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Abstract. A new theorem on almost generalized Nörlund summability of conjugate series
of Fourier series has been established under a very general condition.
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1. Introduction. Lorentz [3], for the first time in 1948, defined almost convergence
of a bounded sequence. It is easy to see that a convergent sequence is almost con-
vergent [4]. The idea of almost convergence led to the formulation of almost gener-
alized Nörlund summability method. Here, almost generalized Nörlund summability
method is considered. In 1913, Hardy [1] established (c,α), α > 0 summability of
the series. Later on in 1948, harmonic summability which is weaker than the summa-
bility (c,α), α > 0 of the series was discussed by Siddiqi [8]. The generalization of
Siddiqi has been obtained by several workers, for example, Singh [9, 10], Iyengar [2],
Pati [5], Tripathi [11], Rajagopal [7] for Nörlund mean. But nothing seems to have been
done so far in the direction of study of conjugate Fourier series by almost generalized
Nörlund summability method. Almost generalized Nörlund summability includes al-
most Nörlund, Riesz, harmonic and Cesàro as particular cases. In an attempt to make
an advance study in this direction, in the present paper, a theorem on almost gener-
alized Nörlund summability of conjugate Fourier series has been obtained.

2. Definitions and notations. Let
∑
an be an infinite series with {Sn} as the se-

quence of its nth partial sums. Lorentz [3] has given the following definition.
A bounded sequence {Sn} is said to be almost convergent to a limit S, if

lim
n→∞

1
n+1

n+m∑
ν=m

Sν = S, uniformly with respect tom. (2.1)

Let {pn} and {qn} be the two sequences of non-zero real constants such that

Pn = p0+p1+p2+···+pn, P−1 = p−1 = 0, (2.2a)

Qn = q0+q1+q2+···+qn, Q−1 = q−1 = 0. (2.2b)

Given two sequences {pn}, {qn}, convolution p∗q is defined by

Rn = (p∗q)n =
n∑
k=0

pkqn−k. (2.3)

http://ijmms.hindawi.com
http://ijmms.hindawi.com
http://www.hindawi.com


366 S. LAL AND H. K. NIGAM

It is familiar and can be easily verified that the operation of convolution is commu-
tative and associative, and

(p∗1)n =
n∑
k=0

pk. (2.4)

The series
∑
an or the sequence {Sn} is said to be almost generalized Nörlund

(N,p,q) (Qureshi [6]) summable to S, if

tn,m = 1
Rn

n∑
ν=0

pn−ν qν Sν,m (2.5)

tends to S, as n→∞, uniformly with respect tom, where

Sν,m = 1
ν+1

ν+m∑
k=m

Sk. (2.6)

Particular cases. (a) Almost (N,p,q)method reduces to almost Nörlundmethod
(N,pn) if qn = 1 for all n.
(b) Almost (N,p,q)method reduces to almost Rieszmethod (N,qn) ifpn=1 for all n.
(c) In the special case when pn =

(n+α−1
α−1

)
, α > 0, the method (N,pn) reduces to the

well-known method of summability (C,α).
(d) pn = (n+1)−1 of the Nörlund mean is known as harmonic mean and is written

as (N,1/(n+1)).
Let f(t) be a periodic functionwith period 2π and integrable in the sense of Lebesgue

over an interval (−π,π).
Let its Fourier series be given by

f(t)∼ 1
2
a0+

∞∑
n=1

(
an cosnt+bn sinnt

)= 1
2
a0+

∞∑
n=1

An(t) (2.7)

and then the conjugate series of (2.7) is given by

∞∑
n=1

(
an sinnt−bn cosnt

)= ∞∑
n=1

Bn(t). (2.8)

We will use the following notations:

φ(t)= f(x+t)+f(x−t)−2f(x),

ψ(t)= f(x+t)−f(x−t),

Φ(t)=
∫ t
0

∣∣φ(u)∣∣du,

Ψ(t)=
∫ t
0

∣∣ψ(u)∣∣du,
τ =

[
1
t

]
= The integral part of 1

t
,

(2.9)
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Nn,m(t)= 1
2πRn

n∑
ν=0

pn−νqν
sin(ν+1)(t/2){cos(ν+2m+1)(t/2)−cos(t/2)}

(ν+1)sin2(t/2) , (2.10)

Nn,m(t)= 1
2πRn

n∑
ν=0

pn−νqν
cos(ν+2m+1)(t/2)sin(ν+1)(t/2)

