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Abstract. Some properties of isometric mappings as well as approximate isometries
are studied.
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1. Isometry and linearity. Mazur and Ulam [17] proved the following well-known
result concerning isometries, that is, transformations which preserve distances.

Theorem 1.1. Given two real normed vector spaces X and Y , let U be a surjective
mapping from X onto Y such that ‖U(x)−U(y)‖ = ‖x−y‖ for all x and y in X. Then
the mapping x�U(x)−U(0) is linear.

Since continuity is implied by isometry, the proof of this theorem consists of show-
ing that U(x)−U(0) is additive, and the additivity of this mapping will follow if we
can prove that U satisfies Jensen’s equation:

U
(
x
2
+ y

2

)
= U(x)

2
+ U(y)

2
∀x,y ∈X. (1.1)

In general this is not easy. However, for the special case in which the space Y is strictly
convex, the proof is simple (see Baker [1]). A (real) normed space is called strictly convex
if, for each pair of its nonzero elements y , z such that ‖y+z‖ = ‖y‖+‖z‖, it follows
that y = cz for some real number c > 0. When Y is strictly convex, it is easy to show
that the unique solution to the two equations

∥∥m−y1
∥∥= ∥∥y2−m

∥∥, ∥∥m−y1
∥∥+∥∥y2−m

∥∥= ∥∥y2−y1
∥∥ (1.2)

is m = (y1/2)+(y2/2). Following Baker [1], we find that, from the second equation,
since Y is strictly convex, m−y1 = c(y2−m) with c > 0. From the first equation of
(1.2), it follows that c = 1 andm= (y1/2)+(y2/2). Now, for any given pair x1, x2 in
X, let h= (x1+x2)/2 and put y1 =U(x1), y2 =U(x2). Clearly, we have

∥∥h−x1
∥∥= ∥∥x2−h

∥∥, ∥∥h−x1
∥∥+∥∥x2−h

∥∥= ∥∥x2−x1
∥∥. (1.3)

Since U is an isometry, it follows that

∥∥U(h)−y1
∥∥= ∥∥y2−U(h)

∥∥, ∥∥U(h)−y1
∥∥+∥∥y2−U(h)

∥∥= ∥∥y2−y1
∥∥. (1.4)

Hence, m = U(h) is the unique solution of (1.2), so that U is a solution of Jensen’s
equation (1.1). It follows that U(x)−U(0) is additive (cf. Aczél [9, page 43]).
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In this strictly convex case, it was not necessary to assume that the mapping U
was surjective. However, in general, the Mazur-Ulam Theorem 1.1 fails without this
assumption. Among counterexamples in the literature which show this, we cite the
following from Figiel [10]. Let Y denote the space of real number pairs y = (y1,y2)
with the norm ‖y‖ =max[|y1|,|y2|], and consider the mapping T : R→ Y given by
T(s)= (s,sin(s)), s in R. Then, for s1 and s2 in R, we have

∥∥T(s2)−T(s1)∥∥=max
{∣∣s2−s1∣∣,∣∣sins2−sins1

∣∣}. (1.5)

Now ∣∣sin(s2)−sin
(
s1
)∣∣=

∣∣∣∣
∫ s2
s1
(cosx)dx

∣∣∣∣≤ ∣∣s2−s1∣∣, (1.6)

so that T is an isometry but clearly is not additive. Of course, this space Y is far from
being strictly convex. Indeed, if we take y1 = (0,0) and y2 = (2,0) in (1.2), we see
that the solutionsm to these equations form an infinite set, namely the line segment
joining the points (1,−1) and (1,1).

In their proof of Theorem 1.1, Mazur and Ulam found a way to produce a metric
characterization of the midpoint of the segment joining two points y1 and y2 of an
arbitrary normed vector space Y . They did this by constructing a sequence of sets Hn
in Y , n= 1,2,3, . . . , defined recursively by

H1 =
{
y ∈ Y :

∥∥y−y1
∥∥= ∥∥y−y2

∥∥= ‖y1−y2‖
2

}
,

Hn =
{
y ∈Hn−1 : ‖y−z‖ ≤ δ

(
Hn−1

)
2

∀z ∈Hn−1
}

for n≥ 2,
(1.7)

where δ(Hn−1) denotes the diameter of the set Hn−1. The intersection of all the sets
Hn is called the metric center of y1 and y2. They proved that it consists of a single
point (y1/2)+(y2/2).

Vogt [24] generalized Theorem 1.1 by considering mappings which preserve “equal-
ity of distance.” These are mappings f : X → Y between normed vector spaces such
that there exists a function p : [0,∞)→ [0,∞) with ‖f(x)−f(y)‖ = p(‖x−y‖). Such
mappings were studied by Schoenberg [20] and by von Neumann and Schoenberg [25].
In Vogt’s approach, a basic result was the following theorem concerning isometries in
metric spaces.

Theorem 1.2 (Vogt [24]). Let (M,d) be a bounded metric space. Suppose that there
is an element m ∈ M , a surjective isometry g :M →M and a constant k > 1 such that
d(gx,x)≥ kd(m,x) for all x inM . Thenm is a fixed point for every surjective isometry
h :M →M .

Proof. Let h :M →M be any surjective isometry. Since surjective isometries are
injective, g−1 and h−1 exist and g, h, g−1, h−1 are bijective isometries of M together
with finite compositions of them. We define a sequence of isometries gn :M →M and
a sequence of elementsmn (n∈N) defined recursively by

g1 = g, m1 =m,
g2 = hgh−1, m2 = hm, (1.8)

gn+1 = gn−1gn(gn−1)−1, mn+1 = gn−1mn, n≥ 2.
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Clearly, each gn is invertible on M . We now prove by induction that

d
(
gnx,x

)≥ kd(mn,x
) ∀x ∈M. (1.9)

By hypothesis, (1.9) is true for n= 1. When n= 2, d(m2,x)= d(hm,x)= d(m,h−1x)
since h−1 is an isometry. Also,

d
(
g2x,x

)= d(hgh−1x,x)= d(gh−1x,h−1x)≥ kd(m,h−1x)= kd(m2,x
)
, (1.10)

which demonstrates (1.9) for n= 2. Make the induction assumption that d(gnx,x)≥
kd(mn,x) when n≥ 2. Then

d
(
gn+1x,x

)= d(gn−1gng−1n−1x,x)= d(gng−1n−1x,g−1n−1x)
≥ kd(mn,g−1n−1x

)= kd(gn−1mn,x
)= kd(mn+1,x

)
,

(1.11)

so the induction proof is complete and (1.9) is true for all n∈N .
If we put x =mn+1 in (1.9), we find that

d
(
mn+2,mn+1

)= d(gnmn+1,mn+1
)≥ kd(mn+1,mn

)
. (1.12)

By another induction, we obtain d(mn+2,mn+1)≥ knd(m2,m1) for all n≥ 1. Since
the metric space M is bounded there exists a positive number B such that B >
d(mn+2,mn+1) for all n ≥ 1. Hence (B/kn) ≥ d(m2,m1) for all n ∈ N . By hypoth-
esis, k > 1, and it follows that d(m2,m1) = d(hm,m) = 0, so thatm is a fixed point
of h.

