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KRĔIN’S TRACE FORMULA AND THE SPECTRAL SHIFT FUNCTION
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Abstract. Let A,B be two selfadjoint operators whose difference B −A is trace class.
Krĕın proved the existence of a certain function ξ ∈ L1(R) such that tr[f (B)−f(A)] =∫
Rf

′(x)ξ(x)dx for a large set of functions f . We give here a new proof of this result and
discuss the class of admissible functions. Our proof is based on the integral representation
of harmonic functions on the upper half plane and also uses the Baker-Campbell-Hausdorff
formula.
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1. Introduction. Krĕın [19, 20, 21] developed the trace formula

tr
[
f(B)−f(A)]=

∫
R
f
′
(x)ξ(x)dx (1.1)

which originated from Lifšic [22]. The function ξ is known as Krĕın’s spectral shift
function (SSF) and has important applications in spectral theory. For instance, ξ is
related to the scattering matrix S(λ) for A and B by the remarkable formula [3],

detS(λ)= e−2πiξ(λ). (1.2)

More recently, Krĕın’s spectral shift function was used for the computation of Witten’s
index in supersymmetric scattering theory [7, 14] and in inverse spectral theory for
Schrödinger operators [15]. The trace formula can also be viewed as a mean value the-
orem for operators [10]. A comprehensive survey and references can be found in [6].
For more recent results see [4, 12, 13, 18, 29], and for extensions to non-selfadjoint
operators see [1, 16, 26] and the references therein. Long time Krĕın’s original proof
[19]—also in [2, 21, 28, 32]—was the only one available. This proof is based on the
relation

logdetB/A(z)=
∫
R

ξ(x)
x−z dx, (1.3)

where detB/A is the perturbation determinant for the pair A,B. It uses properties of
such determinants and the integral representation of holomorphic functions on the
upper half plane with a bounded imaginary part. In 1985, Voiculescu [31] approached
the trace formula from a different direction. He constructed explicitly the spectral
shift function in the finite dimensional case and then used the quasidiagonality of
selfadjoint operators relative to the Hilbert-Schmidt class to extend by approxima-
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tion the trace formula to bounded operators on a separable Hilbert space. Recently,
Sinha and Mohapatra [28] applied a sophisticated approximation procedure to extend
the formula from bounded to unbounded operators and thus provided an alternative
proof of Krĕın’s theorem. Another approach, using contour integration was suggested
in [27]. We highly recommend the recent article [4] which contains very interesting
comments on several formula representations of the SSF.

Outline of the paper. We give here a new proof of the trace formula which
does not use determinants or approximation. The spectral shift function is defined
as the boundary value of one appropriate harmonic function on the upper half plane,
see (2.6). This way we provide a new formula representation for the SSF. A special
feature of our proof is the connection to the Baker-Campbell-Hausdorff formula in
Lemma 1.1.
In Section 2, we state Krĕın’s theorem. Section 3 contains its proof. In Section 4, we

give some examples of admissible functions and in Section 5, we deal with a substi-
tution in the trace formula. The Baker-Campbell-Hausdorff formula is discussed in
Section 6. The paper is accessible to graduate students with a background in func-
tional analysis.

Prerequisite. We work with linear operators on a complex Hilbert space.
Throughout S1 stands for the trace class. The notation ‖·‖1 is used for the norm
on S1 as well as for the norm on L1(R), and ‖·‖ is the uniform operator norm.

Lemma 1.1. Let X,Y be two bounded operators with X + Y ∈ S1. If ‖X‖,‖Y‖ are
sufficiently small, then the operator Z defined by eXeY = eZ belongs to the trace class,
and

trZ = tr(X+Y). (1.4)

The proof is given in Section 6.
We need some simple facts about Poisson integrals and harmonic functions which

can be found, for instance, in [17].

Lemma 1.2. For every g ∈ L1(R),

g(x)= lim
y→0+

1
π

∫
R
g(t)

y
y2+(x−t)2 dt (1.5)

almost everywhere. The convergence is everywhere and uniform when g is uniformly
continuous.

Lemma 1.3 (Fatou). If h(x,y), x ∈R, y > 0 is a bounded harmonic function on the
upper half plane, then its nontangential boundary values h(x)= limy→0+h(x,y) exist
almost everywhere and

h(x,y)= 1
π

∫
R
h(t)

y
y2+(x−t)2 dt. (1.6)
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2. Krĕın’s trace formula

Definition 2.1. Let K be the set of all functions with the representation

f(x)=
∫
R

eisx−1
s

dµ(s), (2.1)

where µ is a finite measure on R.

