
f (t)dt−M(f)

∣∣∣∣< ε. (3.3)

As we point out in the introduction that (K3) and (H3) are all special cases of ergod-

icity. For, let p ∈ (H3) and let −γ =max{−δ,−δ1} then p(t)≤−γ for all t ∈R except
a finite interval. Therefore, there exist a real ergodic function p1 with M(p1) = −γ
such that p(t)≤ p1(t) for all t ∈R. So the following condition is weaker than (H3).
(H′3) There exists a real ergodic function p with M(p)=−γ < 0.

Lemma 3.2. Let p be real, ergodic with M(p) 
= 0. Then the following defined func-

tions are bounded:

(1) in the case M(p) <−γ < 0

g1(t)=
∫ t

a
e
∫ t
s p(u)duds (t ∈ J), (3.4)

g2(t,s)= e
∫ t
s p(r)dr (t,s ∈R, t ≥ s), (3.5)
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(2) in the case M(p) > γ > 0

g(t)=−
∫∞
t
e
∫ t
s p(u)duds (t ∈ J), (3.6)

where a= 0 when J =R+ and a=−∞ when J =R.

Proof. We show (3.4) for the case J =R+ only. Similarly, one shows the lemma for
other cases.

Since p is ergodic with M(p) <−γ < 0, by (3.3) there exist T > 0 such that for any
a,b ∈R+, b−a> T , we have

∫ b

a
p(u)du<−r(b−a). (3.7)

For t ∈R+ there is a positive integern such that (n−1)T < t ≤nT . Let B = exp{‖p‖T}.
Then

g(t)=
∫ t

0
e
∫ t
s p(u)duds ≤

∫ nT

0
e
∫ t
s p(u)duds

=
∫ nT

0
e
∫nT
s −∫nTt p(u)duds ≤

∫ nT

0
e
∫nT
s p(u)du+‖p‖T ds

= B
[n−1∑

i=1

∫ iT

(i−1)T
+
∫ nT

(n−1)T
e
∫nT
s p(u)duds

]

≤ B
[n−1∑

i=1

∫ iT

(i−1)T
e−γ(nT−s) ds+

∫ nT

(n−1)T
e‖p‖T ds

]

≤ B
[n−1∑

i=1
Te−γ(n−i)T +TB

]
≤ BT

[ ∞∑
i=1

e−riT +B
]
<∞.

(3.8)

The proof is complete.

As the proof of Lemma 2.3 in [16], one shows the following lemma.

Lemma 3.3. Suppose that (K4) is satisfied. Let u and v be solutions of (1.1) on an

interval [a,b]. Then

∥∥u(t)−v(t)
∥∥≤ ∥∥u(a)−v(a)

∥∥e∫ ts p(r)dr ∀t ∈ [a,b]. (3.9)

Theorem 3.4. Suppose that (K1), (K2), (H ′
3), and (K4) are satisfied. Let

Γ =max{1,∥∥g1∥∥,∥∥g2∥∥}, (3.10)

where g1 and g2 are as in Lemma 3.2(1). Then (1.1) has a unique bounded solution u
on J. (In the case J = R+ the solution u depends on initial value.) Furthermore, if v is

any solution of (1.1), then ‖u(t)−v(t)‖→ 0 as t→∞.

Proof. We proof for the case J =R, similarly one shows the case of J =R+.
If A(t,0) 
= 0 for t ∈ R, we replace A(t,x) and f(t) by A(t,x)−A(t,0) and f(t)+

A(t,0), respectively. We assume, henceforth, thatA(t,0)= 0 and f(t)≤N for all t ∈R.
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We fix a vector u0 ∈ X and let ‖u0‖ = r0. For each positive integer n we consider the
following Cauchy problem:

x′ =A(t,x)+f(t), x(−n)=u0. (3.11)

Then (3.11) has a unique solution un on [−n,n] (see [15]). We first show that there is
r > 0 such that ∥∥un

∥∥≤ r ∀n. (3.12)

By (K4) we have

D+
∥∥un(t)

∥∥= [un(t),u′n(t)
]= [un(t),A

(
t,un(t)

)+f(t)
]

≤ [un(t),A
(
t,un(t)

)]+[un(t),f (t)
]

≤ p(t)
∥∥un(t)