(ν+1)sin2(t/2) . (2.11)

3. Known theorem. Pati [5] has established the following theorem for Nörlund
summability of a Fourier series.

Theorem 3.1. Let (N,pn) be a regular Nörlund method defined by a real non-
negative monotonic non-increasing sequence of coefficients {pn} such that

Pn =
n∑
ν=0

pν �→∞, as n �→∞, (3.1)

and

logn=O(Pn), as n �→∞, (3.2)

then if

Φ(t)=
∫ t
0

∣∣φ(u)∣∣du= o[ t
Pτ

]
, as t �→+0, (3.3)

the series (2.7) is summable (N,pn) to f(x) at the point t = x.

4. Main theorem. In this paper, we aim to generalize the above result for almost
(N,p,q) summability of conjugate Fourier series in the following form.

Theorem 4.1. Let {pn} and {qn} be the monotonic non-increasing sequences of real
constants such that Rn =

∑n
ν=0pνqn−ν →∞, as n→∞. If

Ψ(t)=
∫ t
0

∣∣ψ(u)∣∣du= o[α(1/t)t
R(1/t)

]
, as t �→+0, (4.1)

∫ 1/(n+m)δ

1/(n+m)

∣∣ψ(t)∣∣
t2

dt = o(n), as n �→∞, (4.2)

where 0 < δ < 1/2, uniformly with respect to m, and α(t) is a positive monotonic
non-increasing function of t such that

α(n+m) log(n+m)=O(Rn+m), as n �→∞, (4.3)
n∑
ν=0

(
pn−νqν
(ν+1)

)
=O

(
Rn
n

)
, (4.4)

then the conjugate Fourier series (2.8) is almost (N,p,q) summable to
−(1/2π)∫π0 cot(1/2)t ψ(t)dt at point t = x.
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5. Lemmas. For the proof of Theorem 4.1, the following lemmas are required.

Lemma 5.1. For 0< t < 1/(n+m), we have

∣∣Nn,m(t)
∣∣

= 1
2πRn

∣∣∣∣∣
n∑
ν=0

pn−νqν
sin(ν+1)(t/2){cos(ν+2m+1)(t/2)−cos(t/2)}

(ν+1)sin2(t/2)

∣∣∣∣∣
= 1
2πRn

∣∣∣∣∣
n∑
ν=0

pn−νqν
sin(ν+1)(t/2){2sin((ν+2m+2)/2)(t/2)sin((ν+2m)/2

)
(t/2)

}
(ν+1)sin2(t/2)

∣∣∣∣∣
≤ 1
2πRn

∣∣∣∣∣
n∑
ν=0

pn−νqν
(ν+1)sin(t/2){2sin((ν+2m+2)/2)(t/2)sin((ν+2m)/2

)
(t/2)

}
(ν+1)sin2(t/2)

∣∣∣∣∣
≤ 1
2πRn

n∑
ν=0

pn−νqν
2
(
(ν+2m+2)/2)∣∣sin(t/2)∣∣∣∣sin((ν+2m)/2

)
(t/2)

∣∣∣∣sin(t/2)∣∣
= 1
2πRn

{ n∑
ν=0

pn−νqν

}
(n+2m+2)

=O(n+m)
1
Rn

n∑
ν=0

pn−νqν

∣∣Nn,m(t)
∣∣=O(n+m) by (4.4). (5.1)

Lemma 5.2. For 1/(n+m)< t <π , we have

Nn,m(t)= 1
2πRn

n∑
ν=0

pn−νqν
cos

(
m+(ν+1)/2)t sin((ν+1)/2)t

(ν+1)sin2(t/2) ,

∣∣Nn,m(t)
∣∣≤ 1

2πRn

n∑
ν=0

pn−νqν
cos

(
m+(ν+1)/2)t sin((ν+1)/2)t

(ν+1)sin2(t/2)

≤ 1
2πRn

n∑
ν=0

pn−νqν
(ν+1)

1

sin2(t/2)
=O

(
1
t2

)
1
Rn

n∑
ν=0

(
pn−νqν
(ν+1)

)
,

∣∣Nn,m(t)
∣∣=O( 1

t2n

)
by (4.4). (5.2)

Proof of Theorem 4.1. Let Sk(x) denote the nth partial sum of the series (2.8).
Then we have

Sk(x)= 1
2π

∫ π
0

cos
(
k+(1/2))t−cos(t/2)

sin(t/2)
ψ(t)dt

= 1
2π

∫ π
0

cos
(
k+(1/2))t
sin(t/2)

ψ(t)dt− 1
2π

∫ π
0
cot

(
t
2

)
ψ(t)dt.

