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ON THE DIOPHANTINE EQUATION Ax2+22m =yn

FADWA S. ABU MURIEFAH
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Abstract. Let h denote the class number of the quadratic field Q(
√−A) for a square free

odd integer A> 1, and suppose that n> 2 is an odd integer with (n,h)= 1 and m> 1. In
this paper, it is proved that the equation of the title has no solution in positive integers
x and y if n has any prime factor congruent to 1 modulo 4. If n has no such factor it is
proved that there exists at most one solution with x and y odd. The case n= 3 is solved
completely. A result of E. Brown for A= 3 is improved and generalized to the case where
A is a prime �≡ 7 (mod8).

2000 Mathematics Subject Classification. Primary 11D41.

1. Introduction. Let A,m,n denote positive integers where n is odd > 1 and A
square free odd integer. Let K = Q(√−A), where Q is the field of rational numbers,
let further h denote the number of classes of ideals in K and suppose (h,n) = 1. In
this paper, we consider the Diophantine equation Ax2 = 22m = yn, where x and y
are integers. The case A= 1 was studied in [1] so we will assume that A> 1. The first
result regarding this equation is due to Nagell [5] who proved that whenm= 0,1, this
equation has no solutions in integers x and y under the above assumptions about A
and n so we will suppose that m> 0. Since n is odd, there is no loss of generality in
considering only odd primes p and x,y positive integers, so we will assume this in
what follows.

We start by proving the main result of this paper.

Theorem 1.1. Let A > 1 be a square free odd integer, p an odd prime with
(h,p)= 1 and m≥ 1. Then the Diophantine equation

Ax2+22m =yp (1.1)

has no solution with x odd in any of the following cases:
(i) if A= 3;
(ii) if p ≡ 1 (mod4);
(iii) if A≡ 3 (mod4) and p > 3.

Forp = 3, such a solution exists if and only ifA is the square-free part of either (1/3)(1+
2m+3) withm even or of (1/3)(22m−1), although in these cases, there might be other
solutions if 3 | h.

Proof. We factorize (1.1) in the field K,

(
2m+x

√
−A

)(
2m−x

√
−A

)
=yp. (1.2)
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Now the principal ideal 	2m+x√−A
 and its conjugate ideal are coprime, so 	2m+
x
√−A
 = πp for some ideal π in K. It follows that πp is a principal ideal and since

(h,p)= 1, therefore π is a principal ideal, say π = [ξ] for some element ξ in K. So we
get the equation ⌊

2m+x
√
−A

⌋
= [ξ]p, (1.3)

and, consequently, (
2m+x

√
−A

)
= εξp, (1.4)

for some unit ε in K. Therefore we have the following three cases:

x
√−3+2m =

(
1±√−3

2

)(
a+b√−3

2

)3

, a≡ b (mod2),

x
√
−A+2m =

(
a+b√−A

2

)p
, a≡ b ≡ 1 (mod2),

x
√
−A+2m =

(
a+b

√
−A

)p
,

(1.5)

for some rational integers a and b.
Equating the imaginary parts in the first case we get

16x =±(a3−9ab2)+(3a2b−3b3), (1.6)

and we can absorb the lower sign into a. Then

16x = (a+b)3−12ab2−4b3. (1.7)

Since a and b have the same parity, we write 2c = a+b, and obtain

2x = c3−3cb2+b3. (1.8)

Equation (1.8) is impossible, since the right-hand side is odd unless both b and c are
even, and then this side is divisible by 8 if they are which is not possible since x is
odd. So this case does not arise.

The second case arises only if A ≡ 3 (mod4), and we will prove that in this case
p = 3 and A≠ 3.

Observe that ((a+b√−A)/2)p ∈ Z[
√−A] only if A≡ 3 (mod8) and p = 3 and then

equating the real parts in this case, we get

2m+3 = a
(
a2−3Ab2). (1.9)

Since a is odd we get a=±1 and then

±2m+3 = 1−3Ab2. (1.10)

Now A> 1, so only the negative sign holds and then

Ab2 = 1+2m+3

3
. (1.11)
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Considering this equation modulo 3 we deduce that m should be even. If A= 3, then
we get

−2m+3 = (1−3b)(1+3b). (1.12)

So
2t = 1+3b, −2k = 1−3b, (1.13)

where t + k = m+ 3. By adding these two equations we get t = 2, k = 1, which is
impossible since m≥ 1.

