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ON A STOCHASTIC INVENTORY MODEL
WITH DETERIORATING ITEMS
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Abstract. We suggest a new inventory continuous time stochastic model for deteriorating
items. We derive optimal operating characteristics of the expected cost per unit time under
the assumption that demand in each replenishment cycle forms a regenerative process.
We also present numerical examples.

2000 Mathematics Subject Classification. Primary 60K30, 60J10, 90B05.

1. Introduction. Inventory models for perishable or deteriorating items are of con-
siderable importance in the study of inventory systems. There is an abundant amount
of research papers dealing with such models: see Raafat [8] for his excellent review
and references therein. Unfortunately, a large proportion of existing work is related
to deterministic models. A very limited number of papers on continuous time review
models for deteriorating items can be found. Further, there is a very small difference
among these models. They are based on a fixed review period of length, say, T . At the
beginning of each period the inventory level is reset to some level, say, S regardless
of the position of the inventory. The aggregate demand is assumed random but uni-
formly distributed over the period. The perishability process acts deterministically on
the stock. The analysis of these models is carried out in a similar fashion to determin-
istic models: see [2, 3, 4, 5, 9].

It is clear that these models may call for ordering very small quantities with positive
probability because of the uniform assumption. This may be very costly.

Nahmias and Shah [7] investigated the problem of finding the optimal lot size re-
order point for an extended model of the work mentioned above by considering the
possibility of lead time. However, they made a strong assumption that demand is on
average fixed per unit time. Also, the deterioration rate was taken to be fixed.

Nahmias and Shah [7] pointed to the difficulty of obtaining the optimal policy, which
minimizes the total cost of inventory per unit time, for continuous reviewmodels with
positive lead time. It is well known that for models with no deterioration the optimal
policy is of the form: when the inventory position hits the reorder point r , an order
for Q units is placed. This is no longer true when deterioration is included.

It is worth mentioning at this stage the pioneering work of Nahmias in the study of
discrete time inventory systems for perishable items: see [6] for more details. In these
models demand was assumed random in each period and products were assumed to
have a certain life time which may be random. Various optimal characteristics were
obtained under various conditions on the demand and the life time processes.
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In the present paper, we assume that both demand and deterioration are contin-
uous time stochastic processes. We also include the possibility of random lead time
and make the usual assumption that orders are assumed not to cross each other. The
model to be presented is inspired from pathwise analysis of stochastic calculus. Here,
we assume that the level of inventory I(t) is modelled by a finite family of differen-
tial equations each of which corresponds to a possible path to which is attached a
probability. Our approach shall be simple and at times heuristic. More sophisticated
approach is the subject of future work.

The next section is concerned with the mathematical model and some results.
Section 3 contains the results of a numerical study and a conclusion.

2. Model formulation and results. (1) A single item is held in stock.
(2) There is a lead time L which is assumed to be random with density function f .

We also assume that orders do not cross each other.
(3) Shortages are allowed.
(4) At the beginning of each cycle the decision maker has N possible scenarios

of demand-deterioration {Dj(t),θj(t)} rates that may occur. To each scenario j is
attached a probability pj , where

∑N
j=1pj = 1.

(5) The demand rates Dj(t) and the deterioration rates θj(t) are a function of the
length of the cycle. This assumption fits well with products experiencing some kind
of quality changes while in stock such as food stuff, batteries, electronic components,
cars, computers, etc. These products usually experience a decrease in demand. How-
ever, there are products that experience an increase in demand while in stock: some
types of drinks and cheese, antiques, etc.

(6) The cost structure of the model is as follows:
(a) a fixed ordering cost, K,
(b) a holding cost per unit of item per unit time c1,
(c) a shortage cost per unit of item per unit time c2,
(d) a cost per unit of item c3.

Assume that at time t = 0, the system has a quantity of Q units in stock. The
quantity depletes due to demand and deterioration according to one of theN possible
scenarios until it reaches level r at which time an order to replenish the inventory to
level Q is made. Once the order arrives a new cycle begins.

Note that during the lead time shortages may occur.
Let Ti be the elapsed time between the ith and the (i+1)th cycle, with T0 = 0. Also,

let Sn =
∑n
i=1Ti. Obviously, under assumptions 4 and 5, Ti are i.i.d. Also, it is easy to

see that the sequence S = {Sn,n = 1, . . .} forms a renewal process. Standard results
from the theory of renewal reward processes enable us to write down the total cost
per unit time TCU as:

TCU = E[cost for the first cycle]
E[length of the cycle]

. (2.1)

Our aim now is to write down explicitly the expression (2.1).
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Let I(t) be the level of inventory at time t, where I(0) =Q, T be the length of the
first cycle, say, and let

I+(t)=



I(t) for I(t)≥ 0,

0 for I(t) < 0,
I−(t)=



0 for I(t)≥ 0,

I(t) for I(t) < 0.
(2.2)

It follows that (2.1) gives

TCU = K+E
[
c1
∫ T
0 I+(t)dt+c2

∫ T
0 I−(t)dt+c3P

]
E[T]

. (2.3)

Here P refers to the quantity of perished items during the cycle. We are interested in
finding the values of Q and r that minimizes TCU in (2.3).

