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ON THE STRUCTURE OF THE TOTALLY ORDERED SET
OF UNIMODAL CYCLES
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Abstract. We continue the study of a class of unimodal cycles where each cycle in the
class is forced by every unimodal cycle not in the class. For every order, we identify the
cycle in the class of that order, which is maximal with respect to the forcing relation.
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1. Introduction. In 1964, Šarkovs’kĭı defined a linear order on the set of natural
numbers:

3≺ 5≺ 7≺ ··· ≺ 2·3≺ 2·5··· ≺ ··· ≺ 22 ·3≺ 22 ·5··· ≺ ······ ≺ 23 ≺ 22 ≺ 2≺ 1
(1.1)

and proved the following theorem.

Theorem 1.1 (Šarkovs’kĭı [5]). Let f :R→R be a continuous map. The set of (least)
periods of f is a tail of the above order. Conversely, for every tail of the above order,
there is a continuous map f :R→R having exactly those periods.

In 1987, Baldwin [2] considered not only the least period of a periodic point, but also
the orbit type. He defined the forcing relation on finite cyclic permutations (cycles),
proved that the forcing relation is a partial order, and provided an algorithm to decide
when one cycle forces another.
A cycle is unimodal if the canonical linear map it determines has exactly one turning

point. Throughout this paper, we assume a unimodal cycle has exactly one turning
point and it is a maximum. It is shown in [3] that the forcing relation is a total order
on the set of unimodal cycles.
In [4], we described a class of unimodal cycles, where every cycle in the class is

forced by every unimodal cycle not in the class. In this paper, for each order n, we
identify the maximal cycle of order n in this class with respect to the forcing relation.

2. Definitions. Let f : I → I be a continuous map of a compact interval to itself.
We define f 0(x)= x and for n∈N, n≥ 1, fn(x)= f(fn−1(x)). If there exists k∈N
such that fk(x) = x, then we say x is periodic for f and x has least period s, where
s is smallest element of N such that f s(x) = x. For x ∈ I, the orbit of x is the set
{fn(x) |n≥ 0}. If x is periodic with least period s, then the orbit of x is the finite set
X = {x,f(x),f 2(x), . . . ,f s−1(x)}.
A cycle of orderm is a bijection η : {1,2, . . . ,m} → {1,2, . . . ,m} such that ηk(1)≠ 1

for 1 ≤ k < m. We denote a cycle η by η = (k1,k2, . . . ,km), where η(ki) = ki+1 and
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η(km)= k1. We assume, without loss of generality, that k1 = 1. Write the elements of
a periodic orbit X in increasing order: x1 <x2 < ···<xs . We say X has orbit type η if
η is a cycle of order s and for each i∈ {1,2, . . . ,s}, f (xi)= xη(i). In fact, we say each
xi ∈X has orbit type η.
The forcing relation on cycles is defined as follows: θ forces η if and only if every

continuous map of the interval that has a periodic orbit of type θ has a periodic orbit
of type η. Baldwin [2] proved that this relation induces a partial order on the set
of cycles.
Let θ be a cycle of order n. The canonical θ-linear map Lθ is defined by Lθ : [1,n]→

[1,n], where Lθ = θ on {1,2, . . . ,n} and Lθ is linear on [i,i+1] for 1 ≤ i ≤ n−1. It is
known that θ forces η if and only if Lθ has a periodic orbit of orbit type η [1]. A cycle
θ is called unimodal if Lθ has exactly one turning point. Throughout this paper, every
unimodal cycle is assumed to have one turning point and it is a maximum. The forcing
relation defined by Baldwin induces a total order on the set of unimodal cycles [3].
Let θ be a cycle of order n.

Definition 2.1. The RL-pattern for θ is the element S = S1S2 ···Sn ∈ {R,L}n
satisfying

Si =


R if θi(1) > θi−1(1),

L if θi(1) < θi−1(1).
(2.1)

For example, the RL-pattern for θ = (12354) is RRRLL. Both θ = (15234) and θ =
(13245) have the RL-pattern RLRRL. Every RL-pattern begins with R and ends with
L. If X is a periodic orbit of orbit type θ, then the RL-pattern for X is the RL-pattern
for θ.

3. Preliminaries. The next four results are proved in [4].

Lemma 3.1. If θ is unimodal, then Lθ has a unique fixed point.

Lemma 3.2. If θ is unimodal, then the RL-pattern for θ cannot contain two consec-
utive L’s.

Definition 3.3. Let C denote the class of unimodal cycles whose RL-pattern does
not contain two consecutive R’s.