Proof of Theorem 1.1. Instead of using the original proof of Theorem 1.1 due
to Mazur and Ulam, we shall rely on Vogt’s method. This will “set the stage” for later
developments when we deal with approximate isometries.

Put f(x) = U(x)−U(0), so that f : X �→ Y is a surjective isometry with f(0) = 0.
Given a fixed element x in X, define M as the set

M = {y ∈ Y : ‖y‖ = ‖2f(x)−y‖ ≤ 2‖f(x)‖}. (1.13)

Putm= f(x) and let g :M →M be given by g(y)= 2f(x)−y . Then we see that
(i) M is a bounded metric space, with d(·,·)= ‖·−·‖,
(ii) m= f(x) belongs to M ,
(iii) g is an isometry from M onto M , and g(M)=M since g is its own inverse,
(iv) d(gy,y)≥ kd(m,y) for all y in M with k= 2.

Property (iv) is true because

d(gy,y)= ‖g(y)−y‖ = ‖2f(x)−2y‖ = 2‖f(x)−y‖ = 2d(m,y). (1.14)

By Theorem 1.2 and properties (i)–(iv), we conclude that m is a fixed point of every
surjective isometryh ofM . In particular, we putx0 = f−1(2f(x)) and defineh :M →M
by h(y)= f(x0−f−1(y)).

(v) h is a surjective isometry from M onto M .
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With f(x1)=y1 in M , we have
∥∥2f(x)−h(y1

)∥∥= ∥∥2f(x)−f (x0−x1
)∥∥= ∥∥f (x0

)−f (x0−x1
)∥∥= ‖x1‖

= ∥∥f (x1
)∥∥= ‖y1‖ =

∥∥2f(x)−y1
∥∥= ∥∥f (x0

)−f (x1
)∥∥

= ∥∥f (x0−x1
)∥∥= ‖f (x0−f−1

(
y1
))∥∥= ∥∥h(y1

)∥∥.
(1.15)

Thus, h(y1) is in M . But h is its own inverse, so h(M)=M .
Now, by Theorem 1.2,m is a fixed point of h. Thus, we have

f(x)=m= h(m)= f (x0−f−1(m)
)= f (x0−x

)
,

0= ∥∥f(x)−f (x0−x
)∥∥= ∥∥x−(x0−x

)∥∥= ∥∥2x−x0
∥∥= ∥∥f(2x)−f (x0

)∥∥
= ∥∥f(2x)−2f(x)

∥∥.
(1.16)

Thus, we have proved that
(vi) f(2x)= 2f(x) for all x ∈ X.

For any given y in X, put fy(x) = f(x+y)−f(y) for all x ∈ X. Then fy : X → Y is
a surjective isometry and fy(0) = 0, so that fy satisfies (vi). For any pair x,y in X,
we have

f(x)−f(y)= f [(x−y)+y]−f(y)= fy(x−y)
= 2fy

(
x−y
2

)
= 2

(
f
(
x−y
2

+y
)
−f(y)

)
.

(1.17)

Thus,

f(x)+f(y)= 2f
(
x−y
2

+y
)
= 2f

(
x+y
2

)
= f(x+y). (1.18)

Comments: generalizations of the Mazur-Ulam theorem. As indicated
above, Vogt used his method, that was used above to prove Theorem 1.1, together
with other considerations in order to prove the following generalization.

Theorem 1.3. Given real normed spaces X and Y , let f : X → Y with f(0)= 0 be a
surjective mapping which preserves equality of distance. Then f is linear and f = βU ,
where β = 0 is a real number and U :X → Y is a surjective isometry, providing that the
dimension of X is greater than one.

Vogt also gave an example to show that this theorem fails when X is one-dimen-
sional.

We have seen that, in general, the isometry must be surjective in order to be linear.
However, Figiel [10] proved the following result which amounts to another general-
ization of the Mazur-Ulam theorem.

Theorem 1.4. Given real normed vector spaces X and Y , let ϕ : X → Y be an iso-
metric embedding of X into Y . Then there exists a linear (not necessarily continuous)
mapping F : Y → X such that F ◦ϕ is the identity on X and the restriction of F to the
linear span of ϕ(X) is of norm one.

Various other generalizations or variations of the Mazur-Ulam theorem may be
found in the literature. Charzyński [7] proved the theorem for metric vector spaces
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of the same finite dimension. Day [8, pages 110–111], demonstrated a version of the
theorem involving semi-norms (instead of norms or metrics) in locally convex topo-
logical vector spaces. Rolewicz [19] proved the theorem for a class of metric vector
spaces which are locally bounded and such that the function ϕ(t) = d(tx,0) is con-
cave in the real t for each fixed x in the space. An example of such a space is the set
of sequences x = (x1,x2, . . .) such that d(x,0)=∑∞

k=1 |xk|p converges, with 0<p < 1.
Wobst [26] generalized the results of Charzyński and of Rolewicz.

To illustrate what can happen when an isometry is not surjective, we again turn to
Baker [1] who gives two examples of isometries which are not affine. The first example
is from Fischer and Muszély [11]: let Y be a real normed vector space which is not
strictly convex. Thus, wemay choose a,b in Y so that a and b are linearly independent
and satisfy ‖a‖ = ‖b‖ = 1 and ‖a+b‖ = ‖a‖+‖b‖. Let f :R→ Y be defined by

f(x)=


xa if x ≤ 1,

a+(x−1)b if x > 1.
(1.19)

Using Baker’s lemma, which states that ‖a+b‖ = ‖a‖+‖b‖ implies that ‖sa+tb‖ =
s‖a‖+t‖b‖ when s ≥ 0 and t ≥ 0, it is easy to see that f is an isometry. Also, f(0)= 0
and f is nonlinear.

The second example was constructed by Baker in answer to a problem of Chernoff
(Advanced Problem 5688, Amer. Math. Monthly 76 (1969), 835). It shows that an isom-
etry can be not only nonlinear but also homogeneous of degree one, and is defined
as follows: let Y be the set R3 but with the metric given by the norm ‖(x,y,z)‖ =
max

[√
x2+y2,|z|]. Let f :R2→ Y be given by f(x,y)= (x,y,g(x,y)), with

g(x,y)=




y if 0≤y ≤ x or x ≤y ≤ 0,

x if 0≤ x ≤y or y ≤ x ≤ 0,

0 otherwise.