Finally the third case can occur for all A, and we will prove that there is no solution
when either p ≡ 1 (mod4) or A≡ 3 (mod4).

Since x is odd it follows that y = a2+Ab2 is odd, so a and b have opposite parity.
On equating the real parts we get

2m = a
(p−1)/2∑
r=0

(
p
2r

)
ap−2r−1

(−Ab2)r . (1.14)

Here
∑

is odd, since the first and the last terms have opposite parity and the rest are
all even. So a=±2m, b is odd and from (1.14) we get

±1=
(p−1)/2∑
r=0

(
p
2r

)
2m(p−2r−1)(−Ab2)r . (1.15)

Then ±1≡ 2m(p−1) (modp) and so the lower sign is impossible. That is,

1=
(p−1)/2∑
r=0

(
p
2r

)
2m(p−2r−1)(−Ab2)r , (1.16)

and a= 2m. So y = 22m+Ab2.
Now suppose that p ≡ 1 (mod4), say p = 1+2ku, where (u,2)= 1 and k≥ 2. Since

both b and A are odd,

bp−1 = (bu)2k ≡ 1
(
mod2k+2

)
, (−A)(p−1)/2 = (Au)2k−1 ≡ 1

(
mod2k+1

)
. (1.17)

Then from (1.16) we get

1≡
(
p
3

)
22m(−Ab2)(p−3)/2+pbp−1(−A)(p−1)/2 (mod2k+1

)

≡ p(p−2)
3

·2k+2m−1u(−Ab2)(p−1)/3+p (mod2k+1
)
,

(1.18)

since m ≥ 1, therefore k+2m−1 ≥ k+1, so from (1.18) we get 3 ≡ 3p (mod2k+1).
Hence p ≡ 1 (mod2k+1) which is not possible. We conclude that there is no solu-
tion when p ≡ 1 (mod4). If A ≡ 3 (mod4), then considering (1.16) modulo 4 we get
p ≡ 1 (mod4) hence there is no solution when A≡ 3 (mod4).

Now let p = 3 in (1.16) then
1= 22m−3Ab2 (1.19)

or Ab2 = (22m−1)/3. This completes the proof.
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Remark 1.2. From Theorem 1.1, we note that to solve (1.1) it is sufficient to con-
sider (1.16) where b is odd, p ≡ 3 (mod4), and A ≡ 1 (mod4). If there is a solution
then y = 22m+Ab2.

Now we prove the following theorem which gives us the number of solutions of our
equation.

Theorem 1.3. For a given A, if (1.1) has a solution in x odd where (h,p)= 1, then
it is unique.

Proof. If A≡ 3 (mod4), we have proved that there is a solution only if p = 3, and
we have found this unique solution. If A ≡ 1 (mod4), then from the last proof it is
sufficient to consider (1.16), where b is odd and p ≡ 3 (mod4). Suppose b1 > b > 0 is
another solution, then from (1.16) we obtain

1=
(p−1)/2∑
r=0

(
p
2r

)
2m(p−2r−1)(−Ab2

1

)r . (1.20)

Subtracting (1.20) from (1.16) and dividing by b2
1−b2, we get

0=
(p−1)/2∑
r=0

(
p
2r

)
b2r
1 −b2r

b2
1−b2

·2m(p−2r−1)(−A)r

≡ p · b
p−1
1 −bp−1
b2
1−b2

(mod2).

(1.21)

Since p ≡ 3 (mod4), the number (bp−11 −bp−1)/(b2
1−b2) is odd, so (1.21) is impossible

and the solution is unique as required.

Now we prove that to solve (1.1) it is sufficient to consider only x odd. First we need
the following lemma.

Lemma 1.4 [4]. The Diophantine equations

Ax2+1= 2yn, A≡ 1 (mod4), Ax2+1= 4yn, A≡ 3 (mod4), (1.22)

have no solutions in positive integers with y > 1, n> 2, 2 �ny and (n,h)= 1.

