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Abstract. We are interested in constructing a topological degree for operators of the form
F = L+A+S, where L is a linear densely defined maximal monotone map, A is a bounded
maximal monotone operators, and S is a bounded demicontinuous map of class (S+) with
respect to the domain of L. By means of this topological degree we prove an existence
result that will be applied to give a new formulation of a parabolic variational inequality
problem.
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1. Introduction. The subject to which this paper is devoted, topological degree, is
one of the most useful tools to study the existence of solutions of nonlinear problems.
This tool has a powerful property known as the invariance under homotopy, which
assures under appropriate hypotheses that the solvability of family of problems is
invariant under continuous perturbations.

The notion of topological degree was first introduced explicitly by Brouwer (cf. [7])
in 1912 for continuous mappings from a bounded subset of Rn to Rn.

In 1934, Leray and Schauder extended this concept to infinite dimensional Banach
spaces with mappings of the form f = I −g, where I is the identity map and g is
a compact map (see [7]). The uniqueness of the two degree functions was proved
independently by Fuhrer in 1972 and Amann andWeiss [1], respectively. Browder [5, 6]
extended the concept of this theory for operators of monotone type from a reflexive
Banach space X to its dual space X∗, mapping of class (S+), perturbation of maximal
monotone operators by mappings of class (S+), and other special cases defined on
Sobolev spaces. A new and easy construction of the topological degree for mappings
of class (S+) from separable Banach space to its dual space, is given by Berkovits and
Mustonen [3]. In [4] they constructed a degree function for a class of mappings of the
form F = L+S, where L is a linear densely defined maximal monotone map from the
domain D(L) in X to X∗ and S is a bounded demicontinuous map of class (S+) [4].

We construct a topological degree for operators of the form L+A+S fromD(L)⊂X,
domain of L, to 2X

∗
, where A is a bounded maximal monotone operator, L is a linear

densely defined maximal monotone map, and S is a bounded demicontinuous map
of class (S+) with respect to D(L). For the construction, we use the method used by
Berkovits and Mustonen [4] and Yosida approximations to give a family of mappings
of class (S+) with respect to D(L), where the (S+)-degree (see [5]) is well defined on
the reflexive Banach space Y =D(L) equipped with the graph norm. By means of this
topological degree function, we prove an existence result that will be applied to give
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a new formulation of the following parabolic variational inequality problem:

(
P�

)


find u∈D(L)⊂X such that∫ T
0

〈
∂u(t)
∂t

,v(t)−u(t)
	
+〈−∆p(u),v−u〉+(h,v−u)≥ 0, ∀v ∈�,

where

�= {v ∈ Lp
(
0,T ,W 1,p

0 (Ω)
)
: v(t)∈K

}
,

K = {v ∈W 1,p
0 (Ω) : v ≥ 0 a.c. in Ω

}
,

(1.1)

and h is an element of Lp′(Q) with Q=Ω×]0,T [. Then we obtain a problem without
a set of constraint equivalent to problem (P�).

2. Preliminaries. LetX be a real reflexive Banach space and letX∗ stand for its dual
space with respect to the continuous pairing 〈···〉. We may assume, without loss of
generality, that X and X∗ are locally uniformly convex, by virtue of the renorming
theorem of Trojanski (cf. [5]). In particular, this implies that the duality mapping J of
X into X∗ given by the following relations:

‖J(u)‖X∗ = ‖u‖X,
〈
J(u),u

〉= ‖u‖2X, ∀u∈X, (2.1)

is bijective bicontinuous. The norm convergence in X and X∗ is denoted by �� , and
the weak convergence by � . We consider a multi-values mapping (operator) T from
X to 2X

∗
(i.e., with values subsets of X∗). With each such map, we associate its graph

G(T)= {(u,w)∈X×X∗ :w ∈ T(u)
}
. (2.2)

The multi-values mapping T is said to be monotone (T ∈ (M)) if for any pair of ele-
ments (u1,w1), (u2,w2) in G(T), we have the inequality

〈
w1−w2,u1−u2

〉≥ 0. (2.3)

T is said to be maximal monotone (T ∈ (MM)) if it is monotone and maximal in the
sense of graph inclusion among monotone multi-values mappings from X to 2X

∗
. An

equivalent version of the last clause is that for any (u0,w0)∈X×X∗ for which

〈
w0−w,u0−u

〉≥ 0, (2.4)

for all (u,w) ∈ G(T), we have (u0,w0) ∈ G(T). By Rockafellar theorem (see [9]) an
equivalent statement is that the range of T +λJ is all X∗ for all λ > 0.

Let T be a maximal monotone operator from X to 2X
∗
.

(i) A sequence {Tn, n ∈ N} of maximal monotone operators from X to 2X
∗

is
said to be graph-convergent to T if for any (u,w) ∈ G(T) there exists a sequence
(un,wn)∈G(Tn) such that un �� u in X and wn �� w in X∗.

(ii) A family {Tt, t ∈ [0,1]} of maximal monotone operators is said to be graph-
continuous if for any sequence tn �� t ∈ [0,1] and pair of elements (u,w)∈G(T),
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there exists a sequence (wn,un) ∈ G(Ttn) such that un �� u in X and wn �� w
in X∗.