(5.3)

Now, by using (2.6) we get

Sν,m = 1
ν+1

ν+m∑
k=m

{
1
2π

∫ π
0

cos
(
k+(1/2))t
sin(t/2)

ψ(t)dt− 1
2π

∫ π
0
cot

(
t
2

)
ψ(t)dt

}
, (5.4)
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so that by using (2.5) we have

tn,m = 1
Rn

n∑
ν=0

pn−νqν

{
1
2π

∫ π
0

ν+m∑
k=m

cos
(
k+(1/2))t

(ν+1)sin(t/2) ψ(t)dt−
1
2π

∫ π
0
cot

(
t
2

)
ψ(t)dt

}

tn,m−
(
− 1
2π

∫ π
0
cot

(
t
2

)
ψ(t)dt

)

= 1
Rn

n∑
ν=0

pn−νqν
1

2π(ν+1)
∫ π
0

ν+m∑
k=m

cos
(
k+(1/2))t
sin(t/2)

ψ(t)dt

= 1
2πRn

n∑
ν=0

pn−νqν
∫ π
0

sin(ν+m+1)t−sinmt
2(ν+1)sin2(t/2) ψ(t)dt

=
∫ π
0

{
1

2πRn

n∑
ν=0

pn−νqν
cos(ν+2m+1)(t/2)sin(ν+1)(t/2)

(ν+1)sin2(t/2)
}
ψ(t)dt

=
∫ π
0
Nn,m(t)ψ(t)dt

=
{∫ 1/(n+m)

0
+
∫ 1/(n+m)δ

1/(n+m)
+
∫ π
1/(n+m)δ

}
Nn,m(t)ψ(t)dt = I1+I2+I3.

(5.5)

First we consider,

I1 =
∫ 1/(n+m)

0
Nn,m(t)ψ(t)dt

=
∫ 1/(n+m)

0

1
2πRn

n∑
ν=0

pn−νqν
cos(ν+2m+1)(t/2)sin(ν+1)(t/2)

(ν+1)sin2(t/2) ψ(t)dt

=
∫ 1/(n+m)

0

1
2πRn

n∑
ν=0

pn−νqν
sin(ν+1)(t/2){cos(ν+2m+1)(t/2)−cos(t/2)}

(ν+1)sin2(t/2) ψ(t)dt

+
∫ 1/(n+m)

0

1
2πRn

n∑
ν=0

pn−νqν
sin(ν+1)(t/2)cot(t/2)

(ν+1)sin(t/2) ψ(t)dt = I1.1+I1.2. (5.6)

Now

∣∣I1.1∣∣≤
∫ 1/(n+m)
0

1
2πRn

∣∣∣∣∣
n∑
ν=0

pn−νqν
sin(ν+1)(t/2){cos(ν+2m+1)(t/2)−cos(t/2)}

(ν+1)sin2(t/2)

∣∣∣∣∣
∣∣ψ(t)∣∣dt

=
∫ 1/(n+m)

0

∣∣Nn,m(t)
∣∣∣∣ψ(t)∣∣dt

=O(n+m)
∫ 1/(n+m)

0

∣∣ψ(t)∣∣dt by Lemma 5.1

=O(n+m)o
[

α(n+m)
(n+m)Rn+m

]
by (4.1)

= o
[
α(n+m)
Rn+m

]
= o

[
1

log(m+n)
]
by (4.3)

I1.1=o(1), as n �→∞, uniformly with respect tom. (5.7)
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Next, for 0< t ≤ 1(n+m)

∣∣I1.2∣∣≤ 1
2πRn

n∑
ν=0

pn−νqν
∫ 1/(n+m)

0

sin(ν+1)(t/2)cot(t/2)
(ν+1)sin(t/2) ψ(t)dt

≤ 1
2πRn

n∑
ν=0

pn−νqν
∫ 1/(n+m)

0

(ν+1)sin(t/2)cot(t/2)
(ν+1)sin(t/2) ψ(t)dt

− 1
2π

∫ 1/(n+m)

0
cot

(
t
2

)
ψ(t)dt

since the conjugate function exists, therefore

− 1
2π

∫ 1/(n+m)