Theorem 1.5. If A = 3, equation (1.1) has a solution with x even only if m ≡
−1 (modp), and this solution is given by x = 2m; for all other A �≡ 7 (mod8) with
(h,p) = 1 there exists a solution with x even of the form x = 2uX with X odd, if and
only if there is a solution of the equation AX2+22(m−u) = Yp .

Proof. If x is even then y is even, so let x = 2uX, y = 2ν ·Y , where u> 0, ν > 0,
(2,X)= (2,Y )= 1. Then (1.1) becomes

A
(
2uX

)2+22m = 2νpYp. (1.23)

We have three cases:
(1) pν > 2u= 2m. Then cancelling 22m in (1.23) we get

AX2+1= 2νp−2mYp, (1.24)

where X is odd. Now A �≡ 7 (mod8), so νp−2m= 1 or 2.
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If A ≡ 1 (mod4) then νp−2m = 1 and so AX2+1 = 2Yp . This equation has no
solution from Lemma 1.4. If A≡ 3 (mod8), then νp−2m= 2, so AX2+1= 4Yp , and
again from Lemma 1.4 this equation has no solution in integers with Y > 1. Let Y = 1,
then AX2+1 = 4Yp implies that A = 3, X = 1 and hence x = 2m, also νp = 2m+2
implies that m≡−1 (modp),

(2) 2u > 2m = νp. Then cancelling 22m in (1.23) we get A(2u−mX)2+1 = Yp . This
equation has no solution [5, Theorem 25].

(3) 2m> 2u= pν . Then
AX2+22(m−u) = Yp, (1.25)

and this is (1.1) with x odd and smaller m.

Remark 1.6. From the proof of the last theorem we deduce that to solve (1.1) in
even integers when A≠ 3 and A �≡ 7 (mod8), it is sufficient to consider the equation

AX2+22(m−u) = Yp, (1.26)

where x = 2uX, y = 2ν ·Y , m>u> 0, ν > 0, (2,X)= (2,Y )= 1, and 2u= pν .

Summarizing the above we give the following theorem.

Theorem 1.7. The Diophantine equation (1.1) where A �≡ 7 (mod8) and (h,p)= 1
has no integer solution if p ≡ 1 (mod4). In particular, the equation px2+22m = yp

has no solution for all p > 3 and p �≡ 7 (mod8).

Proof. If x is odd, then from Theorem 1.1, equation (1.1) has no solution when
p ≡ 1 (mod4). Now let x be even then from Theorem 1.5 it is sufficient to consider
the equation

AX2+22(m−u) = Yp, (1.27)

where X is odd and 0 < u <m. Since p ≡ 1 (mod4) then again Theorem 1.1 implies
that there is no solution.

Now the class number of the field Q(√−p) is less than p, so as above the equation
px2 + 22m = yp has no solution if p ≡ 1 (mod4). Let p ≡ 3 (mod4), since p > 3,
therefore the equation has no solution in odd integers from Theorem 1.1(iii). If x is
even then we have

pX2+22(m−u) = Yp, (1.28)

where X is odd. Equation (1.28) has no solution in odd integers from the first part.

Brown [2, Theorem 3] considered the Diophantine equation (1.1) when A = 3, but
he did not solve it completely. In the following we give the complete solution.

Theorem 1.8. The Diophantine equation 3x2 + 22m = yp has a solution only if
m≡−1 (modp), and this solution is given by x = 2m, y = 2(2m+2)/p .

Proof. Now A = 3 and the field Q(
√−3) is a unique prime factorization domain,

so from Theorem 1.1 this equation has no solution for all p if x is odd. If x is even
then from Theorem 1.5 we have x = 2m, y = 2(2m+2)/p . Also the equation

3X2+22(m−u) = Yp, (1.29)

where X is odd, has no solution from the first part of this proof.
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Combining the two last theorems we can generalize Brown’s result [2] for any odd
prime p as follows.

Theorem 1.9. The Diophantine equation px2+22m = yp , where p �≡ 7 (mod8),
has a solution only if p = 3 and m ≡ 2 (mod3) and this solution is given by x = 2m,
y = 2(2m+2)/3.