(1.20)

Clearly, g satisfies g(tx,ty)= tg(x,y) for real t, x, y , and it is easily seen that g is

not linear. Also it can be shown that |g(x,y)−g(u,ν)| ≤
√
(x−u)2+(y−v)2. Thus,

f :R2→ Y is an isometry which is nonlinear and homogeneous.

2. Approximate isometries: special cases. By an ε-isometry of one metric space
E into another E′, we mean a mapping T : E → E′ which changes distances between
elements of E by at most ε for some fixed ε > 0, that is,∣∣∣d′(T(x),T(y))−d(x,y)

∣∣∣≤ ε ∀x, y ∈ E, (2.1)

where d and d′ are the metrics for E and E′, respectively. The stability question
here is: given η > 0, does there exist ε > 0 and an isometry U : E → E′ such that
d′(T(x),U(x)) < η for all x in E? In the case, where E is a real Hilbert space and
E = E′, an answer was given in the affirmative by Hyers and Ulam [14], providing that
T was surjective. Using the geometry of Hilbert space, they showed that, if T : E → E
is an ε-isometry with T(0)= 0, then

∥∥∥∥T
(
x
2

)
− T(x)

2

∥∥∥∥≤
√
2ε‖x‖+2ε, x ∈ E. (2.2a)
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They proved that the limit

U(x)= lim
n→∞

T
(
2nx

)
2n

(2.2b)

exists for all x in E and that U is an isometry. Finally, it was shown that, if the
ε-isometry T is surjective, then U is also surjective and the inequality

∥∥T(x)−U(x)∥∥< kε (2.3)

is satisfied for all x in E, with k= 10.
This theorem was generalized by Bourgin [3], who obtained the results (2.2b) and

(2.3) with k = 12 for an ε-isometry T of a Banach space E1 onto a Banach space E2,
where E2 belongs to a class of uniformly convex spaces which includes the spaces
Lp(0,1) for 1<p <∞.

Hyers and Ulam [15] studied ε-isometries for spaces of continuous functions. Ac-
cording to a famous theorem of Banach [2, page 170], two compact metric spaces
S1, S2 are homeomorphic if and only if the spaces C(S1) and C(S2) of real continuous
functions defined on S1 and S2 are isometric. If h is a homeomorphism from S1 onto
S2, it is easily seen that C(S1) and C(S2) are isometric. For, if ϕ ∈ C(S1), we define
ψ(s)=ϕ(h−1(s)) with s ∈ S2. Then ψ=U(ϕ) is an isometry from C(S1) onto C(S2).
The hard part is to obtain the homeomorphism from the isometry.

Banach’s theorem suggested a method of attacking the problem of stability for ε-
isometries between spaces of continuous functions. Instead of using Banach’s idea of
peak functions, a different method of relating the ε-isometry to the correspondence
between the points of S1 and S2 was used, by dealing with hyperplanes of functions
having the same value at a given point. We shall outline the results without giving the
details of the proofs.

Lemma 2.1. Let S1 and S2 be compact metric spaces, and let T : C(S1) → C(S2) be
a continuous ε-isometry. With p in S1, q in S2 and real numbers b,c,h,k > 0, define
the sets

M1(p,b,h)=
{
ϕ ∈ C(S1) : |ϕ(p)−b| ≤ h},

M2(q,c,k)=
{
ψ∈ C(S2) : |ψ(q)−c| ≤ k}. (2.4)

Then, for each point p of S1, each b in R and each a ≥ 0, there exists a point q in S2
and c in R such that

T
(
M1(p,b,a)

)
⊂M2

(
q,c,a+ 3ε

2

)
. (2.5)

This lemma was the first step in establishing a correspondence between points
p of S1 and q of S2. A corollary was proved to show that, when T is a surjective
homeomorphism as well as an ε-isometry of C(S1) onto C(S2), then the point q of
C(S2) is uniquely determined by the point p of S1 and is independent of the choice
of the parameters b and a. Finally, the following stability result was proved.

Theorem 2.2. Let S1 and S2 be compact metric spaces. If T is a homeomorphic
mapping of C(S1) onto C(S2) which is also an ε-isometry, then there exists an isometry
U : C(S1)→ C(S2) such that ‖U(f)−T(f)‖ ≤ 21ε for all f in C(S1).
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Corollary 2.3. Under the hypotheses of Theorem 2.2, the underlying spaces S1
and S2 are homeomorphic.

Remark 2.4. Incidentally, Corollary 2.3 shows that we have a generalization of
Banach’s theorem, where isometry is replaced by ε-isometry.

Stone [22] generalized Banach’s theorem by replacing compact metric spaces with
completely regular topological spaces, and this result is now known as the Banach-
Stone theorem (cf. [8, page 86]).

Bourgin [4] obtained a significant generalization of Theorem 2.2 by adapting the
basic idea of the proof outlined above to the more general case, with the following
principal result. Here C(Sj) denotes the space of bounded continuous functions on
Sj , j = 1,2.

Theorem 2.5. Let S1 and S2 be completely regular Hausdorff spaces and let T :
C(S1) → C(S2) be a surjective ε-isometry with T(0) = 0. Then there exists a linear
isometry U : C(S1)→ C(S2) for which ‖T(f)−U(f)‖ ≤ 10ε, for all f ∈ C(S1).

Note. No continuity conditionswere needed in Bourgin’s theoremon the ε-isometry
T , in contrast to the conditions of Theorem 2.2. His theorem also results in a gener-
alization of the Banach-Stone theorem, again by replacing isometries by ε-isometries.
More explicitly, he defined a µ-ideal as the subset of C(S1) given by J(p,µ) = {ϕ ∈
C(S1) : |ϕ(p)|< µ}, and similarly for C(S2), and proved the following theorem.

Theorem 2.6. Let S1 and S2 be compact Hausdorff spaces. IfH is a possibly multiple-
valued mapping of C(S1) onto C(S2) and yields a correspondence of µ-ideals of either
algebra to (µ+p)-ideals of the other, then S1 and S2 are homeomorphic.

3. Approximate isometries: the general case. The problem of stability of isometry
for mappings between arbitrary real normed vector spaces remained open for many
years after the work on special cases discussed in the previous section. In the present
section, all normed spaces are assumed to be real.

The study of ε-isometries of Banach spaces was revived by Bourgin [6] and Bourgin
[5], Omladǐc and Šemrl [18]. Gruber [13] demonstrated the stability of surjective isome-
tries between all finite dimensional normed vector spaces. In addition, these authors
obtained information concerning ε-isometries between arbitrary normed vector spaces
which will be indispensible in the proof of the general case to be given below. In par-
ticular, the following lemma is a slight modification of Bourgin [6, Lemma 2.8].

Lemma 3.1 (R. D. Bourgin and P. L. Renz). Let X and Y be normed vector spaces,
η and δ ∈ R+, and let T : X → Y be an η-isometry with T(0) = 0. Then there exists a
continuous (2δ+3η)-isometry T ′ : X → Y such that ‖T ′(x)−T(x)‖ < η+δ for each
x ∈X.