Lemma 3.4. Let θ ∈ C be of order n. Then
(1) n is even and n≥ 4.
(2) θ(n−i)= i+1 for i= 0,1,2, . . . ,k−1.
(3) θ(1)= k+1.

Theorem 3.5. Let η∈ C and let θ be a unimodal cycle not in C . Then θ forces η.

Definition 3.6. For even n≥ 4,

θ̄n =
(
1,k+1,k,k+2,k−1,k+3,k−2, . . . ,n−1,2,n). (3.1)

Remark 3.7. In the main theorem, we prove that θ̄n is the maximal cycle of order
n in C with respect to the forcing relation.
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Lemma 3.8. Let θ ∈ C be of order n. Then θ = θ̄n if and only if θ(2)=n.

Proof. The map Lθ is a bijection which maps {3,4, . . . ,k} to {k+2,k+3, . . . ,n−1}.
Since θ(2)=n and θ is unimodal, Lθ is decreasing on {3,4, . . . ,k}.
The next lemma restates Lemma 3.8 in the way we will often use it.

Lemma 3.9. Let θ ∈ C be of order n. Then θ 
= θ̄n if and only if there exists i ∈
{3,4, . . . ,k} such that θ(i)=n.

4. Main theorem

Lemma 4.1. Let θ ∈ C be of order n. Then the only periodic point for Lθ in (k,k+1)
is the unique fixed point for Lθ .

Proof. Lθ(k+ 1) = k and Lθ(k) ≥ k+ 2. If x < p, then for j ≥ 0, L2jθ (x) < p
and L2j+1θ (x) > p. Let k̄ be the unique preimage of k+1 in (k,p). If x ∈ (k, k̄], then
Lθ(x) ≥ k+1 and x is not periodic since [1,k]∪ [k+1,n] is invariant under Lθ . If
x ∈ (k̄,p), then L2θ(x) < p. If L2θ(x) < k̄, then x is not periodic. If L2θ(x)∈ (k̄,p), then
(p−L2θ(x))≥ 4(p−x) since L′θ ≤−2 on (k,k+1).

Remark 4.2. In the next few results, we assume θ ∈ C is of order n, θ 
= θ̄n, and θ
forces θ̄n. By Definition 3.6 this means that Lθ has a periodic orbit X of type θ̄n. As
standard notation, we write the elements of X in increasing order and label them as
follows:

X = {x1 <x2 < ···<xn
}
, (4.1)

where

Lθ
(
xi
)= xθ̄n(i). (4.2)

Lemma 4.3. Suppose that θ ∈ C is of order n and θ 
= θ̄n. If θ forces θ̄n, then
{x1,x2, . . . ,xk} ⊆ (1,k) and {xk+1,xk+2, . . . ,xn} ⊆ (k+1,n).

Proof. Since X = {x1 <x2 < ···<xn} is an orbit of type θ̄n, we have

{
x1,x2, . . . ,xk

}⊆ {x | Lθ(x) > x and L2θ(x) < Lθ(x)
}⊆ [1,p],

{
xk+1,xk+2, . . . ,xn

}⊆ {x | Lθ(x) < x and L2θ(x) > Lθ(x)
}⊆ [p,n].

(4.3)

But by Lemma 4.1, no xi can be in (k,k+1).
Lemma 4.4. Let θ ∈ C be of order n and θ 
= θ̄n. If θ forces θ̄n, then there are at

most two xi in (1,3).

Proof. If not, then (at least) x1 <x2 <x3 are in (1,3). By Lemma 3.9, Lθ is increas-
ing on (1,3). So Lθ(x3) > Lθ(x2) or xθ̄n(3) > xθ̄n(2) or xn−1 > xn. Hence, there are at
most two xi in (1,3).

The next definition and lemma could have been proved just after Lemma 3.4, but
we place them here since they were not needed until now.
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Definition 4.5. For θ ∈ C of order n, let Pj = {i | θ(i)≥ j}.
Lemma 4.6. Let θ ∈ C be of order n. Then
(1) the order of Pj is n−(j−1),
(2) for 1≤ j ≤n, either the largest element in Pj or the smallest element in Pj maps

to j under Lθ .

Proof. The proof of (1) is obvious.
(2) is proved inductively. We know that P1 = {1,2, . . . ,n} and Lθ(n) = 1, so (2) is

true for j = 1. For j > 1, Pj is a finite sequence of consecutive integers since each
Pj is derived from Pj−1 by removing the maximum or minimum of Pj−1 from Pj−1.
Assume that (2) is true for j. Consider Pj+1 = {i | θ(i) ≥ j + 1}. Let a = minPj+1
and b =maxPj+1. If neither a nor b maps to j+1 under Lθ , then Lθ(a) > j+1 and
Lθ(b) > j+1. But there exists an integer c ∈ (a,b) such that Lθ(c) = j+1, and this
contradicts the fact that θ is unimodal.

