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1. Introduction. Suppose that 0<α<n, Ω(x) is homogeneous of degree zero on
Rn and Ω(x′)∈ Ls(Sn−1) (s > 1), where Sn−1 denotes the unit sphere in Rn. Then the
fractional integral operator TΩ,α and the maximal operator MΩ,α are defined by

TΩ,αf (x)=
∫
Rn

Ω(x−y)
|x−y|n−α f(y)dy,

MΩ,αf (x)= sup
r>0

1
rn−α

∫
|x−y|<r

|Ω(x−y)||f(y)|dy,
(1.1)

respectively. It is easy to see that, when Ω ≡ 1, TΩ,α and MΩ,α are the usual frac-
tional integral operator Iα and the maximal operator Mα. In 1971, Muckenhoupt and
Wheeden [6] gave (Lp,Lq)-boundedness with power weight of TΩ,α. In 1993, Chanillo,
Watson and Wheeden [1] proved that when s ≥ n/(n−α), the operator TΩ,α is weak
type (1,n/(n−α)). Recently, we gave the weighted (Lp,Lq)-boundedness of TΩ,α and
MΩ,α for general A(p,q) weight [3], and the weak boundedness of TΩ,α and MΩ,α with
power weight [2].
The purpose of this paper is to study the weighted (Lp, Lq)-boundedness of TΩ,α

and MΩ,α for the two different weights.
Before showing our results, we give the definitions of some weight classes. In the

following definitions, the function ω and the function pair (u,v) are all locally inte-
grable nonnegative functions. Moreover, C > 0 and Q denotes a cube in Rn with its
sides parallel to the coordinate axes and χQ(x) denotes the characterization function
of Q.

The definition of Ap (1 < p < ∞). A function ω is said to belong to Ap (1 <
p <∞) if

sup
Q⊂Rn

(
1
|Q|

∫
Q
ω(x)dx

)(
1
|Q|

∫
Q
ω(x)−1/(p−1) dx

)p−1
≤ C. (1.2)
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The definition of A(p,q) (1 < p, q < ∞). A function ω is said to belong to
A(p,q) (1<p, q <∞) if

sup
Q⊂Rn

(
1
|Q|

∫
Q
ω(x)q dx

)1/q( 1
|Q|

∫
Q
ω(x)−p

′
dx

)1/p′
≤ C. (1.3)

The definition of A∗p (1 < p < ∞). A function pair (u,v) is said to belong to
A∗p (1<p <∞) if

sup
Q⊂Rn

(
1
|Q|

∫
Q
u(x)dx

)(
1
|Q|

∫
Q
v(x)−1/(p−1) dx

)p−1
≤ C. (1.4)

The definition of A∗(p,q) (1 < p, q < ∞). A function pair (u,v) is said to
belong to A∗(p,q) (1<p, q <∞) if

sup
Q⊂Rn

(
1
|Q|

∫
Q
u(x)q dx

)1/q( 1
|Q|

∫
Q
v(x)−p

′
dx

)1/p′
≤ C. (1.5)

The definition of S∗p (1 < p < ∞). A function pair (u,v) is said to belong to
S∗p (1<p <∞) if

∫
Q

[
M
(
v−1/(p−1)χQ

)]p u(x)dx ≤ C
∫
Q
v(x)−1/(p−1) dx. (1.6)

In this paper, we prove the following results.

Theorem 1.1. Suppose that 0 < α < n, 1 < p < n/α, 1/q = 1/p−α/n, Ω is homo-
geneous of degree zero defined on Rn and Ω ∈ Ls(Sn−1). If p,q,s, and (u,v) satisfy
one of the following conditions:
(a) 1≤s′ <p, (us′ , vs′)∈A∗(p/s′,q/s′), in additionu(x)s′ ,v(x)s′ ∈A(p/s′, q/s′);
(b) s>q, (v−s′,u−s′)∈A∗(q′/s′,p′/s′), in additionv(x)−s′,u(x)−s′∈A(q′/s′, p′/s′);

then there is a constant C , independent of f , such that TΩ,α satisfies

(∫
Rn

∣∣TΩ,α f (x)u(x)∣∣q dx
)1/q

≤ C
(∫

Rn

∣∣f(x)v(x)∣∣p dx)1/p. (1.7)