Proof. Consider all subsets of X such that the distance between each pair of dis-
tinct elements is at least δ/2. By Zorn’s lemma, there exists a maximal such collection
which will be denoted by {xγ : γ ∈ Γ}. Then, for any x ∈ X, there is a γ ∈ Γ with
‖x−xγ‖ ≤ δ/2. Let Bγ denote the ball {x ∈X : ‖x−xγ‖< δ}.
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Then {Bγ : γ ∈ Γ} is an open cover of X. Hence, there is a partition of unity {fξ :
ξ ∈ Ξ} subordinate to {Bγ : γ ∈ Γ}. For each ξ ∈ Ξ, pick any γ ∈ Γ such that {y ∈ X :
fξ(y) = 0} ⊂ Bγ and denote this γ by γ(ξ). Thus, {y ∈X : fξ(y) = 0} ⊂ Bγ(ξ) for each
ξ ∈ Ξ. Define T ′ : X → Y by the formula T ′(x) =∑ξ∈Ξfξ(x)T(xγ(ξ)) for each x ∈ X.
Thus the function T ′ is well defined and continuous. Also, for x ∈X,

∥∥T ′(x)−T(x)∥∥=
∥∥∥∥∥
∑
ξ∈Ξ
fξ(x)

(
T
(
xγ(ξ)

)−T(x))
∥∥∥∥∥

≤
∑
ξ∈Ξ
fξ(x)

∥∥T(xγ(ξ))−T(x)∥∥

≤
∑
ξ∈Ξ
fξ(x)

(∥∥xγ(ξ)−x∥∥+η).

(3.1)

Now, if fξ(x) = 0, then ‖x−xγ(ξ)‖< δ, so that

∥∥T ′(x)−T(x)∥∥≤ ∑
ξ∈Ξ
fξ(x)(δ+η)= δ+η ∀x ∈X. (3.2)

It follows that T ′ is a continuous (2δ+3η)-isometry.

Bourgin [6] also introduced the following concept which also will be useful later.

Definition 3.2. Given δ > 0, a function f : X → Y between normed vector spaces
is said to be δ-onto if, for each y ∈ Y , there is a point x ∈X for which ‖f(x)−Y‖ ≤ δ.

Gruber [13] obtained an elegant and definitive result, as follows.

Theorem 3.3. Let X and Y be normed spaces. Given ε > 0, suppose that T : X → Y
is a surjective ε-isometry while U : X → Y is an isometry such that T(0) = U(0) = 0. If
‖T(x)−U(x)‖/‖x‖→ 0 uniformly as ‖x‖→∞ uniformly, then U is a surjective linear
isometry and ∥∥T(x)−U(x)∥∥≤ 5ε ∀x ∈X. (3.3)

The proof requires several lemmas subject to the hypotheses of Theorem 3.3.

Lemma 3.4. U is a surjective isometry.

Proof. From the hypotheses of the theorem, we have ‖x‖/‖Tx‖ ≤ 1+ε for large
‖x‖, and

‖T(x)−U(x)‖
‖T(x)‖ =

(‖T(x)−U(x)‖
‖x‖

)( ‖x‖
‖T(x)‖

)
≤
(‖T(x)−U(x)‖

‖x‖
)
(1+ε), (3.4)

so that (‖T(x)−U(x)‖
‖T(x)‖

)
�→ 0 (3.5)

uniformly as ‖T(x)‖→∞ uniformly. Hence, Y is the closure of the linear hull of U(X).
Now we use Theorem 1.4 above to deduce the existence of a map J : Y → X, where J
is linear and such that J ◦U = idX = identity on X, and ‖J‖ = 1. We must show that
J is bijective. Assume that J is not injective. Then, because J is linear, there exists
y = 0 in Y with J(y) = 0, so that J(βy) = 0 for all β ∈ R+. As was shown above,
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‖T(x)−U(x)‖/‖T(x)‖ → 0 uniformly as ‖T(x)‖ → ∞ uniformly. Therefore, we may
choose for each β ∈ R+ a point xβ ∈ X such that ‖βy −U(xβ)‖/‖βy‖ and so also
‖βy−U(xβ)‖/β→ 0 as β→∞. Recalling that J ◦U = idX and ‖J‖ = 1, we have

0= ∥∥J(βy)∥∥≥ ∥∥J(U(xβ))∥∥−∥∥J(βy)−J(U(xβ))∥∥≥ ∥∥xβ∥∥−∥∥βy−U(xβ)∥∥
= ∥∥U(xβ)∥∥−∥∥βy−U(xβ)∥∥≥ ‖βy‖−2

∥∥βy−U(xβ)∥∥, (3.6)

so that

0≥ ‖y‖− 2
∥∥βy−U(xβ)∥∥

β
�→‖y‖ as β �→∞. (3.7)

This contradiction proves that J is injective. Since J ◦U = idX , J is also surjective and
thus bijective.

Lemma 3.5. The isometry U :X → Y is given by the formula

U(x)= lim2−nT
(
2nx

)
, x ∈X. (3.8)

Proof. By the hypotheses of the theorem, given δ > 0, there exists Mδ > 0 such
that ‖T(z)−U(z)‖ ≤ δ‖z‖ for all z ∈X with ‖z‖>Mδ. For x = 0, equation (3.8) holds.
For a given x = 0 in X, choosem so large that ‖2mx‖ ≥Mδ. Now U is linear, so, when
n≥m, we have

∥∥T(2nx)−2nU(x)
∥∥≤ δ∥∥2nx∥∥, ∥∥2−nT(2nx)−U(x)∥∥≤ δ‖x‖. (3.9)

Given η > 0, choose δ < η/‖x‖ and we have
∥∥∥∥T
(
2nx

)
2n

−U(x)
∥∥∥∥≤ η for n≥m. (3.10)

By Lemmas 3.4, 3.5, and the fact that T(0)= 0, we find that:

V :=U−1T :X �→X is a surjective ε-isometry with V(0)= 0,

x = lim
n→∞2

−nV
(
2nx

) ∀x ∈X. (3.11)

Now choose a mapping V−1 : X → X as follows. Put V−1(0) = 0, and for x ∈ X with
x = 0, let V−1(x) be any pointy ∈X with V(y)= x. Then clearly V−1 has the following
properties:

V−1 :X �→X is an ε-isometry with V−1(0)= 0, (3.12)

V
(
V−1(x)

)= x ∀x ∈X. (3.13)

For x ∈X, by (3.11), (3.12), and (3.13), we have
∥∥2−nV−1(2nx)−x∥∥= 2−n

∥∥V−1(2nx)−2nx
∥∥

≤ 2−n
(∥∥2nx−V(2nx)∥∥+ε)

= ∥∥x−2−nV
(
2nx

)∥∥+2−nε,

(3.14)

so that
x = lim

n→∞2
−nV−1

(
2nx

) ∀x ∈X. (3.15)
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We now use Lemma 3.1 to approximate the ε-isometry V as follows. For each integer
k > 0 let a continuous mapping Vk :X →X be chosen so that

∥∥Vk(x)−V(x)∥∥< (1+k−1)ε. (3.16)

Lemma 3.6. Let y ∈ X and h in the dual space X∗ be chosen so that ‖y‖ = 1 and
‖h‖ = h(y)= 1. Then h(V(βy))≥ β−4ε for each β > 0.