(iii) A family {Tt, t ∈ [0,1]} of maximal monotone operators is said to be pointwise
graph-continuous if for any sequence tn �� t ∈ [0,1] and any (u,w)∈G(T), there
exists a sequence wn ∈ Ttn(u) such that wn �� w in X∗.

(iv) A family {Tt, t ∈ [0,1]} of operators from X to 2X
∗
is said to be bounded if the

range of a bounded subset of X by Tt is contained in a bounded subset of X∗ for all
t ∈ [0,1].

Let T ∈ (MM) from X �� 2X
∗
. Then for every λ > 0 and every u∈X, there exists a

unique element RT
λ (u) belonging to D(T), domain of T , which is called the resolvant

of index λ of T , such that

0∈ J
(
RT
λ (u)−u

)+λT(RT
λ (u)

)
. (2.5)

We denote

Tλ(u)= 1
λ
J
(
u−RT

λ (u)
)
, that is, Tλ(u)∈ T

(
RT
λ (u)

)
. (2.6)

The operator Tλ is called the Yosida approximation, it is a monotone continuous map
from X to X∗, graph-convergent to T as λ goes to zero and verify

∥∥Tλ(u)∥∥X∗ ≤ ‖w‖X∗ , ∀u∈X, w ∈ T(u). (2.7)

The reader is referred to [2] for more details.
Now let T be a linear densely defined monotone map from D(T)⊂X to X∗, then a

necessary and sufficient condition for T ∈ (MM) is that G(T) is a subspace of X×X∗
and the conjugate T∗ of T is monotone (cf. [7]).

We also need the following classes of mappings of monotone type. A mapping T :
D(T)⊂X �� X∗ is called

(v) quasimonotone (T ∈ (QM)) if for any sequence {un} in D(L) with un � u,
we have limsup〈T(un),un−u〉 ≥ 0,

(vi) pseudomonotone (T ∈ (PM)) if for any sequence {un} in D(L) with un � u
and limsup〈T(un),un−u〉 ≤ 0, we have lim〈T(un),un−u〉 = 0, and if u ∈
D(T), then T(un) � T(u),

(vii) of class (S+) (T ∈ (S+)) if for any sequence {un} in D(L) with un � u and
limsup〈T(un),un−u〉 ≤ 0, we have un �� u.

An example of mapping of class (S+) is the duality map J, moreover, it is strictly
monotone. Since J−1 can be identified with the duality map from X∗ to X∗∗, it is also
of class (S+).

If we assume that all mappings are demicontinuous and defined in the whole space
X, then (S+) ⊂ (PM) ⊂ (QM) and (MON) ⊂ (PM). It is also important to observe that
(S+)+(QM) is contained in (S+).

3. Construction of a degree function. Let X be a real reflexive Banach space. We
assume that X and its conjugate X∗ are locally uniformly convex. Let A be a bounded
maximal monotone operator from X to 2X

∗
with (0,0) ∈ G(A) and let L be a linear

maximal monotone map from D(L)⊂X to X∗ such that D(L) is dense in X. Since the
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graph of L is a closed set in X×X∗, Y =D(L) equipped with the graph norm

‖u‖Y = ‖u‖X+‖Lu‖X∗ , u∈ Y , (3.1)

becomes a real reflexive Banach space. We assume that Y and its dual space Y∗ are
also locally uniformly convex.

Let j stand for the natural embedding of Y to X and let j∗ stand for its adjoint
from X∗ to Y∗. For each open and bounded subset G of X, let

�G =
{
L+A+S : Ḡ∩D(L) �� X∗ | S is a bounded demicontinuous

map of class
(
S+
)
with respect to D(L) from Ḡ to X∗

}
,

and let

�G =
{
L+At+S(t) : Ḡ∩D(L) �� X∗ |At (0≤ t ≤ 1) is a bounded pointwise

graph-continuous homotopy of (MM) operators from X to 2X
∗
and S(t)

is a bounded homotopy of class
(
S+
)
with respect to D(L) from Ḡ to X∗

}
.

The family S(t), with 0≤ t ≤ 1, is called a homotopy of class (S+)with respect toD(L),
if the conditionsun � u, Lun � Lu, tn �� t, and limsup〈S(tn)un,un−u〉 ≤ 0
implyun �� u and S(tn)(un) � S(t)(u). Note that the class �G includes all affine
homotopies L+ (1− t)(A1+S1)+ t(A2+S2) with (L+Ai+Si) ∈ �G, i = 1,2. In order
to find suitable approximations for mappings F ∈�G, let

L̂= j∗ ◦L◦j, (3.2)

which is obviously a bounded linear monotone map from Y to Y∗. Similarly, let

Ŝ(t)= j∗ ◦S(t)◦j : j−1(Ḡ) �� Y∗ (3.3)

whenever S(t) is a homotopy from Ḡ to X∗, and for every λ > 0,

Ât,λ = j∗ ◦At,λ ◦j, (3.4)

where At,λ is the Yosida approximation of index λ of the operator At . Since j is con-
tinuous from Y to X, j−1(Ḡ)= Ḡ∩D(L) is closed and j−1(G)=G∩D(L) is open in Y .
It is easy to check that

j−1(G)⊂ j−1
(
Ḡ
)
; ∂

(
j−1(G)

)⊂ j−1(∂G). (3.5)