∥∥+∥∥f(t)∥∥,
(3.13)

where D+‖u(t)‖ denotes the right derivative of ‖u(t)‖. So
∥∥un(t)

∥∥≤ ∥∥un(−n)
∥∥e∫ t−np(r)dr +

∫ t

−n
‖f(t)‖e

∫ t
s p(r)dr ds ≤ Γ(r0+N

)= r . (3.14)

It follows that ‖un(t)‖ ≤ r for all t ∈ [−n, n] and for all n.
Next, we show that the sequence {un} is a uniform Cauchy sequence in every

bounded subset [−h,h] of R. Indeed, let n and m be two positive integers, m ≥ n.
Then un and um are defined on [−n,n]. By (3.9) for t ∈ [−n,n], we have

∥∥um(t)−un(t)
∥∥≤ ∥∥um(−n)−un(−n)

∥∥e∫ t−np(s)ds ≤ 2re
∫ t
−np(s)ds . (3.15)

Let δ < γ. By ergodicity of p, when n is sufficiently large, one has

e
∫ t
−np(s)ds ≤ e−δ(t+n). (3.16)

This implies that {un} is a uniform Cauchy sequence in every bounded subset of R.
Thus its limit is a bounded solution of (1.1).

As the proof of [16], one shows the uniqueness of bounded solution.

The last statement is a consequence of Lemma 3.3. The proof is complete.

Theorem 3.5. Under the assumptions of Theorem 3.4, if A(t,x) ∈ ���(J×Ω,X)
and f ∈ ���(J,X), then the unique bounded solution of (1.1) is also asymptotically

almost periodic.

Proof. Theorem 3.4 has shown the existence and uniqueness of bounded solution

u for (1.1). We need to show that u is asymptotically almost periodic if A(t,x) ∈
���(J×Ω,X) and f ∈���(J,X).
Let S = {u(t) : t ∈ J}. First we show that S is relatively compact in X. That is, for

any sequence {sn} of J, {u(sn)} has a convergent subsequence. If it does not, then
there exists an ε > 0 such that

∥∥u(sn)−u
(
sm
)∥∥≥ ε (3.17)

for all distinct numbers n,m.
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Without loss of generality, we may assume sn → ∞. For any fixed T > 0, let sn =
T +θn. Then θn→∞.
Since A∈���(J×Ω,X) and f ∈���(J,X),

A=G+Φ, f = g+ϕ, (3.18)

where G ∈��(R×Ω,X), g ∈��(R,X) and Φ ∈ �0(J×Ω,X), ϕ ∈ �0(J,X). Note that
the translate set {RsG : s ∈ R} and {Rsg : s ∈ R} are relatively compact. If necessary
by taking a subsequence, we may assume that uniformly RθnG → B on R×K and

Rθng→ h on R, where B ∈��(R×Ω,X), h∈��(R,X), and K is any compact subset
of Ω. Since Φ ∈ �0(J×Ω,X) and ϕ ∈ �0(J,X), for any finite interval [0,T ] we have
uniformly RθnΦ(t,x)→ 0 (0 ≤ t ≤ T , x ∈ K) and Rθnϕ(t)→ 0, t ∈ [0,T ]. Therefore,
for (t,x)∈ [0,T ]×K

RθnA(t,x) �→ B(t,x), Rθnf (t) �→ h(t), (3.19)

uniformly.

Since u is a solution of (1.1), un = Rθnu is a solution of

dy
dt

=A
(
t+θn,y

)+f
(
t+θn

)
. (3.20)

Since B satisfies the same conditions as A, the limit equation

dz
dt

= B(t,z)+h(t) (3.21)

has a unique bounded solution on J. Let u0 be this solution. Put

vn(t)=
∥∥un(t)−u0(t)

∥∥. (3.22)

Note that D+‖u(t)‖ exists and

D+
∥∥u(t)∥∥= [u(t),u′(t)], (3.23)

where D+‖u(t)‖ denotes the right derivative of ‖u(t)‖ at t. Note the following prop-
erty of the function [·,·]

[x,y+z]≤ [x,y]+‖z‖. (3.24)

Then it follows from (K4), (3.6), and (3.9) that

D+vn(t)=
[
un(t)−u0(t),

d
dt
(
un(t)−u0(t)