Proof. Since ‖h‖ = 1= ‖y‖, we use (3.11), (3.12), (3.13), and (3.16) to obtain

h
(
−Vk

(
2−nV−1

(
2nβy)

)+2nβy
)
≤ ∥∥Vk(2−nV−1(2nβy))−2nβy

∥∥
≤ ∥∥V(2−n(V−1(2nβy)))−2nβy

∥∥+(1+k−1)ε
=
∥∥∥V(2−n(V−1(2nβy)))−V(V−1(2nβy))∥∥+(1+k−1)ε

≤ ∥∥2−nV−1(2nβy)−V−1(2nβy)∥∥+(2+k−1)ε
= (1−2−n

)∥∥V−1(2nβy)∥∥+(2+k−1)ε
≤ (1−2−n

)(∥∥2nβy∥∥+ε)+(2+k−1)ε
= (2n−1

)
β+(3+k−1−2−n

)
ε.

(3.17)

Since h is linear and h(y) = 1 we have h(Vk(2−nV−1(2nβy))) ≥ β−(3+k−1−2−n)ε.
Now we use (3.15) and the fact that h and Vk are both continuous, so that whenn→∞,
we obtain

h
(
Vk(βy)

)≥ β−(3+k−1)ε. (3.18)

Therefore, by (3.16) and the fact that ‖h‖ = 1, we have h(V(βy)) ≥ h(Vk(βy))−
(1+k−1)ε, so that h(V(βy))≥ β−(4+2k−1)ε. Since this is true for each integer k > 0,
Lemma 3.6 follows.

Lemma 3.7. For each x ∈X, ‖x−V(x)‖ ≤ 5ε.

Proof. Denote the closed ball in X with center at zero and radius 1 by B. Let x ∈X
be chosen. Take y ∈X with ‖y‖ = 1 and such that x−V(x) is an element of the half-
ray starting from the origin and containing y . Thus, x−V(x) = ωy , where ω ≥ 0.
Next, choose u∈X such that y−u is a half-tangent to B at y , that is,

‖y−δu‖−1
δ

�→ 0 as δ �→ 0+, (3.19)

and also that

x = µy+θu (3.20)

for suitable real numbers µ and θ, where θ ≥ 0. Thus, V(x) has the form

V(x)= νy+θu (3.21)

with ν = µ−ω∈R. We note that

x−V(x)= (µ−ν)y with µ−ν =ω≥ 0. (3.22)
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Denote by L the linear subspace generated by u and y . The line through y and y−u
is a tac-line of B. Thus, the linear functional k : L→R defined by k(ξy+ηu)= ξ for ξ
and η ∈ R, is of norm one. By the Hahn-Banach theorem, we can extend k to a linear
functional h : X → R which also has norm one. Now ‖h‖ = h(y) = k(y) = ‖y‖ = 1,
so by Lemma 3.6 we have h(V(βy)) ≥ β−4ε with β > 0. Since V is an ε-isometry,
we have

‖βy−x‖ ≥ ∥∥V(βy)−V(x)∥∥−ε ≥ h(V(βy)−V(x))−ε
= h(V(βy))−h(V(x))−ε. (3.23)

Using (3.21) and noting that h(u)= k(u)= 0, we obtain the inequality

‖βy−x‖ ≥ β−5ε−h(νy+θu)= β−ν−5ε for each β > 0. (3.24)

On the other hand, by (3.20) for β > µ, we have

‖βy−x‖ = ‖βy−µy−θu‖ = (β−µ)
∥∥∥∥y−

(
θ
β−µ

)
u
∥∥∥∥. (3.25)

By (3.19), given any η > 0, we may choose β= β(η) so large that ‖βy−x‖ ≤ β−µ+η.
Using (3.24), we obtain β−µ ≥ ‖βy −x‖−η ≥ β−ν −5ε−η, or 0 ≥ µ−ν −5ε−η.
Since η may be chosen arbitrarily small, we have µ− ν ≤ 5ε, so, from (3.22), since
‖y‖ = 1, we see that ‖x−V(x)‖ ≤ 5ε. Now, by definition, V = U−1T , and, since U is
an isometry, we conclude that ‖U(x)−T(x)‖ ≤ 5ε.

Corollary 3.8. Under the hypotheses of Theorem 3.3, suppose that in addition T
is continuous. Then the above inequality may be improved as ‖U(x)−T(x)‖ ≤ 3ε.

Proof. When T is continuous, we can eliminate the approximations Vk and use V
directly instead. Then the conclusion of Lemma 3.6 can be changed to h(V(βy)) ≥
β−2ε, and the corollary follows.

It remained for Gevirtz [12] to at last prove the following result which establishes
the stability of isometries between arbitrary Banach spaces.

Theorem 3.9. Given real Banach spaces X and Y , let f : X → Y be a surjective ε-
isometry. Then there exists a surjective isometryU :X→Y for which ‖f(x)−U(x)‖≤5ε.

The main part of the proof is to demonstrate the following result.

Theorem 3.10 (Gevirtz [12]). If f : X → Y is a surjective ε-isometry, then, for any
pair x0,x1 ∈X, we have

∥∥∥∥f
(
x0+x1

2

)
− f

(
x0
)+f (x1

)
2

∥∥∥∥≤ 10
√
ε‖x0−x1‖+20ε. (3.26)

Proof. The idea of the proof was to “epsilonize” the method of Vogt which was
used above in demonstrating Theorems 1.1 and 1.2. From Bourgin’s δ-onto idea,
Gevirtz developed the following definition.

Definition 3.11. Given f :X → Y , a mapping F : Y →X for which

‖fF(y)−y‖ ≤ δ (3.27)
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for all y ∈ Y is called a δ-inverse of f and f is called δ-onto if it has a δ-inverse. Also,
the term (δ,ε)-isometry is an abbreviation for “δ-onto ε-isometry.”

We will need the following lemmas.

Lemma 3.12. If f : X → Y is a (δ,ε)-isometry and F is a δ-inverse of f , then F is a
(δ+ε,2δ+ε)-isometry.