Considering (1.16) modulo 8 it is easy to prove the following.

Corollary 1.10. For a given A, in (1.16) where m ≥ 2, if A ≡ 1 (mod8) then
p ≡ 7 (mod8) and if A≡ 5 (mod8) then p ≡ 3 (mod8).

As a special case we consider A= q an odd prime and prove the following theorem.

Theorem 1.11. The Diophantine equation qx2+22m = y3, where q ≡ 1 (mod4) is
a prime integer and (3,h) = 1, has a solution only if q = 5 and m = 2+3M , and the
unique solution is given by x = 43·23M and y = 21·22M .

Proof. First suppose that x is odd, since q ≡ 1 (mod4) and p = 3, therefore it is
sufficient to consider (1.16), then y = 22m+qb2 and

3qb2 = 22m−1= (2m−1
)(
2m+1

)
. (1.30)

From [5] it is sufficient to consider m ≥ 2 and from Corollary 1.10 we have
q ≡ 5 (mod8). Now (2m − 1,2m + 1) = 1, let b = cd, where (c,d) = 1 and both c
and d are odd, then from (1.30) we have only the following possibilities:

(1) 2m−1= 3qc2, 2m+1= d2, subtracting these two equations, we get 2= d2−3qc2

which is not possible modulo 3.
(2) 2m−1= 3c2, 2m+1= qd2, considering the first equationmodulo 8, we getm= 2

and hence q = 5. Therefore y = 22m+qb2 = 24+5(1)= 21 and so x = 43.
(3) 2m−1 = d2, 2m+1 = 3qc2, again considering the first equation modulo 8, we

get m= 1 and then q = 1 which is not our case.
(4) 2m−1 = qc2, 2m+1 = 3d2, considering the first equation modulo 8, we get a

contradiction.
Now suppose that x is even, then we have only the following equation:

qX2+22(m−u) = Y 3, (1.31)

where x = 2uX, y = 2ν ·Y , m> u > 0, ν > 0, (2,X) = (2,Y ) = 1, and 2u = 3ν . From
the first part of this proof, equation (1.31) has a unique solution given by q = 5,
m−u= 2, X = 43, and Y = 21. Since 2u= 3ν we get 3 |u, let u= 3M thenm= 2+3M
and ν = 2M . Hence x = 43·23M and y = 21·22M .

We are unable to solve (1.1) completely when A≡ 1 (mod4) but we are able to solve
it for many particular values of A for all p as we will show in the following example.
But before this we give a corollary which will help us.

Corollary 1.12. Ifm is odd then the Diophantine equation (1.1) has no solution in
x odd when 5 |A.



ON THE DIOPHANTINE EQUATION Ax2+22m =yn 379

Proof. Sincem is odd, therefore from the proof of Theorem 1.1, it is sufficient to
consider (1.16), where p ≡ 3 (mod4). If 5 |A in (1.16), then we get 1≡ 2m(p−1) (mod5)
which implies that 4 |m(p−1) and this is not possible.

Example 1.13. Consider the Diophantine equation 5x2+210 =yp .
Here m = 5, A = 5, h = 2, so from Corollary 1.12, this equation has no solution in

x odd for all p. If x is even then it is sufficient to consider the equation

5X2+22(5−u) = Yp, (1.32)

where x = 2uX, y = 2ν ·Y , 5> u> 0, ν > 0, (2,X)= (2,Y )= 1, and 2u= pν . Since p
is an odd prime, the only possibility is u= 3, p = 3, and (1.32) becomes 5X2+24 = Y 3,
which has a unique solution from Theorem 1.11, given by X = 43 and Y = 21, so the
given equation has a unique solution, x = 8.43, y = 4.21, and p = 3.

By using the method similar to [3, Lemma 3] we can prove the following lemma.

Lemma 1.14. If q is any odd prime which divides the integer b defined in (1.16), then

2m(q−1) ≡ 1
(
modq2). (1.33)

Considering (1.16) modulo 3 we are able to prove the following theorem.

Theorem 1.15. If 3 | b in (1.16), then m = 3k ·m′, where k ≥ 1, (3,m′) = 1 and
either

(1) 3 �A and then there is no solution if k even, or
(2) 3 |A and then there is no solution if k odd.