Lemma 4.7. Let θ ∈ C be of order n and let k=n/2. Let j̄ ≥ 0 be the largest integer
such that 2+ j̄ < k− j̄. Then for all j = 0,1,2, . . . , j̄,

Lθ((2+j,k−j))⊆ (k+2+j,n]. (4.4)

Proof. For j = 0, consider, by Lemma 3.4,

Pk+2 = {i | θ(i)≥ k+2} = {2,3, . . . ,k}. (4.5)

So if x ∈ (2,k), then Lθ(x) > k+2. That is,

Lθ((2,k))⊆ (k+2,n]. (4.6)

Note that Pk+3 properly contains {3,4, . . . ,k−1} since by Lemma 4.6 exactly one of
{2,k} maps to k+2 under Lθ .
Inductively, suppose that j satisfies 0≤ j < j̄ and

Lθ((2+j,k−j))⊆ (k+2+j,n]. (4.7)

Consider

Pk+2+(j+1) =
{
i | θ(i)≥ k+2+(j+1)}⊃ {2+(j+1), . . . ,k−(j+1)} (4.8)

(a proper containment). So if x ∈ (2+(j+1),k−(j+1)), then

Lθ(x) > k+2+(j+1). (4.9)

That is,
Lθ
((
2+(j+1),k−(j+1)))⊆ (k+2+(j+1),n], (4.10)

as needed.

Lemma 4.8. Let θ ∈ C be of ordern, and let k=n/2. Assume that θ 
= θ̄n and θ forces
θ̄n. Let j̄ ≥ 0 be the largest integer such that 2+ j̄ < k− j̄. Then for all j = 0,1,2, . . . , j̄,
there exists at most one xi in (k−j−1,k−j).
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Proof. We have θ ∈ C of order n, θ 
= θ̄n, and θ forces θ̄n. By Lemma 4.3,
{x1,x2, . . . ,xk} ⊆ (1,k). Let j̄ be the largest integer such that 2+j < k− j̄. The proof
is inductive. First, for j = 0, suppose that there are two or more xi ∈ (k−1,k). Then
(at least) xk,xk−1 are in (k−1,k). It follows from Lemma 3.4 that

xi+1,xk+2 ∈ (k+1,k+2) (4.11)

since xk+1 and xk+2 are preimages of xk and xk−1 and

L−1θ
(
[k−1,k])= [k+1,k+2]. (4.12)

Now, we have xk ∈ (k−1,k) and

θ
(
xk
)= xk+2 ∈ (k+1,k+2). (4.13)

But
θ
(
xk
)∈ Lθ(k−1,k)⊆ Lθ(2,k)⊆ (k+2,n] (4.14)

by Lemma 4.7, which is a contradiction. Therefore, there is at most one xi ∈ (k−1,k).
Next, suppose that j̃ satisfies 0≤ j̃ < j̄ and for all j = 0,1,2, . . . , j̃, there is at most

one xi in (k− j−1,k− j). Suppose that there are two or more xi in J = (k− j̃−2,
k− j̃−1). There are j̃ +2 ways for this to occur, since each of the j̃ +1 intervals

(k−1,k),(k−2,k−1), . . . ,(k− j̃−1,k− j̃) (4.15)

contains at most one xi. As in the case when j = 0, the preimages of any elements in
J = (k− j̃−2,k− j̃−1) must be in K = (k+ j̃+2,k+ j̃+3).

Case 1 (xk,xk−1 ∈ J). Then xk+1,xk+2 ∈K.
Case 2 (xk−1,xk−2 ∈ J). Then xk+2,xk+3 ∈K.

and so on, until
Case j̃+2 (xk−j̃−1,xk−j̃−2 ∈ J). Then xk+j̃+2,xk+j̃+3 ∈K.
In every case there exists xr ∈ J and Lθ(xr )∈K. Now,

Lθ
(
xr
)∈ Lθ(J)=Lθ

(
k−j̃−2,k−j̃−1)⊆ Lθ

(
2+j̃+1,k−j̃−1)⊆ (k+2+j̃+1,n], (4.16)

by Lemma 4.7. So Lθ(xr ) > k+ j̃ +3. But

Lθ
(
xr
)∈K = (k+ j̃+2,k+ j̃+3), (4.17)

which is a contradiction. This proves the lemma. Note that 2+(j̃+1) < k−(j̃+1) by
hypothesis, so 2+ j̃ +1≤ k− j̃ −2, as needed in (4.16).