Proof. ‖Ff(x)−x‖ ≤ ‖f(Ff(x))−f(x)‖+ε ≤ δ+ε by (3.27), so F is (δ+ε)-onto.
For y0 and y1 ∈ Y we have by (3.27) that ‖fF(yj)−yj‖ ≤ δ, j = 0,1. Since f is an
ε-isometry, |‖fF(y0)−fF(y1)‖−‖F(y0)−F(y1)‖| ≤ ε.

Hence,

∣∣∥∥F(y0
)−F(y1

)∥∥−∥∥y0−y1
∥∥∣∣

≤ ∣∣∥∥fF(y0
)−fF(y1

)∥∥−∥∥y0−y1
∥∥∣∣+ε

≤ ∣∣∥∥fF(y0
)−y0

∥∥+∥∥y1−fF
(
y1
)∥∥+∥∥y0−y1

∥∥−∥∥y0−y1
∥∥∣∣+ε ≤ 2δ+ε,

(3.28)

so that F is a (2δ+ε)-isometry.

Lemma 3.13. Let f1 :X → Y be a (δ1,ε1)-isometry, let Z be another Banach space and
let f2 : Y → Z be a (δ2,ε2)-isometry. Then f2f1 :X → Z is a (δ1+δ2+ε2,ε1+ε2)-isometry.

Proof. By hypotheses, we have

∣∣∥∥f2f1(x0
)−f2f1(x1

)∥∥−∥∥f1(x0
)−f1(x1

)∥∥∣∣≤ ε2,∣∣∥∥f1(x0
)−f1(x1

)∥∥−∥∥x0−x1
∥∥∣∣≤ ε1, (3.29)

so that ∣∣∥∥f2f1(x0
)−f2f1(x1

)∥∥−∥∥x0−x1
∥∥∣∣≤ ε2+ε1. (3.30)

Thus, f2f1 is an (ε1+ε2)-isometry. Now let Fj be a δj-inverse of fj , j = 1,2, and let
z be any element of Z . Since f2 is an ε2-isometry, we can apply (3.27), to f2 and f1,
to obtain

∥∥f2f1F1F2(z)−z∥∥≤ ∥∥f2f1F1F2(z)−f2F2(z)∥∥+∥∥f2F2(z)−z∥∥
≤ ∥∥f1F1F2(z)−F2(z)∥∥+ε2+δ2 ≤ δ1+δ2+ε2. (3.31)

With the given x0 and x1 ∈X, let y0 = f(x0), y1 = f(x1) and put

p = x0+x1

2
, q = y0+y1

2
. (3.32)

For the present, we assume that y0 = y1. Since f is surjective it has an inverse, so it
is a (0,ε)-isometry. By Lemma 3.12, its inverse F is an (ε,ε)-isometry for which

F
(
y0
)= x0, F

(
y1
)= x1. (3.33)

We now define sequences (gk)k≥0 and (Gk)k≥0 as follows:

g0(y)= f
(
2p−F(y)) for y ∈ Y . (3.34)
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By Lemma 3.13, g0 : Y → Y is a (2ε,2ε)-isometry, and clearly g0(yj)=y1−j for j = 0,1.
We define G0 : Y → Y to be any mapping such that:

G0 is a (4ε)-inverse of g0, G0(yj)=y1−j , j = 0,1. (3.35)

For y ∈ Y , let
g1(y)=G1(y)= 2q−y. (3.36)

Finally, if we are given g0, . . . ,gn and G0, . . . ,Gn, we define Gn+1 as any mapping which
is a 4n+2 ε-inverse of gn+1 and Gn+1(yj)=y1−j , j = 0,1, where

gn+1 = gn−1gnGn−1 (n≥ 1). (3.37)

Lemma 3.14. The sequences (gk) and (Gk) defined by (3.34), (3.35), (3.36), and (3.37)
have the following properties:

gk is a
(
4k+1ε,4k+1ε

)
-isometry, gk(yj)=y1−j , j = 0,1, (3.38)

Gk is a
(
4k+1ε

)
-inverse of gk, Gk

(
yj
)=y1−j , j = 0,1. (3.39)

Proof. The properties (3.38) and (3.39) are true for k = 0 and k = 1, as we have
seen. Make the induction assumption that both are true when 0 ≤ k ≤ n. By (3.37)
we have gn+1 = gn−1gnGn−1 and we know that gn−1 is a (4nε,4nε)-isometry and Gn−1
is a (4nε)-inverse of gn−1. Hence, by Lemmas 3.12 and 3.13, it follows that gn+1 is a
(4n+2ε,4n+2ε)-isometry. Clearly, gn+1(yj) = gn−1gnGn−1(yj) = y1−j , j = 0,1 so gn+1
satisfies (3.38) with k = n+1. By definition, Gn+1 satisfies (3.39) with k = n+1, and
the induction is complete.

Proof of Theorem 3.10. We define a sequence of points an ∈ Y recursively by

a1 = q = y0+y1

2
, an+1 = gn−1

(
an
)
, n≥ 1. (3.40)

Put d = ‖y0−y1‖/2. Let B(y,r) denote the closed ball in Y with center y and ra-
dius r > 0. Since gk is a (4k+1ε)-isometry for k ≥ 0, when y ∈ B(y0,r ), we have
|‖gk(y)−gk(y0)‖−‖y−y0‖| ≤ 4k+1ε and therefore ‖gk(y)−y1‖ ≤ r +4k+1ε, where
we have used gk(y0)=y1. Thus, gk(B(y0,r ))⊂ B(y1,r+4k+1ε), and clearly the same
is true with y0 and y1 interchanged. Therefore, we have

gk
(
B
(
yj,r

))⊂ B(y1−j ,r +4k+1ε
)
, j = 0,1. (3.41)

Evidently, a1 ∈ B(y0,d)∩B(y1,d). Also an = gn−2(an−1) = gn−2gn−3 ···g0(a1), so
an induction based on successive applications of (3.41) with k = 0,1, . . . ,n−2 gives
an ∈ B(y0,d+4nε)∩B(y1,d+4nε)⊂ B(q,d+4nε) for n≥ 1. Now the diameter of this
last ball is 2(d+4nε), so that

∥∥an−an−1∥∥≤ 2
(
d+4nε

)
, n≥ 2. (3.42)

Next we prove by induction that

∥∥gn(y)−y∥∥≥ 2
∥∥an−y‖−2

(
4nε

)
, n≥ 1. (3.43)
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For n = 1, we have by (3.36) and (3.40) that g1(y) = 2q − y = 2a1 − y , so that,
‖g1(y)−y‖ = ‖2a1 − 2y‖ = 2‖a1 −y‖ ≥ 2‖a1 −y‖ − 2(4ε), which verifies (3.43)
for n= 1. Assuming that (3.43) is true, we shall show that it holds when n is replaced
by n+1. Using the recursion formula (3.37) and Lemma 3.14, we obtain

∥∥gn+1(y)−y∥∥= ∥∥gn−1gnGn−1(y)−y∥∥
= ∥∥gn−1gnGn−1(y)−gn−1Gn−1(y)+gn−1Gn−1(y)−y∥∥
≥ ∥∥gn−1gnGn−1(y)−gn−1Gn−1(y)∥∥−∥∥gn−1Gn−1(y)−y∥∥
≥ ∥∥gn−1gnGn−1(y)−gn−1Gn−1(y)∥∥−4nε

≥ ∥∥gnGn−1(y)−Gn−1(y)∥∥−2
(
4nε

)
.