Theorem 1.2. Suppose that 0 < α < n, 1 < p < n/α, 1/q = 1/p−α/n, Ω is homo-
geneous of degree zero defined on Rn and Ω ∈ Ls(Sn−1). If p,q,s, and (u,v) satisfy
one of the following conditions:
(c) 1 ≤ s′ < p, (us′ ,vs′) ∈ A∗(p/s′,q/s′), in addition σ = v−s′(p/s′)′ satisfies the

doubling condition;
(d) s > q, (v−s′ ,u−s′) ∈ A∗(q′/s′,p′/s′), in addition v(x)−s′ , u(x)−s′ ∈ A(q′/s′,

p′/s′);
then there is a constant C , independent of f , such that MΩ,α satisfies

(∫
Rn

[
MΩ,α f (x)u(x)

]q dx)1/q ≤ C(
∫
Rn

∣∣f(x)v(x)∣∣p dx)1/p. (1.8)

2. Some elementary properties of theweight class. We begin by giving some prop-
erties of the weight classes Ap,A(p,q),A∗p , A∗(p,q), and S∗p .
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The elementary properties of Ap (1<p <∞)
(a) Ap1 ⊂Ap2 , if 1<p1 <p2 < ∞.
(b) ω(x)∈Ap , if and only if ω(x)1−p

′ ∈Ap′ .
(c) If ω(x)∈Ap , then there is an ε > 0 such that p−ε > 1 and ω(x)∈Ap−ε.
(d) If ω(x)∈Ap , then there is an ε > 0 such that ω(x)1+ε ∈Ap .
(e) If ω(x)∈Ap , then for any 0< ε < 1, ω(x)ε ∈Ap .
(f) If ω(x)∈Ap , then there are C > 0 and ε > 0 such that, for any Q∈Rn,

1
|Q|

∫
Q
ω(x)1+ε dx ≤ C

(∫
Q
ω(x)dx

)1+ε
. (2.1)

See [4] for the proof.

The elementary properties of A∗p (1<p <∞)
(i) A∗p1 ⊂A∗p2 , if 1<p1 <p2 < ∞.
(ii) (u,v)∈A∗p , if and only if (v1−p′ ,u1−p′)∈A∗p′ .
(iii) S∗p ⊂A∗p , for 1<p <∞.
(iv) If (u,v)∈A∗p , then for any 0< ε < 1, (uε,vε)∈ S∗p .
(v) If (u,v)∈A∗p and u(x),v(x)∈Ap , then (u,v)∈ S∗p and (v1−p′ ,u1−p′)∈ S∗p′ .
(vi) If (u,v)∈A∗p andu(x),v(x)∈Ap , then there is an ε > 0 such that (u1+ε,v1+ε)∈

A∗p and (v(1−p′)(1+ε),u(1−p′)(1+ε))∈A∗p′ .
(vii) If (u,v) ∈ A∗p and u(x),v(x) ∈ Ap , then there is an ε > 0 such that p−ε > 1

and (u,v)∈A∗p−ε.
Proof. The proof of (i) and (ii) can be deduced from the definition of A∗p .
For (iii), by [8], we know that the Hardy-Littlewood maximal operator M is bounded

from Lp(v) to Lp(u)(1<p <∞) if and only if (u,v)∈ S∗p . On the other hand, by [5],
the operatorM is bounded from Lp(v) to weak Lp(u) if and only if (u,v)∈A∗p . Hence,
(iii) holds.
The proof of (iv) is a conclusion in [7].
Now, we prove (v). Since v(x) ∈ Ap , we have v(x)1−p

′ ∈ Ap′ , by (b). Thus, from (f)
there are C > 0 and η > 0 such that, for any Q∈Rn,

1
|Q|

∫
Q
u(x)1+ηdx ≤ C

(∫
Q
u(x)dx

)1+η
, (2.2)

1
|Q|

∫
Q
v(x)(1−p

′)(1+η) dx ≤ C
(∫

Q
v(x)1−p

′
dx

)1+η
, (2.3)

that is,
1
|Q|

∫
Q
v(x)−(1+η)/(p−1) dx ≤ C

(∫
Q
v(x)−1/(p−1) dx

)1+η
. (2.4)