Note that we have the same notation for closures and boundaries in both X and Y . In
what follows, we also need the map M : Y �� Y∗ defined by

(
M(u),v

)= 〈Lv,J−1(Lu)〉, u,v ∈ Y , (3.6)

where (·,·) denotes the pairing between Y and Y∗ and J−1 is the inverse of the duality
map J :X �� X∗. In fact, for all u∈ Y for which M(u)∈ j∗(X∗), we have J−1(Lu)∈
D(L∗) and by (3.6),

M(u)= j∗L∗J−1(Lu). (3.7)

We need this representation later in proving Lemma 3.4. For each admissible map
F ∈�G or homotopy F(t)∈�G and for each λ > 0, we define

F̂λ = L̂+Âλ+ Ŝ+λM, F̂λ(t)= L̂+Ât,λ+ Ŝ(t)+λM. (3.8)
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Lemma 3.1. Let {Tn, n ∈ N} and T be a sequence of maximal monotone operators
from X to 2X

∗
. Then the following properties hold.

(a) If Tn is graph-convergent to T , then for any sequence {un} ⊂X such thatun �� u
in X, we have Tn,λ(un) �� Tλ(u) in X∗ for every λ > 0. Moreover, if the sequence
{Tn} is bounded, we have Tn,λn(un) � β ∈ T(u) for a subsequence {un} and any
sequence {λn; λn ≥ 0} with λn �� 0.

(b) If the sequence {Tn} is a pointwise graph-continuous to T , then we have
Tn,λn(u) �� T ◦(u) for any sequence {λn; λn ≥ 0} with λn �� 0, where T ◦(u) is
the element of minimal norm of the closed convex subset T(u) of X∗.

Proposition 3.2 (see [5]). Let {Tn}, T be a sequence ofmaximalmonotone operators
with Tn is graph-convergent to T and let {(αn,βn)} be a sequence in G(Tn) such that
αn � α in X, βn � β in X∗ and limsup〈βn,αn〉 ≤ 〈β,α〉. Then we have β∈ T(α)
and 〈βn,αn〉 �� 〈β,α〉.

Proof of Lemma 3.1. In this proof, we use the same notation of norm ‖·‖ of X
and X∗.

(a) We first notice that the sequences
{
RTn
λ (un)

}
and {Tn,λ(un)} are bounded. Let

(u0,w0)∈ T , then there exists (u0n,w0n)∈G(Tn) such that (u0n,w0n) �� (u0,w0).
From monotonicity of Tn and relations (2.6),

〈
1
λ
J
(
un−RTn

λ
(
un
))−w0n,R

Tn
λ
(
un
)−u0n

	
≥ 0. (3.9)

Thus 〈
1
λ
J
(
un−RTn

λ
(
un
))−w0n,R

Tn
λ
(
un
)−un+un−u0n

	
≥ 0, (3.10)

that is,
∥∥un−RTn

λ
(
un
)∥∥2 ≤ ∥∥un−RTn

λ
(
un
)∥∥(∥∥un−u0n

∥∥+λ∥∥w0n
∥∥)+λ∥∥w0n

∥∥∥∥un−u0n
∥∥

·∥∥un−RTn
λ
(
un
)∥∥≤ 2

(∥∥un−u0n
∥∥+λ∥∥w0n

∥∥).
(3.11)

Hence, the sequences
{
RTn
λ (un)

}
and {Tn,λ(un)} being bounded in reflexive Banach

spaces X and X∗, respectively. We can extract a subsequence (still denoted by {un})
such that RTn

λ (un) � α in X and Tn,λ(un) � β in X∗.
Let us identify α and β. By monotonicity of J, for every integers n, m,

〈
1
λ
J
(
un−RTn

λ
(
un
))− 1

λ
J
(
um−RTm

λ
(
um

))
,
(
un−RTn

λ
(
un
))−(um−RTm

λ
(
um

))	≥ 0.

(3.12)
Thus
〈
Tn,λ

(
un
)
,RTn

λ
(
un
)〉+〈Tm,λ

(
um

)
,RTm

λ
(
um

)〉

≤ 〈Tn,λ(un
)−Tm,λ

(
um

)
,un−um

〉+〈Tn,λ(un
)
,RTm

λ
(
um

)〉+〈Tm,λ
(
um

)
,RTn

λ
(
un
)〉
.

(3.13)

Let us first fix m and let n go to +∞, next let m go to +∞, then we have

limsup
〈
Tn,λ

(
un
)
,RTn

λ
(
un
)〉≤ 〈β,α〉. (3.14)
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Applying Proposition 3.2 to (3.14) with αn = RTn
λ (un), βn = Tn,λ(un), we obtain

β∈ T(α),
〈
Tn,λ(un),R

Tn
λ
(
un
)〉 �� 〈β,α〉. (3.15)

By applying Proposition 3.2 to the operator J withαn = (1/λ)(un−RTn
λ (un)) and βn =

(1/λ)J(un−RTn
λ (un)), and taking into account that 〈βn,αn〉 �� 〈β,(1/λ)(u−α)〉,

we obtain

β= 1
λ
J(u−α), ∥∥un−RTn

λ
(
un
)∥∥ �� ‖u−α‖. (3.16)