(3.44)

Now use the induction hypothesis with y replaced by Gn−1(y) to find that
∥∥gn+1(y)−y∥∥≥ 2

∥∥an−Gn−1(y)∥∥−4n+1ε

≥ 2
(∥∥gn−1(an)−gn−1Gn−1(y)∥∥−4nε

)−4n+1ε

≥ 2
(∥∥an+1−y∥∥−2

(
4nε

))−4n+1ε = 2
∥∥an+1−y∥∥−2

(
4n+1ε

)
,

(3.45)

so the induction is complete for (3.43).
By (3.40) and (3.43), we have ‖an+1 − an‖ = ‖gn−1(an)− an‖ ≥ 2‖an − an−1‖ −

2(4n−1ε), for n ≥ 1. We replace n by n− 1 to get ‖an −an−1‖ ≥ 2‖an−1 −an−2‖−
2(4n−2ε) and again ‖an−1−an−2‖ ≥ 2‖an−2−an−3‖−2(4n−3ε). Substituting the last
inequality into the preceding one, we have

∥∥an−an−1∥∥≥ 22
∥∥an−2−an−3∥∥−4n−1ε. (3.46)

By induction, we arrive at the inequality

∥∥an−an−1∥∥≥ 2n−2
∥∥a2−a1

∥∥−4n−1ε, for n≥ 2. (3.47)

Now, by (3.42), ∥∥an−an−1∥∥≤ 2
(
d+4nε

)
, (3.48)

and we have ∥∥a2−a1
∥∥≤ 22−n(2d+2

(
4nε

)+4n−1ε
)

for n≥ 2. (3.49)

Changing n to n+2, now for n≥ 0, we find that

∥∥a2−a1
∥∥≤ 2

(
d2−n+18ε2n

)
. (3.50)

By (3.34) and (3.40), a1 = q and a2 = g0(q)= f(2p−F(q)). Hence,
∥∥a2−a1

∥∥= ∥∥f (2p−F(q))−q∥∥= ∥∥f (2p−F(q))−fF(q)∥∥≥ ∥∥2p−2F(q)
∥∥−ε

= 2
∥∥p−F(q)∥∥−ε ≥ 2

(∥∥f(p)−fF(q)∥∥−ε)−ε = 2
∥∥f(p)−q∥∥−3ε.

(3.51)

Thus, by (3.50), for n≥ 0 we have

∥∥f(p)−q∥∥≤ d2−n+18ε2n+2ε. (3.52)

We consider two cases according to whether or not d> 18ε.
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Case 1 (d > 18ε). Let the real number t be defined by d2−t = 18ε2t , that is, t =
log4 (d/18ε) > 0. Let n be the greatest integer in t. Then 2−n < 2·2−t so by (3.52)

∥∥f(p)−q∥∥≤ 2d·2−t+18ε2t+2ε = 3d·2−t+2ε, (3.53)

by the definition of t. Note also from this definition that

d2 ·2−2t = 18εd, d·2−t =
√
18εd. (3.54)

Hence, ∥∥f(p)−q∥∥≤ 3
√
18εd+2ε. (3.55)

Since f is an ε-isometry and d> 18ε, we have

∥∥x0−x1
∥∥≥ ∥∥y1−y0

∥∥−ε = 2d−ε > 2d− d
18
= 35d

18
, (3.56)

and so

18d≤
(
182

35

)∥∥x0−x1
∥∥. (3.57)

Thus, in Case 1, we find that

∥∥f(p)−q∥∥≤ 10
√
ε‖x0−x1‖+2ε. (3.58)

Case 2 (d≤ 18ε). This case covers the situation, where y0 =y1 which was excluded
earlier. Here ∥∥y0−y1

∥∥= 2d≤ 36ε, (3.59)

so that ∥∥x0−x1
∥∥≤ 37ε. (3.60)

Thus, ‖xj−p‖ ≤ 19ε and ‖yj−f(p)‖ ≤ 20ε, j = 0,1. Since

q = y0+y1

2
,

‖f(p)−q‖ =
∥∥∥∥f(p)2

− y0

2
+ f(p)

2
− y

2

∥∥∥∥≤
∥∥∥∥f(p)−y0

2

∥∥∥∥+
∥∥∥∥f(p)−y1

2

∥∥∥∥≤ 20ε.
(3.61)

Therefore, in either Case 1 or Case 2, we have demonstrated the inequality

∥∥f(p)−q∥∥≤ 10
√
ε
∥∥x0−x1

∥∥+20ε, (3.62)

which by (3.32) is the required inequality (3.26) of Theorem 3.10.

Proof of Theorem 3.9. We may assume, without loss of generality, that f(0)=
0. Put x0 = 2x, x1 = 0 in (3.26) to get

∥∥∥∥f(2x)2
−f(x)

∥∥∥∥≤ 10
√
2
(
ε‖x‖)1/2+20ε. (3.63)

We prove by induction that

∥∥∥∥f
(
2nx

)
2n

−f(x)
∥∥∥∥≤ 10

√
2



n−1∑
k=0

2−k/2


(ε‖x‖)1/2+20ε

n−1∑
k=0

2−k. (3.64)



88 THEMISTOCLES M. RASSIAS

Hence, ∥∥2−nf (2nx)−f(x)∥∥≤ 20
(
1+√2

)(
ε‖x‖)1/2+40ε. (3.65)

By replacing x with 2mx in (3.65) and dividing the result by 2m, we get

∥∥2−m−nf (2m+nx)−2−mf
(
2mx

)∥∥≤ 20
(
1+√2

)
2−m/2

(
ε‖x‖)1/2+40ε2−m, (3.66)

which shows that (2−nf(2nx)) is a Cauchy sequence. Since Y is a Banach space, there
exists U :X → Y such that

U(x)= lim
n→∞

f
(
2nx

)
2n

for each x ∈X. (3.67)

Moreover, if n→∞ in (3.65), we obtain

‖U(x)−f(x)‖ ≤ 20
(
1+√2

)(
ε‖x‖)1/2+40ε. (3.68)

It follows immediately that ‖U(x)−f(x)‖/‖x‖ → 0 uniformly as ‖x‖ → 0 uniformly,
and we know that f(0)= U(0)= 0. In order to apply Theorem 3.3, it remains only to
show that U is an isometry. Since f is an ε-isometry on X, we have

∣∣∥∥2−nf (2nx0
)−2−nf

(
2nx1

)∥∥−∥∥x0−x1
∥∥∣∣≤ ε

2n
, (3.69)

and in the limit as n→∞ we get ‖U(x0)−U(x1)‖ = ‖x0−x1‖ for every pair of points
x0,x1 ∈ X. Now all the requirements of the Gruber Theorem 3.3 above are satisfied
and we conclude that U is surjective and that ‖U(x)−f(x)‖ ≤ 5ε for all x ∈X.