Hence, by (u,v)∈A∗p , (2.2), and (2.4) we have

sup
Q

(
1
|Q|

∫
Q
u(x)1+ηdx

)(
1
|Q|

∫
Q
v(x)−(1+η)/(p−1) dx

)p−1

≤ C
(
sup
Q

(
1
|Q|

∫
Q
u(x)dx

)(
1
|Q|

∫
Q
v(x)−1/(p−1) dx

)p−1)1+η
<∞,

(2.5)
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that is, (
u1+η,v1+η

)∈A∗p. (2.6)

Taking δ = 1/(1+ η), then 0 < δ < 1 and (u,v) = (u(1+η)δ,v(1+η)δ) ∈ S∗p by (2.6)

and (iv). On the other hand, by (2.6) and (ii) we get (v(1+η)(1−p′),u(1+η)(1−p′))∈A∗p′ . As
above, we take δ= 1/(1+η), then (v1−p′ ,u1−p′)∈ S∗p′ . This is (v).
By (2.6), we have (u1+η,v1+η) ∈ A∗p . Now, we take 0 < δ < 1 such that δ(1+η) > 1.

Let 1+ε = δ(1+η), then ε > 0 and
(
u1+ε,v1+ε

)= (uδ(1+η),vδ(1+η))∈ S∗p ⊂A∗p, (2.7)

by (iii) and (iv). From (2.7) and (ii), we can get (v(1−p′)(1+ε),u(1−p′)(1+ε)) ∈ A∗p′ . Thus,
we prove (vi). Finally, we prove (vii). By (vi), there is an η > 0 such that

(
v(1−p′)(1+η),u(1−p′)(1+η))∈A∗p′ . (2.8)

Taking ε = η(p− 1)/(1+ η), then we can see easily that ε > 0 and 1 < p− ε < p.
Hence, we have p′ < (p−ε)′ and (v(1−p′)(1+η),u(1−p′)(1+η)) ∈ A∗(p−ε)′ , by (i). From (ii),

we get (u(1−p′)(1+η)[1−(p−ε)],v(1−p′)(1+η)[1−(p−ε)]) ∈ A∗p−ε. However, (1−p′)(1+η)[1−
(p−ε)]= 1. Thus, we have (u,v)∈A∗p−ε.

The relations between Ap and A(p,q), A∗p , and A∗(p,q). Suppose that
0<α<n, 1<p <n/α, 1/q = 1/p−α/n, then we have the following conclusions:

ω(x)∈A(p,q)⇐⇒ω(x)q ∈Aq(n−α)/n⇐⇒ω(x)−p
′ ∈A1+p′/q, (2.9)

(u,v)∈A∗(p,q)⇐⇒ (
uq,vq)∈A∗q(n−α)/n⇐⇒ (

v−p
′
,u−p

′)∈A∗1+p′/q. (2.10)

Equations (2.9) and (2.10) can be deduced from the definitions of Ap and A(p,q),
A∗p and A∗(p,q), respectively. Here we omit the details.

3. Proofs of the theorems. The proofs of the theorems are based on Wheeden’s a
result in [9] and some lemmas.

Theorem 3.1 (see [9]). For 0 < α < n, 1 < p < n/α, and 1/q = 1/p−α/n, Mα is
bounded from Lp(vp) to Lq(uq) if and only if the weights pair (u,v) ∈ A∗(p,q) and
σ = v−p′ satisfies the doubling condition. That is, there is a constant C > 0 such that
σ(2B)≤ Cσ(B) for all ball B in Rn.

The following lemma gives a pointwise relation between TΩ,α and MΩ,α.

Lemma 3.2 (see [3]). For any ε > 0 with 0<α−ε < α+ε < n, we have∣∣TΩ,αf (x)∣∣≤ C[MΩ,α+εf (x)
]1/2 ·[MΩ,α−εf (x)

]1/2, x ∈Rn, (3.1)

where C depends only on α,ε,n.

The following two lemmas characterize an important property of A∗(p,q) weights.