If A is a selfadjoint operator with spectral resolution EA(λ) and f ∈K, we define as
usual

f(A)=
∫
R
f(λ)dEA(λ)=

∫
R

eisA−1
s

dµ(s). (2.2)

Lemma 2.2. Suppose that A,B are selfadjoint operators and B−A∈ S1. Then for all
f ∈K:

f(B)−f(A)∈ S1 and ‖f(B)−f(A)‖1 ≤ ‖B−A‖1‖µ‖. (2.3)

Theorem 2.3. Let A and B be two selfadjoint operators with B−A∈ S1. There exists
a function ξ ∈ L1(R) such that
(a) for every f ∈K,

tr
[
f(B)−f(A)]=

∫
R
f
′
(x)ξ(x)dx. (2.4)

In particular,

tr(B−A)=
∫
R
ξ(x)dx. (2.5)

(b) ‖ξ‖1 ≤ ‖B−A‖1.
(c) If A≤ B, then 0≤ ξ almost everywhere.
(d) ξ(x)= 0 outside of any interval containing σ(A)

⋃
σ(B).

The function ξ is called Krĕın’s spectral shift function (SSF). It can be computed by
the formula

ξ(x)= lim
y→0+

h(x,y), a.e. x ∈R, (2.6)

where

h(x,y)= 1
π
tr
[
arctan

B−x
y

−arctan A−x
y

]
= 1
2πi

∫
R
e−ixs−y|s| tr

[
eisB−eisA

s

]
ds.

(2.7)
We write sometimes ξ(x)= ξ(x;A,B) to indicate the dependence on A and B.

3. Proof of Theorem 2.3. First we prove Lemma 2.2. The relation

eisB−eisA =
∫ s
0
ei(s−t)B(B−A)eitAdt (3.1)

implies ∥∥eisB−eisA∥∥1 ≤ |s|‖B−A‖1. (3.2)

When f ∈K, we have

f(B)−f(A)=
∫
R

eisB−eisA
s

dµ(s). (3.3)
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Therefore f(B)−f(A)∈ S1 and

∥∥f(B)−f(A)∥∥1 ≤
∫
R

‖eisB−eisA‖1
|s| d|µ|(s)≤ ‖B−A‖1‖µ‖. (3.4)

We introduce one important tool, the function g(t)= arctant. It belongs to the class
K because the two representations

arctant =
∫ 1
0

t
1+t2u2 du,

t
1+t2u2 =

t
2

∫
R
eituse−|s|ds (3.5)

together give

arctant = 1
2i

∫
R

eist−1
s

e−|s|ds. (3.6)

For all x ∈R, y > 0, we define

h(x,y)= 1
π
tr
[
arctan

B−x
y

−arctan A−x
y

]
. (3.7)

In view of (3.4) and (3.6),

π
∣∣h(x,y)∣∣≤

∥∥∥∥arctan B−xy −arctan A−x
y

∥∥∥∥
1
≤ 1
y
‖B−A‖1. (3.8)

Using the representation (3.6) we can write also

h(x,y)= 1
2πi

∫
R
e−ixs−y|s| tr

[
eisB−eisA

s

]
ds (3.9)

which shows that h(x,y) is harmonic in the upper half plane x ∈ R, y > 0. To find
out more about this function we study one special unitary operator.
Set z = x+iy and consider the unitary Cayley transforms:

TA = (A− z̄)(A−z)−1 = I+2iy(A−z)−1,
TB = (B− z̄)(B−z)−1 = I+2iy(B−z)−1. (3.10)

Then define the unitary operator U(x,y)= TAT∗B and compute

U−I = TAT∗B −TBT∗B =
(
TA−TB

)
T∗B = i2y

[
(A−z)−1−(B−z)−1]T∗B (3.11)

which gives
U(x,y)= I+i2y(A−z)−1(B−A)(B− z̄)−1. (3.12)

Suppose now that B−A is a nonnegative one-dimensional operator:

B−A=α〈·,w〉w, where α> 0, ‖w‖ = 1. (3.13)

Then
U = I+i2yα〈·,(B−z)−1w〉(A−z)−1w. (3.14)

Taking v = (A−z)−1w, we find

Uv = (1+i2yα〈(A−z)−1w,(B−z)−1w〉)v (3.15)
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which shows that U has an eigenvalue 1+α(x,y) with