Generally speaking, if we let the level of inventory, I(t), be modelled by a general
stochastic differential equation, then finding the values ofQ and r thatminimizes (2.3)
becomes a formidable task involving techniques and tools from stochastic calculus.
This more sophisticated approach shall be discussed in future work. In this paper, we
shall adopt a direct approach. In this case, we need only to look at each realization
of the process on each possible path. This usually reduces to a deterministic analysis
on each path. Then, we take expectation over these paths. We hope that this paper
will open a way for the use of powerful tools for solving still a large number of open
problems.

For a given j and L, j = 1, . . . ,N , let ILj (t) be the level of inventory at time t given

that the process is described by {Dj(t),θj(t)} when the lead time is L. Also, let TLj be

the length of the cycle and let ∆Lj be the time taken for the inventory to reach level
zero starting from level Q.

Write tj for the time needed for the inventory to reach level r starting fromQ. Also,
assume that the functionsDj(t) and θj(t) are smooth for all j = 1, . . . ,n, meaning that
they are differentiable whenever needed.

Let τLj = min(∆Lj ,tj +L). Then, the variation of ILj (t) with respect to time can be
shown to be governed by the following differential equation:

dILj (t)
dt

=−Dj(t)−θj(t)ILj (t), 0≤ t < τLj (2.4)

with boundary condition I(∆j)= 0. Also, if τLj < tj+L, then shortages occur, in which

case τj =∆j and the changes in the inventory after time τLj and up to tj+L is governed
by the following differential equation:

dILj (t)
dt

=−Dj(t), ∆Lj ≤ t < tj+L, (2.5)

with initial condition I(∆j)= 0.
Note that in (2.5) the deterioration rate θj(t) is missing. This is simply due to the

fact that during shortages no deterioration is experienced.
Direct calculations show that the solution to (2.4) may be represented by

ILj (t)= e−gj(t)
∫ ∆j
t
egj(u)Dj(u)du, (2.6)
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with

g′j(t)= θj(t), (2.7)

and gj(0) = 0. Here g′(·) represents the first derivative of g with respect to its
argument.

Now, it is not difficult to deduce that

Q=
∫ ∆j
0
egj(t)Dj(t)dt, (2.8)

r = e−gj(tj)
∫ ∆j
tj
egj(t)Dj(t)dt. (2.9)

It is clear that there is one-to-one correspondence betweenQ and ∆j since egj(t)Dj(t)
> 0. Also, if ∆j is known, then there is a one-to-one correspondence between r and tj .

The amount of inventory ALj during the cycle is equal to

ALj =
∫ τLj
0
ILj (t)dt, (2.10)

where ILj (t) is given by (2.6). When θj(t)= θj then it can be shown that (2.9) reduces to

1
θj

∫ ∆j
0

(
eθjt−1

)
Dj(t)dt− 1

θj

∫ ∆j
τLj

(
eθ
(
u−τLj

)
−1
)
Dj(t)dt. (2.11)

Also, the amount of shortages SLj can be shown to be equal to

SLj =
∫ tj+L
τLj

(
tj+L−t

)
Dj(t)dt. (2.12)

It is worth mentioning at this stage that relations (2.11) and (2.12) reduce to their
deterministic counterpart model when L= 0 since ∆j = τLj (see [1]).

The amount of deteriorated items PLj during the cycle is

PLj =Q−ILj
(
τLj
)−
∫ τLj
0
Dj(t)dt. (2.13)

Where ILj (t) is given by (2.6).
When θj(t)= θj , then (2.13) reduces to

PLj =
∫ τLj
0

(
eθjt−1

)
Dj(t)dt+

∫ ∆j
τLj
eθjt

(
1−e−θjτLj

)
Dj(t)dt. (2.14)

Note that in this case we have

PLj = θjALj . (2.15)

Now, let

TCLj =K+c1ALj +c2SLj +c3PLj , (2.16)

where ALj , S
L
j , and P

L
j are given by (2.10), (2.12), and (2.13), respectively.
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It follows from (2.3) that

TCU =
∑N
j=1
∫∞
0 pjTC

L
j f (L)dL∑N

j=1
∫∞
0 pjT

L
j f (L)dL

, (2.17)

where TCLj is given by (2.16).
We deduce from the previous analysis that the problem of finding the optimal re-

plenishment strategy reduces to the problem of finding Q and r which minimizes
TCU in (2.17) subject to (2.8) and (2.9).