Hence RTn
λ (un) �� α. Combining (3.15) and (3.16), we have

0∈ T(α)+ 1
λ
J(α−u), (3.17)

and from the unicity of the solution of (3.17), we conclude that

α= RT
λ (u). (3.18)

Hence RTn
λ (un) �� RT

λ (u). Consequently, Tn,λ(un) �� Tλ(u).
Now let λn �� 0. For (u,w) ∈ G(T) there exists a sequence (u0n,wn) ∈ G(Tn)

such that u0n
�� u0 in X and wn �� w0 in X∗. The same estimation as (3.11)

yields ∥∥un−RTn
λn

(
un
)∥∥≤ 2

(∥∥un−u0n
∥∥+λn∥∥wn

∥∥) (3.19)

implies that RTn
λn(un) �� u as n goes to infinity. Since {Tn,λn(un)} is bounded in

reflexive Banach space X∗, we can extract a subsequence (still denoted by {un}) such
that Tn,λn(un) � β. Applying Proposition 3.2 to the sequence of operators {Tn}
with αn = RTn

λn(un) and βn = Tn,λn(un), we obtain β∈ T(u).
(b) Let λn �� 0 and w ∈ T(u), then the property pointwise graph-continuous of

Tn implies that there exists a sequence wn ∈ Tn(u) such that wn �� w in X∗. By
monotonicity of Tn,

〈
wn− 1

λn
J
(
u−RTn

λn(u)
)
,u−RTn

λn(u)
	
≥ 0. (3.20)

Thus
1
λn

∥∥u−RTn
λn(u)

∥∥≤ ∥∥wn
∥∥. (3.21)

The relation above implies that RTn
λn(u)

�� u and

limsup
∥∥Tn,λn(u)

∥∥≤ ‖w‖, ∀w ∈ T(u). (3.22)

Hence,

limsup
∥∥Tn,λn(u)

∥∥≤ ∥∥T ◦(u)∥∥. (3.23)

Then there exists a subsequence (still denoted by {un}) such that

Tn,λn(u) � β in X∗. (3.24)
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Applying Proposition 3.2 to the sequence of operators {Tn} with αn = RTn
λn(u) and

βn = Tn,λn(u), we obtain β ∈ T(u), which implies that ‖β‖ ≥ ‖T ◦(u)‖. Since
Tn,λn(u) � β, then

liminf
∥∥Tn,λn(u)

∥∥≥ ‖β‖. (3.25)

Combining (3.23) and (3.25), we have

∥∥Tn,λn(un
)∥∥ �� ∥∥T ◦(u)∥∥= ‖β‖. (3.26)

Now, by definition of T ◦(u)we conclude that β= T ◦(u). Finally, from (3.24) and (3.26)
we have

Tn,λn(u) �� T ◦(u). (3.27)

Lemma 3.3. If F(t)∈�G and λ > 0, then F̂λ(t) is a bounded homotopy of class (S+)
from j−1(Ḡ)⊂ Y to Y∗. In particular, for each λ > 0, F̂λ is a bounded demicontinuous
map of class (S+) from j−1(Ḡ)⊂ Y to Y∗.

Proof. Assume F(t) ∈ �G and λ > 0. Let {un} ⊂ Ḡ ∩D(L) with un � u in
Y , tn �� t, and limsup(F̂λ(tn)(un),un−u)≤ 0. Then un � u in X, Lun � Lu
in X∗ and since Atn,λ(u) �� At,λ(u),

limsup
{〈
Lun−Lu,un−u

〉+〈Atn,λ
(
un
)−Atn,λ(u),un−u

〉
+〈S(tn)(un

)
,un−u

〉+λ〈Lun−Lu,J−1
(
Lun

)−J−1(Lu)〉}≤ 0.
(3.28)

Since L, J−1, and Atn,λ are monotone we conclude that

limsup
〈
S
(
tn
)(
un
)
,un−u

〉≤ 0. (3.29)

By the (S+)-property of S(t) we obtain un �� u in X and S(tn)(un) � S(t)(u) in
X∗. Then by Lemma 3.1(a),

Atn,λ
(
un
) �� At,λ(u). (3.30)

Therefore,
lim

〈
Lun−Lu,J−1

(
Lun

)−J−1(Lu)〉= 0 (3.31)

implying, by the (S+)-property of J−1, that Lun �� Lu in X∗, then the assertion fol-
lows.

Let F(t)∈�G and let {h(t), 0≤ t ≤ 1} be a continuous curve in X∗. We denote

K = {u∈ j−1
(
Ḡ
) | sF̂λ(t)(u)+(1−s)F̂δ(t)(u)= j∗h(t)

for some λ,δ > 0, and s,t ∈ [0,1]
}
.

(3.32)

Note that j(K)⊂ Ḡ implying that K is bounded in X. The fact that K is bounded also
in Y follows from the following.