α(x,y)= 2iyα〈(A−z)−1w,(B−z)−1w〉. (3.16)

The unitary operator U has exactly two eigenvalues, 1 and 1+α(x,y), as B−A has
exactly two eigenvalues, 0 and α. Because of this, α(x,y) ≠ 0 for all x ∈ R, y > 0. If
α(x,y) = 0 for some x,y , then U(x,y) has only one eigenvalue 1 and U(x,y) = I
which is impossible, since A≠ B. Therefore we can write

1+α(x,y)= ei2πθ(x,y), (3.17)

where θ(x,y) is a continuous function on the upper half plane with 0 < θ < 1. The
unitary operator U itself has the representation U = ei2πH , with H a selfadjoint trace
class operator, having two eigenvalues, 0 and θ. Using the logarithm with argument
in (0,2π), we can write

i2πH = logU, i2πθ = tr logU = log(1+α(x,y)). (3.18)

Set

X = 2arctan A−x
y

, Y = 2arctan B−x
y

. (3.19)

Spectral theory easily gives

TA = e−iX , TB = e−iY . (3.20)

For large y > 0 the operators X,Y have small norms and by Lemma 1.1,

i2πθ = tr log(e−iXeiY )= itr(Y −X)= i2πh, (3.21)

that is, θ(x,y)= h(x,y). Since θ(x,y) is harmonic for large y , it is harmonic for all
y > 0 because it has the same structure for all y > 0,

θ(x,y)= 1
2πi

log
(
1+2iyα〈(A−z)−1w,(B−z)−1w〉). (3.22)

We conclude that θ(x,y)= h(x,y) on the whole upper half plane because both func-
tions are defined and harmonic there. Therefore 0< h< 1. By Fatou’s theorem it has
boundary values ξ(x)= limy→0+h(x,y) a.e. with 0≤ ξ ≤ 1 and

h(x,y)= 1
π

∫
R

y
y2+(x−t)2 ξ(t)dt. (3.23)

From (3.8),

lim
y→∞πyh(x,y)=

∫
R
ξ(t)dt = ‖ξ‖1 ≤ ‖B−A‖1. (3.24)

When α< 0 we can change the places of A,B and define ξ(t;B,A)=−ξ(t;A,B)≥ 0, so
that in this case ξ(t;A,B)≤ 0. For completeness, if α= 0 we set ξ(t;A,B)= 0.
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In order to define ξ for an arbitrary trace class perturbation

B−A=
∞∑
k=1

αk
〈·,wk

〉
wk, ‖B−A‖1 =

∞∑
k=1

∣∣αk
∣∣<∞, (3.25)

we proceed by the staircase method. Let

Bn =A+
n∑
k=1

αk
〈·,wk

〉
wk, lim

n→∞
∥∥B−Bn∥∥1 = 0. (3.26)

Suppose that we have defined ξ(t;A,Bn) for some n with
∥∥ξ(t;A,Bn)∥∥1 ≤

∥∥Bn−A∥∥1,

tr
[
arctan

Bn−x
y

−arctan A−x
y

]
=
∫
R

y
y2+(x−t)2 ξ

(
t;A,Bn

)
dt.

(3.27)

Then we set

ξ
(
t;A,Bn+1

)= ξ
(
t;A,Bn

)+ξ(t;Bn,Bn+1), (3.28)

∥∥ξ(t;A,Bn+1)∥∥1 ≤
∥∥ξ(t;A,Bn)∥∥1+

∥∥ξ(t;Bn,Bn+1)∥∥1 ≤
n+1∑
k=1

∣∣αk
∣∣= ∥∥Bk+1−A∥∥1 (3.29)

and (3.27) holds for n+1 because we can add and subtract arctan[(Bn+1−x)/y] in
the left-hand side. By induction, the functions ξ(t;A,Bn) are defined for all n and it
is trivial to see that they form a Cauchy sequence in L1(R). The limit

ξ(t)= ξ(t;A,B)= limξ
(
t;A,Bn

)
(3.30)

exists with ‖ξ(t)‖1 ≤ ‖B−A‖1.
Proof of (c). When B −A ≥ 0, then all αk ≥ 0 and in view of (3.28) we find by

induction ∀n : ξ(t;A,Bn)≥ 0. Therefore ξ ≥ 0.
Proof of (a). By (3.4), the following estimate is true

∥∥∥∥arctan B−xy −arctan Bn−x
y

∥∥∥∥
1
≤ 1
y
∥∥B−Bn∥∥1. (3.31)