)]

= [un(t)−u0(t),A
(
t+θn,un(t)

)+f
(
t+θn

)−B
(
t,u0(t)

)−h(t)
]

= [un(t)−u0(t),A
(
t+θn,un(t)

)−A
(
t+θn,u0(t)

)
+A

(
t+θn,u0(t)

)+f
(
t+θn

)−B
(
t,u0(t)

)−h(t)
]

≤ [un(t)−u0(t),A
(
t+θn,un(t)

)−A
(
t+θn,u0(t)

)]
+∥∥A(t+θn,u0(t)

)+f
(
t+θn

)−B
(
t,u0(t)

)−h(t)
∥∥

≤ p(t)
∥∥un(t)−u0(t)

∥∥+bn(t),

(3.25)



ERGODICITY AND ASYMPTOTICALLY ALMOST PERIODIC SOLUTIONS . . . 795

where

bn(t)=
∥∥A(t+θn,u0(t)

)+f
(
t+θn

)−B
(
t,u0(t)

)−h(t)
∥∥. (3.26)

Let bn(T) = sup{bn(t) : t ∈ [0,T ]} and K = {u0(t) : t ∈ [0,T ]}. Then bn(T) → 0 as

n→∞ and K is compact. Now,

D+vn(t)≤ p(t)vn(t)+bn(T). (3.27)

Integrating (3.11), we have, for all t ∈ [0,T ],

vn(t)≤ e
∫ t
0 p(u)du ·vn(0)+

∫ t

0
e
∫ t
s p(u)dubn(T)ds. (3.28)

Since p is ergodic with M(p) <−γ < 0, let T > 0 be such that

0≤ e
∫ T
0 p(u)du ·vn(0)≤ e−γT ·vn(0) <

ε
4
. (3.29)

It follows from Lemma 3.2 that for sufficiently large n,

∫ T

0
e
∫ T
s p(u)dubn(T)ds <

ε
4
. (3.30)

That is,

vn(T)=
∥∥un(T)−u0(T)

∥∥< ε
2
. (3.31)

Now

ε≤ ∥∥u(sn)−u
(
sm
)∥∥

≤ ∥∥u(sn)−u0(T)
∥∥+∥∥u(sm)−u0(T)

∥∥
= ∥∥un(T)−u0(T)

∥∥+∥∥um(T)−u0(T)
∥∥< ε.

(3.32)

This is a contradiction. This shows that {u(sn)} has a convergent subsequence. So S
is relatively compact in X.
Next we show that u is asymptotically almost periodic. By Definition 2.3 for every

ε > 0 there are a relatively dense subset P and a bounded subset C of J such that, for
τ ∈ P, t,t+τ ∈ J \C , and x ∈ S,

∥∥A(t+τ,x)−A(t,x)+f(t+τ)−f(t)
∥∥≤ ε. (3.33)

So

D+
∥∥u(t+τ)−u(t)

∥∥
= [u(t+τ)−u(t),A

(
t+τ,u(t+τ)

)−A
(
t,u(t)

)+f(t+τ)−f(t)
]

≤ [u(t+τ)−u(t),A
(
t,u(t+τ)

)−A
(
t,u(t)

)]
+∥∥A(t+τ,u(t+τ)

)−A
(
t,u(t+τ)

)+f(t+τ)−f(t)
∥∥

≤ p(t)
∥∥u(t+τ)−u(t)

∥∥+ε.

(3.34)
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Let T > 0 be such that 2‖u‖exp{−γT} < ε and [−T ,T] ⊃ C . Solving this differential
inequality we have, for t > T ,

∥∥u(t+τ)−u(t)
∥∥≤ ∥∥u(t−T +τ)−u(t−T)

∥∥e∫ tt−T p(u)du+ε
∫ t

t−T
e
∫ t
s p(u)duds

≤ 2‖u‖e
∫ t
t−T p(u)du+ε

∫ t

0
e
∫ t
s p(u)duds

≤ 2‖u‖e−rT +ε
∥∥g1∥∥≤ ε

(
1+∥∥g1∥∥),

(3.35)

where the function g1 is defined in Lemma 3.2. Thus in the case J = R+ we have
already shown that u is asymptotically almost periodic. If J =R. Let a<−2T and so,
t = a+T <−T . Then we have
∥∥u(a+T +τ)−u(a+T)

∥∥≤ ∥∥u(a+τ)−u(a)
∥∥e∫a+Ta p(u)du+ε

∫ a+T

a
e
∫a+T
s p(u)duds

≤ 2‖u‖e−rT +ε
∥∥g1∥∥≤ ε

(
1+∥∥g1∥∥).