Lemma 3.4. There exists a constant R > 0, independent of λ,δ,s, and t, such that
K ⊂ BR(Y)= {v ∈ Y | ‖v‖Y < R}.
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Proof. Without loss of generality, we may assume that h(t) ≡ 0. Let u ∈ K be
arbitrary. Then for some λ,δ > 0 and s,t ∈ [0,1],

〈Lu,v〉+〈w,v〉+〈S(t)(u),v〉+(sλ+(1−s)δ)〈L∗J−1(Lu),v〉= 0, ∀v ∈D(L),
(3.33)

where w = sAt,λ(u)+ (1− s)At,δ(u). Observe that J−1(Lu) ∈ D(L∗) since M(u) ∈
j∗(X∗). Since D(L) is dense in X, equation (3.33) holds for all v ∈ X. Hence we can
insert v = J−1(Lu) to get

〈
Lu,J−1(Lu)

〉+〈w,J−1(Lu)
〉+〈S(t)(u),J−1(Lu)〉

+(sλ+(1−s)δ)〈L∗J−1(Lu),J−1(Lu)〉= 0.
(3.34)

Recalling that L∗ is monotone, we obtain

‖Lu‖2X∗ ≤
∥∥sAt,λ(u)+(1−s)At,δ(u)+S(t)(u)

∥∥
X∗
∥∥J−1(Lu)∥∥X. (3.35)

Since ‖J−1(Lu)‖X = ‖Lu‖X∗ and since At and S(t) are bounded homotopies from a
bounded set Ḡ ⊂X we conclude that

‖Lu‖X∗ ≤ c (3.36)

for some positive constant c independent of λ,δ,s and t, this completes the proof.

The relationship between F(t) ∈ �G and its approximation F̂λ(t) is shown by the
following.

Lemma 3.5. Let Ω ⊂ Ḡ be a closed set, F(t)∈�G an admissible homotopy, and h(t)
a continuous curve in X∗ such that

h(t) ∉ F(t)
(
Ω∩D(L)), ∀t ∈ [0,1]. (3.37)

Then there exists λ0 > 0 such that

j∗h(t) ∉ F̂λ(t)
(
j−1(Ω)

)
, ∀t ∈ [0,1], 0< λ< λ0. (3.38)

Proof. We may assume that h(t)≡ 0. We argue by a contradiction. Let us assume
that there exist the sequences {λn}, {tn}, and {un} ⊂ j−1(Ω) such that λn �� 0+,
tn �� t ∈ [0,1], and

L̂un+Âtn,λn
(
un
)+ Ŝ(tn)(un

)+λnM(un
)= 0. (3.39)

By Lemma 3.4 the sequence {un} is bounded in Y implying that un � u in X and
Lun � Lu in X∗ with u ∈ D(L), for a subsequence. Using the fact that L, Atn,λn ,
J−1 are monotone and Atn,λn(u) �� A◦t (u) we get from (3.39),

limsup
〈
S
(
tn
)(
un
)
,un−u

〉= limsup
{−〈Lun−Lu,un−u

〉
−〈Atn,λn

(
un
)−Atn,λn(u),un−u

〉
−λn

〈
Lun−Lu,J−1

(
Lun

)−J−1(Lu)〉}≤ 0.
(3.40)
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Since S(t) is a homotopy of class (S+), thenun �� u inX and S(tn)(un) � S(t)(u)
in X∗ with u∈Ω. By (3.39),

(
L̂un,v

)+(Âtn,λn
(
un
)
,v
)+(Ŝ(tn)(un

)
,v
)+λn(M(un

)
,v
)= 0 (3.41)

for all v ∈ Y and n ∈ N. Since Atn,λn(un) � wt ∈ At(u) for a subsequence {un}
(Lemma 3.1), then as n tends to +∞,

〈Lu,v〉+〈wt,v
〉+〈S(t)(u),v〉= 0, ∀v ∈D(L). (3.42)

Now D(L) is dense in X,
0∈ Lu+At(u)+S(t)(u) (3.43)

with u ∈ Ω∩D(L), which contradicts our assumption. Hence the proof is complete.

By choosing Ω = ∂G, F(t)= F ∈�G, and h(t)= h∈X∗ as in Lemma 3.5, the condi-
tion h ∉ (L+A+S)(∂G∩D(L)) implies that there exists λ0 > 0 such that

j∗h ∉
(
L̂+Âλ+ Ŝ+λM

)(
j−1(∂G)

)
, ∀0< λ< λ0. (3.44)

Recalling (3.5), we also have

j∗h ∉ F̂λ
(
∂
(
j−1(G)

))
, ∀0< λ< λ0. (3.45)

Moreover, by Lemma 3.4 there exists a constant R > 0, independent of λ, such that

j∗h ∉ F̂λ(u), ∀u∈ Ḡ, ‖u‖ ≥ R, λ > 0. (3.46)

Denoting GR(Y)= j−1(G)∩BR(Y), we therefore have

j∗h ∉ F̂λ
(
∂G(Y)

)
(3.47)

for all λwith 0< λ< λ0. Since F̂λ = L̂+Aλ+Ŝ+λM is amap of class S+ from j−1(Ḡ)⊂ Y
to Y∗ by Lemma 3.3, the value of the unique topological degree (see [5]),

dS+
(
F̂λ,GR(Y),j∗h

)
(3.48)

is well defined for all 0< λ< λ0.

Lemma 3.6. Let h ∈ X such that h ∉ (L+A+ S)(∂G∩D(L)), then there exists a
constant λ′ > 0 such that

dS+
(
L̂+Âλ+ Ŝ+λM,GR(Y),j∗h

)= constant (3.49)

for all λ with 0< λ< λ′.