Passing to limits in (3.27), we find

tr
[
arctan

B−x
y

−arctan A−x
y

]
=
∫
R

y
y2+(x−t)2 ξ(t)dt. (3.32)

This relation, true for all x ∈R, y > 0 implies

tr
[
f(B)−f(A)]=

∫
R
f ′(t)ξ(t)dt (3.33)

for all functions f ∈K. Indeed, given f(t)= ∫R(eist−1)/sdµ(s) define

f(t;y)=
∫
R

eist−1
s

e−y|s|dµ(s), y > 0. (3.34)
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We have

d
dt

f(t;y)= f ′(t;y)= i
∫
R
eiste−y|s|dµ(s)

= i
∫
R

[
1
π

∫
R

y
y2+(x−t)2 e

isx dx
]
dµ(s)

= 1
π

∫
R

y
y2+(x−t)2

[
i
∫
R
eisx dµ(s)

]
dx

= 1
π

∫
R

y
y2+(x−t)2 f

′(x)dx.

(3.35)

Integrating for t and adjusting the constant of integration so that f(0,y)= 0, we find

f(t;y)= 1
π

∫
R

[
arctan

t−x
y

+arctan x
y

]
f ′(x)dx (3.36)

therefore,

tr
[
f(B;y)−f(A;y)]= 1

π

∫
R
tr
[
arctan

B−x
y

−arctan A−x
y

]
f ′(x)dx

=
∫
R

[
1
π

∫
R
f ′(x)

y
y2+(x−t)2 dx

]
ξ(t)dt.

(3.37)

Taking limits for y → 0+ we come to (3.33).
The limit

lim
y→0+

tr
[
f(B;y)−f(A;y)]= tr[f(B)−f(A)] (3.38)

becomes obvious when we compare

tr
[
f(B;y)−f(A;y)]=

∫
R
tr
[
eisB−eisA

s

]
e−y|s|dµ(s) (3.39)

with

tr
[
f(B)−f(A)]=

∫
R
tr
[
eisB−eisA

s

]
dµ(s). (3.40)

The function f(t)= t belongs to K with dµ(s)=−iδ(s)ds. This gives

tr(B−A)=
∫
R
ξ(t)dt. (3.41)

Proof of (d). Suppose σ(A)
⋃
σ(B)⊆ [a,b] and x < a. The relation

arctant = π
2
−arctan 1

t
(t > 0) (3.42)

gives (by using the spectral theorem with integration over (−∞,x] and [x,+∞))

arctan
B−x
y

−arctan A−x
y

= arctan[y(A−x)−1]−arctan[y(B−x)−1]. (3.43)

Therefore,

ξ(x)= lim
y→0+

1
π
tr
[
arctan

(
y(A−x)−1)−arctan(y(B−x)−1)]= 0. (3.44)
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The case x > b is treated similarly, using the relation

arctant =−π
2
−arctan 1

t
(t < 0). (3.45)

Moreover, if the spectra of the operators are separated, it easily follows that on inter-
vals between them the SSF is a constant. The proof is completed.

Remark 3.1. The above proof allows a natural extension of Krĕın’s formula. Let A
and B be the generators of one-parameter C0-groups of operators: eitA,eitB, t ∈R, of
at most polynomial growth

∥∥eitA∥∥,∥∥eitB∥∥≤M
(
1+|t|)α, α≥ 0 (3.46)

(whenM = 1, α= 0, the operators are selfadjoint). The harmonic function (3.7) is well
defined and its boundary value (2.6) is a certain distribution for which (2.4) holds.

4. Admissible functions. Let A,B be two selfadjoint operators with B −A ∈ S1.
One differentiable function f(x) defined on some interval containing σ(A)

⋃
σ(B) is

called admissible, if f(B)−f(A) ∈ S1 and the trace formula (2.4) holds. We proved
that the functions in the set K are admissible. Obviously, if f is admissible, then
f + c is also admissible for any constant c. Any linear combination of admissible
functions is admissible. One could expect that every function with f ′ ∈ L∞(R) is ad-
missible. However, Farforovskaya produced an example of a function f with bounded
continuous derivative and a pair of selfadjoint operators A,B such that B−A ∈ S1
but f(B)− f(A) �∈ S1 (see [11] and the note at the end of it). The characterization
of all admissible functions is an open problem. Birman and Solomyak [5], using the
methods of double operator integrals, described a large class of admissible functions,
including those with f ′ ∈ Lp(R)

⋂
Lipε, where 1 ≤ p <∞, ε > 0. Their investigations

were continued by Peller [24, 25], who showed that every function in the Besov class
B1∞,1 is admissible. Using only simple means, we want to give here some examples of
admissible functions, besides those in K.