(3.36)

That is, ∥∥u(t+τ)−u(t)
∥∥≤ ε

(
1+∥∥g1∥∥) (3.37)

for all t,t+τ ∈ R\ [−T ,T] and τ ∈ P . The function u is in ���(R,X). The proof is
complete.

The following corollary is the main result in [1], and is a consequence of Theo-

rems 2.10, 3.4, and 3.5.

Corollary 3.6. Suppose that (K1), (K2), (H3), and (K4) are satisfied. Then (1.1) has

a unique bounded solution. In this case, if A(t,x) ∈ ��(R×Ω,X) and f ∈ ��(R,X),
then the unique solution is also an almost periodic solution on R.

4. Applications to solutions of (1.6). Before considering equation (1.6), we first

consider the following scalar equation:

x′(t)= a(t)x+f(t), (4.1)

where a and f are in �(J). We claim that (4.1) satisfies (K4) where p = a. For, since a
is bounded on J, for sufficient small h∈R we have |1+ha(t)| = 1+ha(t). So
[
x−y,a(t)x−a(t)y

]= lim
h→0+

1
h
{∣∣x−y+h

(
a(t)x−a(t)y

)∣∣−|x−y|}

= lim
h→0+

1
h
{|x−y|∣∣1+ha(t)

∣∣−|x−y|}= a(t)|x−y|.
(4.2)

That is, condition (K4).

Lemma 4.1. Let a ∈ �(J) be real ergodic. Then (4.1) has a unique bounded solu-

tion for every f ∈ �(J) if and only if M(a) 
= 0. In this case, if a, f ∈ ���(J), then

the unique solution is also in ���(J). Furthermore, if a1 and g are almost periodic

components of a and of f , respectively, then the equation

x′(t)= a1(t)x+g(t) (4.3)

has a unique almost periodic solution.
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Proof. Sufficiency. In the case M(a) < 0, this is a consequence of Theorems

2.10, 3.4, and 3.5. In the case M(a) > 0, one can check directly that the function

y(t)=−
∫∞
t
e
∫ t
s a(u)duf(s)ds (t ∈ J) (4.4)

is a solution of (4.1), is bounded by Lemma 3.2, and is asymptotically almost periodic

if both a and f are.
Necessity. By [17, Theorems 3.2 and 4.1] and [6, Proposition 8.2], equation (4.1)

satisfies an exponential dichotomy. That is, there are positive numbers αi and ki,

i= 1,2 such that either
∣∣y0(t)y−1

0 (s)
∣∣≤ k1e−α1(t−s) (t ≥ s) (4.5)

or ∣∣y0(t)y−1
0 (s)

∣∣≤ k2e−α2(s−t) (t ≤ s), (4.6)

where

y0(t)= e
∫ t
0 a(u)du (4.7)

is the unique solution of the homogeneous equation of (4.1) with y0(0)= 1. Suppose
the former holds. Then ∣∣∣e−∫ ts a(u)du∣∣∣≤ k1e−α1(t−s) (t ≥ s). (4.8)

Let α1 > δ> 0 and α=α1−δ. Then

k1e−α1(t−s) = k1e−(α1−δ+δ)(t−s) = k1e−δ(t−s)e−α(t−s). (4.9)

Therefore, there is T0 such that k1e−δ(t−s) ≤ 1 when (t− s) ≥ T0. This implies that,
when (t−s)≥ T0, ∣∣∣e−∫ ts a(u)du∣∣∣≤ e−α(t−s). (4.10)

Therefore,

−
∫ t

s
a(u)du≤−α(t−s),

1
t−s

∫ t

s
a(u)du≥α. (4.11)

This implies that M(a) > 0.
Similarly, one shows that M(a) < 0 if the latter holds.
This completes the proof.

Using Lemma 4.1 n times, we have the following theorem.