Proposition 3.7 (see [5]). Let X be a reflexive Banach space, {At, t ∈ [0,1]} a
graph-continuous family of maximal monotone operators from X to 2X

∗
with (0,0) ∈

G(A) for all t. Let {un} be a sequence in X, un � u and for sequences {tn} ∈ [0,1],
tn �� t, 0< λn, 0< δn, λn �� 0, and δn �� 0, let

yn =Atn,λn
(
un
)
, zn =Atn,δn

(
un
)
. (3.50)
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Suppose further that for another sequence {sn} in [0,1], and for

wn =
(
1−sn

)
yn+snzn, (3.51)

we have wn � w in X∗. If limsup〈wn,un〉 ≤ 〈w,u〉, then w ∈ At(u) and
〈wn,un〉 �� 〈w,u〉.

Proof of Lemma 3.6. In order to employ the homotopy argument of the degree
dS+ , we show the existence of λ′ such that

j∗h ∉
[
(1−s)F̂λ+sF̂δ

](
j−1(∂G)

)
(3.52)

for all s ∈ [0,1], 0 < λ ≤ λ′, 0 < δ ≤ λ′. Indeed, we assume the contrary, that is,
there exist sequences {un} ⊂ j−1(∂G), {sn,s} in [0,1] and two sequences of positive
numbers λn, δn �� 0 such that

j∗h= L̂un+
(
1−sn

)
Âλn

(
un
)+snÂδn

(
un
)+ Ŝ(un

)+((1−sn)λn+snδn)M(un
)
.

(3.53)

Since A is a bounded operator from X to 2X
∗
, then the sequence

wn =
(
1−sn

)
Âλn

(
un
)+snÂδn

(
un
)

(3.54)

is bounded in X∗. We may assume thatwn � w in X∗ and un � u in X, we have

limsup
〈
wn,un−u

〉= limsup
〈−S(un

)−Lun,un−u
〉

≤ limsup
〈−S(un

)
,un−u

〉+ limsup
〈−Lun,un−u

〉
≤ limsup

〈−S(un
)
,un−u

〉
=− liminf

〈
S
(
un
)
,un−u

〉≤ 0,

(3.55)

that is,
limsup

〈
wn,un

〉≤ 〈w,u〉. (3.56)

Proposition 3.7 implies that 〈wn,un〉 �� 〈w,u〉 and w ∈A(u). Hence

limsup
〈
S
(
un
)
,un−u

〉≤ 0. (3.57)

The property of class (S+) of the operator S implies that un �� u ∈ j−1(∂G) and
S(un) � S(u). Applying v to the two sides of the equality (3.53) and tending n to
infinity, then we have

〈h,v〉 = 〈Lu,v〉+〈w,v〉+〈S(u),v〉, ∀v ∈D(L). (3.58)

Since D(L) is dense in X,
h= Lu+S(u)+w, (3.59)

where w ∈A(u) and u∈ j−1(∂G). Which contradicts the relation (3.52). That is,

j∗h ∉
(
(1−s)F̂λ+sF̂δ

)
∂
(
GR(Y)

)
(3.60)
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for all δ,λ, 0< δ< λ′, 0< λ< λ′, s ∈ [0,1] and R is a constant satisfying Lemma 3.4.
By the invariance under homotopy property of (S+)-degree, we obtain

dS+
(
F̂λ,GR(Y),j∗h

)= dS+
(
F̂δ,GR(Y),j∗h

)= constant (3.61)

for all λ, 0< λ< λ′

Consequently, it is relevant to define a function D by

D
(
L+A+S,G,h)= lim

λ→0+
dS+

(
L̂+Âλ+ Ŝ+λM,GR(Y),j∗h

)
(3.62)

whenever h ∉ (L+A+S)(∂G∩D(L)) and R is sufficiently large (satisfying Lemma 3.4).

Theorem 3.8. Let X be a real reflexive Banach space, L a linear maximal monotone
densely defined map from D(L)⊂X to X∗, G an open bounded subset in X and �G the
class of admissible operators. Then there exists a function topological degree D defined
from {(F,G,h) : F ∈ �G, G an open bounded subset in X and h ∉ F(∂G∩D(L))} to Z.
Satisfying the following properties:

(D1) If D(F,G,h)≠ 0, then there exists u∈G∩D(L) such that h∈ F(u).
(D2) (Additivity of domain.) If G1 and G2 are open disjoint subsets of G and h ∉

F[(Ḡ\(G1∪G2))∩D(L)], then

D(F,G,h)=D
(
F,G1,h

)+D(F,G2,h
)
. (3.63)

(D3) (Invariance under admissible homotopies.) If F(t) ∈ �G and h(t) ∉ F(t)(∂G∩
D(L)) for all t ∈ [0,1], where h(t) is a continuous curve in X∗, then

D
(
F(t),G,h(t)

)= constant, ∀t ∈ [0,1]. (3.64)

(D4) L+J is the normalising map, that is,

D(L+J,G,h)= 1, whenever h∈ (L+J)(G∩D(L)). (3.65)

Proof. It is the same as the one given in [4] (properties of the degree).

4. Existence result. LetX be a real reflexive Banach space, L a linearmaximalmono-
tone map from D(L) ⊂ X to X∗ with D(L) dense in X, and A a bounded maximal
monotone operator from X to 2X

∗
with (0,0)∈G(A) and G an open bounded subset

of X. Let

�G(PM)=
{
F = L+A+S : S is a bounded demicontinuous

pseudomonotone with respect to D(L) map from Ḡ to X∗
}
,

�G(QM)= {F = L+A+S : S is a bounded demicontinuous

quasimonotone with respect to D(L) map from Ḡ to X∗
}
.