Proposition 4.1 [20]. Suppose v(t) is a finite measure on a set M ⊆R such that

∫
M
|t|d|v|(t) <∞. (4.1)

Then all functions of the form f(x)= ∫M eitx dv(t) are admissible.

Proof. Writing the trace formula for the admissible function

ft(x)= eitx−1
t

(4.2)

we get

tr
(
eitB−eitA)=

∫
R
iteitxξ(x)dx (4.3)

which shows that the function gt(x) = eitx is admissible. In view of (3.2), we can
multiply both sides in (4.3) by dv and integrate over M .
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Corollary 4.2. When Im(z) ≠ 0 the function fz(x) = 1/(x+z) and all its deriva-
tives are admissible.

Proof. Let z = s+it. For t > 0, we write
1

x+s+it =
−i

−ix−is+t =−i
∫∞
0
eiλxeiλse−λt dλ (4.4)

and for t < 0,
1

x+s+it =
i

ix+is−t = i
∫∞
0
e−iλxe−isλeλt dλ. (4.5)

The result follows immediately from here. We deduce that the function

ft(x)= x
x2+t2 =

1
2

[
1

x+it +
1

x−it
]

(4.6)

is also admissible.
Now we turn to the case of nonnegative operators A,B. In view of property (d) we

need to consider only functions on [0,∞).
Proposition 4.3. Let 0≤A,B and v(t) be a finite measure on [0,∞) with

∫∞
0
|t|d|v|(t) <∞. (4.7)

Then all functions of the form

f(x)=
∫∞
0
e−tx dv(t), x ≥ 0, (4.8)

are admissible.

Proof. When t,x > 0 the function ft(x)= e−tx is admissible, as seen from

e−tx = 1+ t2

π

∫
R

e−isx−1
is

ds
t2+s2 (4.9)

(to check this, differentiate both sides for x). Then one proceeds as in Proposition 4.1,
integrating

tr
(
e−tB−e−tA)=−

∫∞
0
te−txξ(x)dx. (4.10)

Proposition 4.4. Suppose 0< εI ≤A,B and f(x) is a function on (0,∞) that admits
a bounded holomorphic extension f(z) on the right half plane Re(z) > 0. Then f is
admissible for A,B.

Proof. One has the Poisson representation

f(x)= 1
π

∫
R
f(it)

x
x2+t2 dt, (4.11)

where f(it) is the boundary value of f(z) defined a.e. The spectral theorem gives

f(A)= 1
π

∫
R
f(it)

A
A2+t2 dt. (4.12)
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In the same way we represent f(B). Since the function x/(x2+t2) is admissible, one
can write

tr
[

B
B2+t2 −

A
A2+t2

]
=
∫
R

t2−x2(
x2+t2)2 ξ(x)dx. (4.13)

Multiplying both sides by f(it) and integrating over R one comes to (2.4). To see that
the integral on the left side converges, one needs to check that f(B)− f(A) ∈ S1.
Indeed,

∥∥∥∥ 1
B+it −

1
A+it

∥∥∥∥
1
=
∥∥∥∥ 1
B+it (B−A)

1
A+it

∥∥∥∥
1

≤
∥∥∥∥ 1
B+it

∥∥∥∥
∥∥∥∥ 1
A+it

∥∥∥∥‖B−A‖1 ≤ 1
(ε+|t|)2 ‖B−A‖1.

(4.14)

Using the decomposition (4.6), one estimates

∥∥∥∥ B
B2+t2 −

A
A2+t2

∥∥∥∥
1
≤ 1
(ε+|t|)2 ‖B−A‖1 (4.15)

and therefore, ∥∥f(B)−f(A)∥∥1 ≤ 2
πε

sup
Re(z)>0

|f(z)|‖B−A‖1. (4.16)

Example 4.5. Taking f(x)= xis, s ∈R, one finds

tr
(
Bis−Ais)= is

∫∞
ε
xis−1ξ(x)dx. (4.17)

Remark 4.6. In Proposition 4.4, one may assume only that f(x) admits a bounded
holomorphic extension on some sector |Arg(z)| < π/2. The estimate (4.16) can be
improved by using an appropriate integral representation of such function [9].