Theorem 4.2. Let the matrix A(t) in (1.6) be real, bounded and continuous such

that aij = 0 for all i > j and for 1 ≤ i ≤ n, aii be ergodic. Then (1.6) has a unique

bounded solution for every f ∈ �(J)n if and only if M(aii) 
= 0, 1≤ i≤ n. In this case,

if A and f are asymptotically almost periodic, then so is the unique bounded solution.

Furthermore, if G(t) and g are almost periodic components of A(t) and f , respectively,

then the equation
dx
dt

=G(t)x+g(t) (4.12)

has a unique almost periodic solution.
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Finally, we give an example to point out that (4.1) (and so (1.1)) may not have a

bounded solution if a is not ergodic.

Example 4.3. For n = 1,2, . . . and 0 ≤ i < n, let a1 = 0, an+1 = an+n+n2, and
intervals Iin = [an+i,an+i+1]. Define a nonnegative, continuous function g on [0,1]
such that g(0)= g(1)= 0 and ∫ 1

0
g(t)dt = 1. (4.13)

Define the function ϕ on R by

ϕ(t)=



g
[
t−(an+i

)]
, t ∈ Iin for some n and some i,

0, t ∈R+ \⋃{Iin :n= 1,2, . . . ; 0≤ i < n
}
,

ϕ(−t), t < 0.

(4.14)

The function ϕ is even, bounded, uniformly continuous on R, and

∫ an+j

an
ϕ(t)dt =

j−1∑
i=0

∫ an+i+1

an+i
ϕ(t)dt = j, j = 1,2, . . . ,n. (4.15)

It follows from (4.15) that, for ak ≤ T < ak+1,

1
T

∫ T

0
ϕ(t)dt ≤ 1

T

k∑
n=1

∫ an+n

an
ϕ(t)dt ≤ 1

T

k∑
n=1

n≤
∑k

n=1n∑k−1
n=1n2

= 4k(k+1)
2(k−1)2k2 �→ 0. (4.16)

If ϕ were ergodic, then

1
T

∫ T

0
ϕ(t+s)dt �→ 0 as T �→∞ (4.17)

uniformly in s ∈R. However, when T = j and s = an it follows from (4.15) that

1
j

∫ j

0
ϕ
(
t+an

)
dt = 1

j

∫ an+j

an
ϕ(t)dt = 1, j = 1,2, . . . ,n. (4.18)

This is a contradiction. This shows that ϕ(·) is not ergodic.
By symmetry,

∫ −an
−an−j

ϕ(t)dt = j, j = 1,2, . . . ,n, lim
T→−∞

1
−T

∫ 0
T
ϕ(t)dt = 0. (4.19)

For any α ∈ (−1/2,0), let a = α+ϕ. Then a is not ergodic, limt→∞
∫ t
0 a(u)du/t =

limt→−∞
∫ 0
t a(u)du/(−t)=α. In (4.1) let f = 1. Now we show that (4.1) does not have

a bounded solution. In fact, the general solution of (4.1) is

y(t)= e
∫ t
0 a(u)du

{
C+

∫ t

0
e−

∫ s
0 a(u)duds

}
, (4.20)

where C is arbitrary. Note exp
{∫ t
0 a(u)du

} → ∞ as t → −∞. Then y is unbounded

unless

C+
∫ t

0
e−

∫ s
0 a(u)duf(s)ds �→ 0 as t �→−∞. (4.21)



ERGODICITY AND ASYMPTOTICALLY ALMOST PERIODIC SOLUTIONS . . . 799

In this case,

C =−
∫ −∞
0

e−
∫ s
0 a(u)duds. (4.22)

Substitute C into (4.20), we get

y(t)=
∫ t

−∞
e
∫ t
s a(u)duds. (4.23)

Let r = s+an,

∣∣y(−an
)∣∣≥

∫ −an−n+1
−an−n

e
∫−an
s [α+ϕ(u)]duds

=
∫ −n+1
−n

e
∫−an
r−an [α+ϕ(u)]dudr

=
∫ −n+1
−n

e−rα+
∫−an
r−an ϕ(u)dudr

≥
∫ n

n−1
enα+(n−1) dr ≥ en/2−1 �→∞.

(4.24)

Anyway, y is unbounded.
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