(4.1)

For a given h∈X∗, we are interested in the solvability of the equation

h∈ Lu+A(u)+S(u), u∈D(L). (4.2)
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Lemma 4.1. Let G be a convex open bounded subset in X and F ∈ �G. Then F(Ḡ∩
D(L)) is closed in X∗.

Proof. Let {zn} be a sequence in (L+A+ S)(Ḡ∩D(L)) with zn = Lun +wn +
S(un) �� z, un ∈ Ḡ∩D(L) and wn ∈ A(un). Since subsequences {un}, {S(un)},
and {wn} are bounded in reflexive Banach spaces X and X∗, then there exists a sub-
sequence (still denoted by {un}), such that un � u in X with u ∈ Ḡ, wn � w
in X∗ and S(un) � s in X∗. Hence Lun � z−w− s. Since also G(L) is weakly
closed, we have u∈D(L) and Lu= z−w−s. Consequently,
limsup

〈
S
(
un
)
,un−u

〉= limsup
〈
zn−Lun−wn,un−u

〉
= limsup

〈−Lun−wn,un−u
〉

=− liminf
{〈
Lun−Lu,un−u

〉+〈wn−w̄,un−u
〉}≤ 0,

(4.3)

where w̄ is an element ofA(u). Since S is pseudomonotone, we obtain S(un) � S(u)
= s and 〈S(un),un〉 �� 〈S(u),u〉. Therefore, limsup〈wn,un〉 ≤ 〈w,u〉, then by
Proposition 3.2 we have w ∈A(u). Hence z = Lu+w+S(u)∈ (Ḡ∩D(L)).

Theorem 4.2. Let L+A+S ∈�X(PM) (respectively, L+A+S ∈�X(QM)) and assume
that S satisfies the two conditions:

(i) if Lun+wn+S(un) �� h in X∗ with wn ∈A(un), then the sequence {un} is
bounded in X,

(ii) there exists R > 0 such that 〈S(u),u〉 > 0 for all ‖u‖ ≥ R, Then (L + A +
S)(D(L))=X∗ (respectively, (L+A+S)(D(L)) is dense in X∗).

Proof. By condition (i) there exist two constants R′ ≥ R and δ > 0 such that

∥∥Lu+w+S(u)+λJ(u)−th∥∥≥ δ, where w ∈A(u), (4.4)

for all u∈D(L), ‖u‖ = R′, 0≤ t ≤ 1, 0≤ λ < δ/R′. Thus we obtain

D
(
L+A+S+λJ,B′R(X),h

)=D
(
L+A+S+λJ,B′R(X),0

)
(4.5)

whenever 0< λ< δ/R′. Let

F(t)(u)= Lu+(1−t)J(u)+t(S(u)+A(u)+λJ(u)), 0≤ t ≤ 1. (4.6)

Since (0,0)∈G(A), then by (ii), we obtain

0 ∉ F(t)(u) (4.7)

for all t ∈ [0,1] and 0< λ< δ/R′. Therefore, by invariance under homotopy, we have
for all 0< ε < δ/R′,

D
(
L+A+S+λJ,B′R(X),0

)=D
(
L+J,B′R(X),0

)= 1. (4.8)

Hence there exists uλ ∈ D(L) such that h−λJ(uλ) ∈ Luλ +A(uλ)+ S(uλ). Letting
λ �� 0+, we have h∈ Lu+A(u)+S(u) for someu∈D(L) (Lemma 4.1) (respectively,
(L+A+S)(D(L))=X∗).
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5. Application to a parabolic variational inequality problem. Let Ω be a bounded
open subset of Rn for some n≥ 1, and Q the cylinder Ω×]0,T [ for a given T > 0, we
consider the operators of the form

∂u
∂t
+A(u)+B(u), (5.1)

where

B(u)=
∑

|α|≤m
(−1)|α|DαAα

(
x,t,u,Du,. . . ,Dmu

)
. (5.2)

The supposed functions Aα satisfying the Carathéodory, polynomial growth condi-
tions, and monotonicity such that the operator defined from � = Lp(0,T ,V) with
V =Wm,p

0 (Ω) to �∗ = Lp′(0,T ,V∗) by

〈S(u),v〉 =
∑

|α|≤m

∫
Q
Aα
(
x,t,u,Du,. . . ,Dmu

)
Dαv, u,v ∈� (5.3)

is bounded continuous pseudomonotone (see [4], for instance). Moreover, we assume
that the functionsAα satisfy the coercivity condition. There exists c > 0 and k∈ L1(Q)
such that ∑

|α|≤m
Aα
(
x,t,ξ

)
ξα ≥ c|ξ|p−k(x,t) (5.4)

for all (x,t) ∈Q and ξ ∈ RN. Let A be a bounded maximal monotone operator from
� to �∗. Indeed, let ϕ be a convex lower semi-continuous function from a reflexive
Banach space X to R∪{+∞}, then the subdifferential of ϕ at u in X, given by

∂ϕ(u)= {w ∈X∗ :ϕ(v)−ϕ(u)≥ 〈w,v−u〉 ∀v ∈X
}

(5.5)

is maximal monotone from X to 2X
∗
. We assume in what follows that 2 ≤ p < ∞.