5. Φ-compatible operators. It may happen that the difference B −A is not trace
class, but for some common regular point z,

(B−z)−1−(A−z)−1 ∈ S1. (5.1)

Such operators are called resolvent compatible. If (5.1) is true for some z∈ρ(A)⋂ρ(B),
then it is true for all λ∈ ρ(A)

⋂
ρ(B), as follows from the identity

(B−λ)−1−(A−λ)−1 = (B−z)(B−λ)−1[(B−z)−1−(A−z)−1](A−z)(A−λ)−1. (5.2)

An important case is when the operators are bounded from below. We may assume
that 0≤A,B. Then (5.1) is equivalent to

(B+I)−1−(A+I)−1 ∈ S1 (5.3)

and we can apply the trace formula to the operators (B+I)−1 and (A+I)−1. After that
the substitution t→ t−1−1 brings to a trace formula for A,B.
More generally, we have the following.
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Definition 5.1. Let Φ be a real-valued continuous function on some finite or infi-
nite interval [a,b] with Φ′ existing and nonzero on (a,b). Two selfadjoint operators
A,B with spectra in [a,b] are called Φ-compatible, if

Φ(B)−Φ(A)∈ S1. (5.4)

Krĕın’s trace formula extends to such operators by a simple substitution.

Corollary 5.2. Suppose Φ is as above and A,B are Φ-compatible. There exists a
spectral shift function ξ defined a.e. on [a,b] for which

tr
[
f(B)−f(A)]=

∫ b
a
f ′(t)ξ(t)dt (5.5)

for any differentiable function f on [a,b] such that f(Φ−1(x)) is admissible for the
interval [Φ(a),Φ(b)]. Property (d) stays the same, while (b) turns into

∫ b
a

∣∣ξ(t)Φ′(t)∣∣dt ≤ ∥∥Φ(B)−Φ(A)∥∥1. (5.6)

Proof. Write the trace formula (2.6) for the pair Φ(A),Φ(B) and define

ξ(t)= ξ
(
Φ(t);Φ(A);Φ(B)

)
. (5.7)

Then the substitution x = Φ(t) brings to (5.5).

6. Proof of Lemma 1.1 (the Baker-Campbell-Hausdorff formula). It is known that
if X,Y ∈ B(H), then an infinite series Z = Z(X,Y) exists such that

eZ = eXeY . (6.1)

For instance (see [8, Chapters 1 and 2], [23, 30]),

Z =X+Y +
∑
n≥2

1
n

∑
|w|=n

gw[w], (6.2)

where gw are certain coefficients and w = w1w2 ···wn is a “word” with length
|w| = n, n = 2,3, . . . , such that each wK equals X or Y . Also, [w] is the iterated
commutator

[w]= [[···[[w1,w2],w3]···],wn]. (6.3)

This series was studied by Thompson [30], who proved its convergence when X,Y
have small norms. Details and precise statements can be found in his paper (see also
[23]). A modification of Thompson’s proof yields the following.

Proof of Lemma 1.1. If X + Y ∈ S1, then [X,Y] ∈ S1 too and tr[X,Y] = 0, as
[X,Y] = [X+Y ,Y]. The trace of all higher commutators is also zero. Now recall that
‖AB‖1 ≤ ‖A‖‖B‖1 for any two operators A∈ B(H), B ∈ S1. We set δ=max{‖X‖,‖Y‖}
and estimate

‖[X,Y]‖1 = ‖[X+Y ,Y]‖1 ≤ 2‖Y‖‖X+Y‖1 ≤ 2δ‖X+Y‖1,
‖[[X,Y],X]‖1 ≤ 2‖X‖‖[X,Y]‖1 ≤ 22δ2‖X+Y‖1

(6.4)
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and so forth. By induction, for every n≥ 2,

‖[w]‖1 ≤ 2n−1δn−1‖X+Y‖1 (6.5)

whenever |w| =n. Combining this with Thompson’s estimates [30, pages 5 and 6], we
find ∥∥∥∥∥∥

∑
|w|=n

gw[w]

∥∥∥∥∥∥
1

≤ 2nδn−1‖X+Y‖1. (6.6)

The series in (6.2) is majorized in the norm of S1 by

‖X+Y‖1
∑
n≥2

2nδn−1

n
(6.7)

which is convergent, since δ < 1/2. Therefore, the expansion (6.2) converges in S1 and
the proof is completed.
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