Lemma 4.9. Let θ ∈ C be of ordern, and let k=n/2. Assume that θ 
= θ̄n and θ forces
θ̄n. Let j̄ be the largest integer such that 2+ j̄ < k− j̄. If θ(i)=n, then 3≤ i≤ k− j̄−2.

Proof. There are at most two xi that are less than i, as in the proof of Lemma 4.4.
So there are at least (k− 2) xi in (i,k). If i > k− j̄ − 2, then there are at most j̄ +
1 intervals and each interval contains at most one xi. Since k− 2 > j̄ + 1, this is a
contradiction.
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Lemma 4.10. Let θ ∈ C be of order n and let k = n/2. Assume that θ 
= θ̄n and θ
forces θ̄n. Let j̄ be the largest integer such that 2+ j̄ < k− j̄. Then there is at most one
xi in each of the intervals

(3,4),(4,5), . . . ,
(
k− j̄−2,k− j̄−1). (4.18)

Proof. Let ī be such thatθ(ī)=n. Thenx1 < ī < x3. By Lemma 4.9, 3≤ ī≤ k−j̄−2.
Define ĩ by ī= k− j̄− ĩ. Suppose that there are at least two xi ∈ (ī, ī+1).
Either

x2,x3 ∈
(
k−(j̄+ ĩ),k−(j̄+ ĩ)+1), (4.19)

in which case
xn−1,xn−2 ∈

(
k+(j̄+ ĩ),k+(j̄+ ĩ)+1), (4.20)

or
x3,x4 ∈

(
k−(j̄+ ĩ),k−(j̄+ ĩ)+1), (4.21)

in which case
xn−2,xn−3 ∈

(
k+(j̄+ ĩ),k+(j̄+ ĩ)+1). (4.22)

In either case, there exists xr ∈ (k−(j̄+ ĩ),k−(j̄+ ĩ)+1) such that

θ
(
xr
)∈ (k+(j̄+ ĩ),k+(j̄+ ĩ)+1). (4.23)

This guarantees that
θ
(
k−(j̄+ ĩ)+1)≤ k+ j̄+ ĩ. (4.24)

But, by (2) in Lemma 3.4,

θ
(
k+(j̄+ĩ))=θ(n−k+(j̄+ĩ))=θ(n−(k−j̄−ĩ))=k−j̄−ĩ+1= k−(j̄+ ĩ)+1. (4.25)

Since n≥ 4,
θ
(
k−(j̄+ ĩ)+1)< k+ j̄+ ĩ. (4.26)

This leaves the set A = {2,3, . . . , ī − 1} to be mapped bijectively by θ onto a set
B ⊇ {k+ j̄+ ĩ, . . . ,n−1}. But

|A| = ī−2= k− j̄− ĩ−2,
|B| ≥ (n−1)−(k+ j̄+ ĩ)+1= (n−k)− j̄− ĩ= k− j̄− ĩ. (4.27)

Hence, there is at most one xi ∈ (ī, ī+1).
The proof continues in this fashion. We have proved that there is at most one

xi ∈ (ī, ī+1). Suppose that there are at least two xi ∈ (ī+1, ī+2). There are three
ways for this to occur. In each of these three cases, there exists xr ∈ (ī+1, ī+2) such
that

θ
(
xr
)∈ (k+ j̄+ ĩ−1,k+ j̄+ ĩ). (4.28)

As in the previous case,
θ
(
ī+2)≤ k+ j̄+ ĩ−1. (4.29)

This leaves the set A = {2,3, . . . , ī−1}∪{ī+1} with |A| = ī−1 = k− j̄− ĩ−1 to be
mapped bijectively onto a set containing B ⊇ {k+ j̄ + ĩ− 1, . . . ,n− 1}, where |B| ≥
k− j̄+ ĩ.
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Theorem 4.11. Let θ ∈ C of order n. Then θ̄n forces θ.

Proof. If θ = θ̄n, the conclusion holds trivially. Assume that θ 
= θ̄n and suppose
that θ̄n does not force θ. Since forcing induces a total order on C , θ forces θ̄n, so there
exist x1 < x2 < ···< xn in (1,n) such that for each i, Lθ(xi)= xθ̄n(i). By Lemma 4.3,
{x1,x2, . . . ,xk} ⊆ (1,k), where k=n/2. By Lemma 4.4, there are atmost twoxi ∈ (1,3).
This leaves at least k−2 of thexi in the union of intervals (3,4)∪(4,5)∪···∪(k−1,k).
But each one of these k−3 intervals contains at most one xi by Lemmas 4.8 and 4.10.
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