Then, for each u ∈ � with u′ ∈ �∗ which also belongs to C([0,T ],L2(Ω)), the initial
condition u(x,0)= 0 in Ω makes sense. Thus the operator ∂/∂t induces a linear map
from the subset D(L)= {v ∈� | v′ ∈�∗,v(0)= 0} of � to �∗ by

〈Lu,v〉 =
∫ T
0

〈
u′(t),v(t)

〉
dt, u∈D(L), v ∈� (5.6)

here u′ stands for the generalized derivative of u, that is,

∫ T
0
u′(t)ϕ(t) dt =−

∫ T
0
u(t)

∂ϕ(t)
∂t

dt, ∀ϕ ∈ C∞0 (0,T ). (5.7)

It can be shown (see [9]) that L is a linear densely defined maximal monotone map.

Theorem 5.1. Let Ω be an open bounded subset in Rn andQ the cylinder Ω×]0,T [.
Then the equation

h∈ Lu+A(u)+S(u) (5.8)

admits a solution u∈D(L).



286 A. ADDOU AND B. MERMRI

Proof. We use this result to give a new reformulation of a variational inequal-
ity problem—obstacle problem. We consider the operator −∆p defined from Lp(0,T ,
W 1,p

0 (Ω)) to Lp′(0,T ,W−1,p′(Ω)) by

〈−∆p(u),v〉=
n∑
i=1

∫
Q
|Du|p−2 ∂u

∂xi
∂v
∂xi

, u,v ∈ Lp
(
0,T ,W 1,p

0 (Ω)
)
. (5.9)

It is a bounded continuous pseudomonotone map, then verifies the hypotheses as-
sumed on the operator B defined above. For v ∈ Lp(Q), let

v+ =max(v,0), v− =min(v,0). (5.10)

We verify that 〈
∆p(u),u−

〉= 〈∆p(u−),u−〉. (5.11)

We define

K = {v ∈W 1,p
0 (Ω) : v ≥ 0 a.e. in Ω

}
,

�= {v ∈ Lp
(
0,T ,W 1,p

0 (Ω)
)
: v(t)∈K

}
.

(5.12)

The set � is a closed convex cone of Lp(0,T ,W 1,p
0 (Ω)). Let h ∈ Lp′(Q) be given. We

are interested in the following problem:

(
P�

)


find u∈D(L)∩� such that

〈Lu,v−u〉+〈−∆p(u),v−u〉+(h,v−u)≥ 0, ∀v ∈�,

where (·,·) designates the pairing between Lp(Q) and Lp′(Q). The problem (P�) is
also called obstacle problem. If (P�) admits a solution u, then it is unique. Indeed, we
suppose that there exists two solutions u1 and u2, then from the inequality of (P�)
we obtain 〈

Lu1,u2−u1
〉+〈−∆p(u1

)
,u2−u1

〉+(h,u2−u1
)≥ 0,〈

Lu2,u1−u2
〉+〈−∆p(u2

)
,u1−u2

〉+(h,u1−u2
)≥ 0,

(5.13)

and by adding (5.13), we obtain
〈
Lu1−Lu2,u1−u2

〉−〈∆p(u1
)−∆p(u2

)
,u1−u2

〉≤ 0. (5.14)

Since L is monotone and −∆p is strictly monotone, then we have u1 =u2.

We consider the functionϕ defined from Lp(0,T ,W 1,p
0 (Ω)) to R by : v � �� ϕ(v)=

(h+,v+), it is continuous on Lp(0,T ,W 1,p
0 (Ω)) and convex. Hence the subdifferential of

ϕ : ∂ϕ is a maximal monotone operator from Lp(0,T ,W 1,p
0 (Ω)) to Lp′(0,T ,W−1,p′(Ω))

(see [7, 9]). Furthermore, we verify that ∂ϕ is bounded.

Theorem 5.2. The problem

(P)




find u∈D(L) such that

〈Lu,v−u〉+〈−∆p(u),v−u〉+ϕ(v)−ϕ(u)+(h−,v−u)≥ 0,

∀v ∈ Lp
(
0,T ,W 1,p

0 (Ω)
)

admits a unique solution and it is equivalent to problem (P�).
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Proof. The problem (P) is equivalent to find u∈D(L) such that

h− ∈ Lu−∆p(u)+∂ϕ(u). (5.15)

Then by Theorem 5.1 and the strict monotonicity of−∆p , we conclude that (P) admits
a unique solution. Let u be this solution. It suffices to show that u is an element of �

to complete the proof. For v =u+ ∈�, the inequality of (P) becomes

〈
Lu,−u−〉+〈−∆p(u),−u−〉+(h−,−u−)≥ 0. (5.16)

Since 〈Lu,−u−〉 ≤ 0 (see [8]) and (h−,−u−)≤ 0, we have

〈−∆p(u),u−〉≤ 0. (5.17)

Then by (5.11), we obtain 〈−∆p(u−),u−〉≤ 0. (5.18)

Hence ‖u−‖Lp(0,T ,W1,p
0 (Ω)) = 0, therefore u∈�.
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