Comments. Gruber [13] raised the question whether his bounds 3ε for ‖T(x)−
U(x)‖ when the ε-isometry T is continuous and 5ε in general could be improved. He
showed that if, in Theorem 3.3 above, the space X is Euclidean, then the bounds 3ε
and 5ε may be replaced by 3ε/

√
2 and 5ε/

√
2, respectively.

Recently, Omladǐc and Šemrl [18] have shown that indeed these bounds can be
reduced. Their main result is the following theorem.

Theorem 3.15. Let X and Y be real Banach spaces. Given ε > 0, let f : X → Y be a
surjective ε-isometry with f(0) = 0. Then there exists a surjective isometry U : X → Y
such that ∥∥f(x)−U(x)∥∥≤ 2ε ∀x ∈X. (3.70)

These authors gave examples to show that 2ε is the best possible result. Their
simplest example is this. Define f :R→R by

f(t)=


−3t when 0≤ t ≤ 1

2
,

t−1 otherwise .
(3.71)

It is easy to see that f is a 1-isometry, U(t)= t for this function, and also

max
{∣∣f(t)−U(t)∣∣ : t ∈R}= 2. (3.72)
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Thus, the inequality is sharp. They also constructed an example of a homeomorphic
mapping f : R2 → R2 which is a 1-isometry and such that 2 cannot be replaced by a
smaller constant in (3.70). Thus, the sharpness persists even for homeomorphisms.

Skof [21] has given a different approach to the stability problem for isometric map-
pings between real normed spaces X and E, in which neither completeness of the
spaces nor surjectivity of the mappings is required. Also, the methods used are ele-
mentary.

Skof’s theorem. Let T : X → E with T(0) = 0 satisfy the conditions: (1) T is a δ-
isometry for some δ > 0, and (2) for each x ∈ X, both T(−x) and T(2x) are scalar
multiples of T(x). Let E0 denote the linear hull of T(X)∈ E. Then there exists an isom-
etry U :X → E0 which satisfies the inequality ‖T(x)−U(x)‖< 36δ for all x ∈X and is
given by the formula U(x)= limn→∞2−nT(2nx).

The proof depends upon another theorem by the same author which establishes
the stability of the alternative Cauchy equation: ‖ϕ(x +y)‖ = ‖ϕ(x)+ϕ(y)‖. In
general, neither T nor U need to be linear. For instance, recall the example given by
Baker [1] which was mentioned after Theorem 3.15. Let X = R2 with the usual norm,

let E be R3 but with the norm (x,y,z) = max
[√
x2+y2,|z|] and f : X → E be the

mapping given by Baker in the second example cited above. Then f is an isometry
which is homogeneous and nonlinear. Clearly, this mapping f satisfies the conditions
of Skof’s theorem. Here T =U = f .
ε-isometries on bounded sets. Swain [23] considered ε-isometries on bounded

metric spaces and proved the following result.

Theorem 3.16. Let M be a subset of a compact metric space (E,d) and let η > 0 be
given. Then there exists an ε > 0 such that, if T is any ε-isometry of M into a subset
of E, there is an isometry U :M → E such that d(U(x),T(x)) < η for all x ∈M .

The same author also gave an example to show that even for ε-isometries T on con-
vex subsetsM ofR2 intoR2 there is no universal constant k such that d(T(x),U(x))≤
kε for x ∈M and for all such subsetsM . The difficulty arises here for long thin setsM .

The problem of ε-isometries on bounded subsets of Rn was studied by Fickett [9].
He proved the following two stability theorems, the first depending on the size of the
subset in question and the second on the shape of the subset.

For t ≥ 0, define K0(t)=K1(t)= t, K2(t)= 3(3t)1/2, Kj(t)= 27tm(j), wherem(j)=
1/2j−1 for j ≥ 3.

Theorem 3.17. Let S be a bounded subset of Rn with diameter δ(S), and let T : S →
Rn be an ε-isometry for some ε ≥ 0. Suppose that 3Kn(ε/δ(s)) ≤ 1. Then there exists
an isometry U : S →Rn such that d(T(x),U(x))≤ δ(S)Kn+1(ε/δ(S)) for all x ∈ S.

The next theorem of Fickett illustrates the “difficulty” referred to above for thin
sets. He defines the minimum thickness of a bounded set S to be the infimum of those
d> 0 such that S will fit between two parallel hyper-planes a distance d apart.

Theorem 3.18. Consider a set S ⊂ Rn with diameter δ(S) <∞ and with minimum
thickness h. For some ε ≥ 0, let T : S → Rn be an ε-isometry. Then there exists an
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isometry U : S →Rn such that for all x ∈ S,

d
(
T(x),U(x)

)≤ cnε
(
δ(S)
h

)2n+4
, where cn = 2(n

2/4)+3n+22. (3.73)

Fickett used the first of these results to prove a theorem concerning a conjecture
of Ulam on the invariance of measure in the Hilbert cube.

Jung [16] modified the method (3.8) slightly to prove the stability of isometries on
restricted but unbounded domains, while Fickett investigated the stability problems
of isometries on bounded sets.

References

[1] J. A. Baker, Isometries in normed spaces, Amer. Math. Monthly 78 (1971), 655–658.
MR 44#4490. Zbl 214.12704.

[2] S. Banach, Théorie des Opérations Linéaires [Theory of Linear Operators], Éditions
Jacques Gabay, Sceaux, 1993 (French), Reprint of the 1932 original. MR 97d:01035.
Zbl 005.20901.

[3] D. G. Bourgin, Approximate isometries, Bull. Amer. Math. Soc. 52 (1946), 704–714.
MR 8,157f. Zbl 060.26405.

[4] , Approximately isometric and multiplicative transformations on continuous func-
tion rings, Duke Math. J. 16 (1949), 385–397. MR 11,115e. Zbl 033.37702.

[5] , Two-dimensional ε-isometries, Trans. Amer. Math. Soc. 244 (1978), 85–102.
MR 80d:46027. Zbl 412.46011.

[6] R. D. Bourgin, Approximate isometries on finite dimensional Banach spaces, Trans. Amer.
Math. Soc. 207 (1975), 309–328. MR 51#6366. Zbl 327.46023.
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