0
cot

(
t
2

)
ψ(t)dt=o(1), as n �→∞, uniformly with respect tom. (5.8)

Hence,

I1.2 = o(1), (5.9)

thus from (5.6), (5.7), and (5.9)

I1 = o(1). (5.10)

Now, we take

∣∣I2∣∣≤
∫ 1/(n+m)δ

1/(n+m)

∣∣Nn,m(t)
∣∣∣∣ψ(t)∣∣dt

=O
∫ 1/(n+m)δ

1/(n+m)

∣∣ψ(t)∣∣
t2n

dt by Lemma 5.2

=O
(
1
n

)∫ 1/(n+m)δ

1/(n+m)

∣∣ψ(t)∣∣
t2

dt

=O
(
1
n

)
o(n) by (4.2)

I2 = o(1), as n �→∞, uniformly with respect tom. (5.11)

Finally, we have

∣∣I3∣∣≤
∫ π
1/(n+m)δ

1
2πRn

n∑
ν=0

pn−νqν
∣∣∣∣cos(ν+2m+1)(t/2)sin(ν+1)(t/2)

(ν+1)sin2(t/2)
∣∣∣∣∣∣ψ(t)∣∣dt

=
∫ π
1/(n+m)δ

1
2πRn

n∑
ν=0

pn−νqν
∣∣∣∣sin(ν+m+1)t−sinmt

2(ν+1)sin2(t/2)
∣∣∣∣∣∣ψ(t)∣∣dt

= 1
2πRn

n∑
ν=0

pn−νqν

[∫ π
1/(n+m)δ

∣∣∣∣ sin(ν+m+1)t
2(ν+1)sin2(t/2)

∣∣∣∣∣∣ψ(t)∣∣dt

+
∫ π
1/(n+m)δ

∣∣∣∣ sinmt
2(ν+1)sin2(t/2)

∣∣∣∣∣∣ψ(t)∣∣dt
]

= I3.1+I3.2. (5.12)
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Now, by using second mean value theorem, we have

∣∣I3.1∣∣≤ 1
2πRn

n∑
ν=0

pn−νqν
2(ν+1)

1

2sin2
(
1/2(n+m)δ

) ∫ ε
1/(n+m)δ

∣∣sin(ν+m+1)t∣∣∣∣ψ(t)∣∣dt,
where

1
(n+m)δ

< ε <π, 0< δ<
1
2

=O
(
1
n

)
(n+m)2δ

(
1/2(n+m)δ

sin
(
1/2(n+m)δ

)
)2∫ ε

1/(n+m)δ

∣∣ψ(t)∣∣dt
I3.1 = o(1), as n �→∞, uniformly with respect tom. (5.13)

Now,

∣∣I3.2∣∣≤ 1
2πRn

∫ π
1/(n+m)δ

n∑
ν=0

pn−νqν
∣∣∣∣ sinmt
2(ν+1)sin2(t/2)

∣∣∣∣∣∣ψ(t)∣∣dt

≤ 1

2sin2
(
1/2(n+m)δ

) ∫ ε
1/(n+m)δ

∣∣ψ(t)∣∣dt
I3.2 = o(1), as n �→∞, uniformly with respect tom. (5.14)

Hence,

I3 = o(1), as n �→∞. (5.15)

Now, by combining (5.5), (5.10), (5.11), and (5.15), we have

∫ π
0
Nn,m(t)ψ(t)dt = o(1), as n �→∞, uniformly with respect tom. (5.16)

Thus, the theorem is established.

6. Applications. In this section, we deduce some corollaries from Theorem 4.1.

Corollary 6.1. If

Ψ(t)=
∫ t
0

∣∣ψ(u)∣∣du= o[ t
R(1/t)

]
, (6.1)

log(n+m)=O(Rn+m), as n �→∞, (6.2)

conditions (4.2) and (4.4) of the main theorem are satisfied, then the conjugate Fourier
series is almost (N,p,q) summable to −(1/2π)∫π0 ψ(t)cot(1/2)tdt.

Corollary 6.2. If

Ψ(t)=
∫ t
0

∣∣ψ(u)∣∣du= o[ t
log(1/t)

]
, (6.3)

conditions (4.2) and (4.4) of Theorem 4.1 hold, then the conjugate Fourier series is al-
most (N,p,q) summable to −(1/2π)∫π0 ψ(t)cot(1/2)tdt without employing (4.3).
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