Remark. Fix r = 0 and assume that Dj(t) = λj and θj(t) = θj, j = 1, . . . ,n. Also,
put L= 0, then (2.16) reduces to

TCLj =K+
c1+θjc3
θj

∫ ∆Lj
0

(
eθjt−1

)
λj dt. (2.18)

Now, let θj → 0. Then, it is not difficult to deduce, after some algebra, that (2.17)
reduces to

K
Q
∑N
j=1
(
pj/λj

) + 1
2
c1Q (2.19)

from which the optimal order quantity is

Q=
√√√√2K

(
1/
∑N
j=1
(
pj/λj

))
c1

. (2.20)

Expression (2.20) means that the economic order quantity is recovered in our model
by taking the demand rate to be equal to 1/

∑N
j=1(pj/λj).

3. Numerical examples and conclusions. In this section, we present detailed re-
sults of two examples for which the optimal replenishment schedule is based on min-
imizing (2.17). We also give the result of a small scale computational comparison
between the optimal scheme and an approximate scheme based on taking a single
scenario whose demand and deterioration rates are assumed to be the weighted av-
erages of the scenarios (see below for more details).

In all our examples, we assumed that the demand rates are linear functions, that
is, Dj(t) = ajt+bj, j = 1, . . . ,N , where N = 4. We took a1 = 250, a2 = 90, a3 = 80,
a4 = 200, b1 = 40, b2 = 30, b3 = 100, b4 = 50, K = 200, c1 = 0.7, c2 = 1.3, c3 = 8.5.
The lead time distribution was assumed to be uniform with support (0,m), wherem
was fixed to 2.

In the first example, we took p1 = p2 = p3 = p4 = 0.25 and in the second example
we took p1 = 0.1, p2 = 0.3, p3 = 0.4, and p4 = 0.2.

To find the optimal policy we used a NAG library routine. For the expressions in
(2.5) we used the package derive for symbolic integration.

The optimal policy in the first example gave Q∗ = 20.6677 and r∗ = 4.1377 with
total cost per unit time equals 291.9599.

The optimal policy in the second example gaveQ∗ = 26.5956 and r∗ = 5.3279 with
total cost per unit time equals 278.9021.
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Further, we compared the optimal policy based onminimizing (2.17) with an approx-
imate scheme based on taking a single scenario whose demand is the weighted average
of the scenarios. To be precise, we consider a single scenario N = 1 in (2.17) with

D(t)=
N∑
j=1
pjDj(t), θ(t)=

N∑
j=1
pjθj(t). (3.1)

In our comparison we only considered the case Dj(t) = ajt+bj, j = 1, . . . ,4. We
took eighty problems in which we fixed a1 = 250, a2 = 90, a3 = 80, a4 = 200, b1 = 40,
b2 = 30, b3 = 100, b4 = 50, K = 200, c1 = 0.7, c2 = 1.3, c3 = 8.5. In the first forty prob-
lems, (Problems I), we assumed that p1 = p2 = p3 = p4 = 0.25 and in the remaining
forty problems, (Problems II), we put p1 = 0.1, p2 = 0.3,p3 = 0.4, and p4 = 0.2.

In all the problems, we varied the set up cost K = 150,160, . . . ,240, holding cost,
c1 = 0.2,0.3, . . . ,1.1, shortage cost c2 = 0.8,0.9, . . . ,1.7, and the unit cost c3 = 3.5,
4.5, . . . ,12.5.

The approximate policy was assessed in terms of the percentage deviation from
optimality as the percentage increase in the total cost above the optimal cost value.

Tables 3.1 and 3.2 show the average cost deviation of the approximation with re-
spect to each parameters.

Table 3.1. Average deviation of Problems I as a function of the parameters
K, c1, c2, and c3.

Parameters Max deviation Min deviation Average

K 0.0262 0.0204 0.02585

c1 0.0330 0.0143 0.02199

c2 0.0420 0.0109 0.02194

c3 0.0628 0.0099 0.02827

Overall average 0.04100 0.01388 0.02451

Table 3.2. Average deviation of Problems II as a function of the parameters
K, c1, c2, and c3.

Parameters Max deviation Min deviation Average

K 0.0162 0.0110 0.01402

c1 0.0245 0.0054 0.01241

c2 0.0270 0.0045 0.01505

c3 0.0325 0.0050 0.01226

Overall average 0.02505 0.00648 0.013435

It is clear that the approximate method performs remarkably well in this case. In the
eighty problems, the deviation was less than 0.03%. We think that more computational
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studies with different demand, deterioration rates, functions, and general distribution
of the lead time should be undertaken.

To summarize, we have suggested in this paper a new continuous time inventory
model for deteriorating items. Optimal (r ,Q) policies that minimizes the total cost
per unit time were found. Numerical examples with the result of a computational com-
parison between the optimal schedule and an approximate method were presented.
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