Proof. Let 3 | b then from Lemma 1.14, 22m ≡ 1 (mod9) which implies that 3 |m.
Let m = 3k ·m′, where (3,m′) = 1, k ≥ 1. Since p ≡ 3 (mod4), put p−1 = 2 ·3t ·p′,
where (2,p′) = (3,p′) = 1, t ≥ 0 and put b = 3s ·b′, where (3,b′) = 1, s ≥ 1. Rewrite
(1.16) as

1−2m(p−1) =
(p−1)/2∑
r=1

(
p
2r

)
2m(p−2r−1)(−Ab2)r . (1.34)

The general term in the right-hand side is

(
p
2r

)
2m(p−2r−1)(−Ab2)r =

(
p−2
2r −2

)
2m(p−2r−1)× pb2r−2

r(2r −1)
·b2(−A)r . (1.35)

Since 32r−2 ≥ r(2r −1) for r ≥ 1, this right-hand side is divisible at least by 32S+t if
(3,A)= 1, so from (1.34) we get

2m(p−1) ≡ 1
(
mod32s+t). (1.36)

Since 2 is a primitive root of 32s+t , therefore φ(32s+t) |m(p−1) which implies that
32s+t−1 | 2·3km′ ·3tp′, hence 32s−k−1 |m′p′. But (3,m′)= (3,p′)= 1, so 2s−k−1= 0
which implies that k is odd.

Now if 3 |A, then the right-hand side in (1.34) is divisible at least by 32s+t+1 and as
above we get k= 2s, implying k even.
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We are unable to solve (1.1) completely when p = 7, but as a special case we prove
the following theorem.

Theorem 1.16. The Diophantine equation (1.1), where (7,h)= 1, has no solution in
x odd when p = 7, A≡ 1 (mod12), and m= 32k ·m′, where k≥ 1, (3,m′)= 1.

Proof. Here p = 7, so from Theorem 1.1(iii) we get A ≡ 1 (mod4). Put p = 7 in
(1.16), then

1= 26m−21Ab224m+35A2b422m−7A3b6. (1.37)

If 3 | b in (1.37) then fromTheorem 1.15(1), this equation has no solution. So (3,b)= 1,
and then considering (1.37) modulo 3 we get

2A2−A3 ≡ 0 (mod3) (1.38)

which is not true since A≡ 1 (mod3).

Theorem 1.17. If (3,m)= 1, then the Diophantine equation (1.1), where (p,h)= 1
has no solution in x odd when A≡ 1 (mod24).

Proof. The case m = 1, the Diophantine equation (1.1) has no solution [5]. Let
m ≥ 2, since A ≡ 1 (mod8) then from Corollary 1.10, p = 7+8H. Since (3,m) = 1,
then from Theorem 1.15, (3,b) = 1 so b2 ≡ 1 (mod3). Considering (1.16) modulo 3,
where A≡ 1 (mod3) we get

1≡
(p−1)/2∑
r=0

(
p
2r

)
(−1)r (mod3)≡ (1+i)p+(1−i)p

2
(mod3). (1.39)

But (1±i)8 ≡ 1 (mod3), so (1.39) implies that

1≡
{
(1+i)8(1+H)(1−i)+(1−i)8(1+H)(1+i)}

2(1+i)(1−i) (mod3)

≡ 41+H× 1
2
(mod3)

≡ 2 (mod3)

(1.40)

which is a contradiction.

Example 1.18. Consider the Diophantine equation 73x2+214 =yp .
Here m = 7, A = 73, h = 4 so from Theorem 1.17, this equation has no solution in

x odd. If x is even then it is sufficient to consider the equation

73X2+22(7−u) = Yp, (1.41)

where x = 2uX, y = 2ν · Y , 7 > u > 0, ν > 0, (2,X) = (2,Y ) = 1, and 2u = pν . If
(7−u,3) = 1, then (1.41) has no solution from Theorem 1.17. If 3 | 7−u then u = 1
or 4, which is not possible since 2u = pν . So the given equation has no solution in
integers.
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