Lemma 3.3. Suppose that 0 < α < n, 1 < p < n/α, 1/q = 1/p −α/n, (u,v) ∈
A∗(p,q), and u(x),v(x) ∈ A(p,q). Then there is an ε > 0 such that ε < α < α+ε <
n; 1/p > (α+ε)/n, 1/q < (n−ε)/n, and (u,v) ∈ A∗(p,qε), (u,v) ∈ A∗(p,q̄ε) hold
at the same time, where 1/qε = 1/p−(α+ε)/n, 1/q̄ε = 1/p−(α−ε)/n.
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Proof. Forα> 0, 1/q < 1, wemay take δ1 > 0 such that δ1 <α and 1/q+δ1/n < 1.
Let

1
qδ1

= 1
p
− α−δ1

n
= 1
q
+ δ1
n
, (3.2)

then q > qδ1 > 1 and 1+p′/q < 1+p′/qδ1 . By (u,v)∈A∗(p,q), (2.10), and (i), we have
(
v−p

′
,u−p

′)∈A∗1+p′/q ⊂A∗1+p′/qδ1 . (3.3)

Since 0 < α−δ1 < n, 1 < p < n/(α−δ1), then by (3.2) and (2.10), we know that (3.3)
is equivalent to

(u,v)∈A∗(p,qδ1). (3.4)

On the other hand, by (u,v)∈A∗(p,q) and u(x),v(x)∈A(p,q), we get
(
v−p

′
,u−p

′)∈A∗1+p′/q, v(x)−p
′
,u(x)−p

′ ∈A1+p′/q, (3.5)

by (2.10) and (2.9), respectively. From (3.5) and (vii), we know that there is an η satis-
fying 0< η< 1/q such that

(
v−p

′
,u−p

′)∈A∗1+p′(1/q−η). (3.6)

Obviously, we can also chooseδ2 > 0 small enough such thatδ2 <min{α,n−α}, 1/p >
(α+δ2)/n, and δ2/n < η hold at the same time. Now, let 1/qδ2 = 1/p− (α+δ2)/n,
then by 1/p > (α+δ2)/n and δ2/n < η, we get 0< 1/qδ2 < 1 and 1/qδ2 = 1/q−δ2/n >
1/q−η. From this and (3.6), we have

(
v−p

′
,u−p

′)∈A∗1+p′(1/q−η) ⊂A∗1+p′/qδ2 . (3.7)

Since 0<α+δ2 <n, 1<p <n/(α+δ2), and 1/qδ2 = 1/p−(α+δ2)/n, then by (2.10)
we know that (3.7) is equivalent to

(u,v)∈A∗(p,qδ2). (3.8)

Finally, let ε =min{δ1,δ2} and 1/qε = 1/p−(α+ε)/n, 1/q̄ε = 1/p−(α−ε)/n. Then
by (3.4) and (3.8), we get (u,v)∈A∗(p,qε) and (u,v)∈A∗(p,q̄ε). Thus, the proof of
Lemma 3.3 is complete.

Lemma 3.4. Suppose that 0 < α < n, 1 ≤ s′ < p < n/α, 1/q = 1/p −α/n and
(us′ ,vs′) ∈ A∗(p/s′,q/s′). Moreover, u(x)s′ ,v(x)s′ ∈ A(p/s′,q/s′). Then there is an
ε > 0 such that

ε < α<α+ε < n; (3.9)

1
p
>
α+ε
n

,
1
q
<
n−ε
n

, (3.10)

and (us′ ,vs′) ∈ A∗(p/s′,qε/s′), (us′ ,vs′) ∈ A∗(p/s′, q̄ε/s′) hold at the same time.
Where 1/qε = 1/p−(α+ε)/n and 1/q̄ε = 1/p−(α−ε)/n.
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Proof. Since 1/(q/s′)= 1/(p/s′)−αs′/n, from Lemma 3.3, there is an η > 0 such
that η <αs′ <αs′ +η <n, 1/(p/s′) > (αs′ +η)/n, 1/(q/s′) < (n−η)/n and

(
us′ ,vs′)∈A∗(p

s′
,qη

)
,

(
us′ ,vs′)∈A∗(p

s′
, q̄η

)
, (3.11)

hold at the same time, where

1
qη
= 1
p/s′

− αs′ +η
n

,
1
q̄η
= 1
p/s′

− αs′ −η
n

. (3.12)

Let ε = η/s′, qε = s′qη, and q̄ε = s′q̄η, then it is easy to see that ε satisfies (3.9)
and (3.10). Moreover, by (3.11) and (3.12) we know that

(
us′ ,vs′)∈A∗(p

s′
,
qε
s′

)
,

(
us′ ,vs′)∈A∗(p

s′
,
q̄ε
s′

)
, (3.13)

hold at the same time, where 1/qε = 1/p−(α+ε)/n and 1/q̄ε = 1/p−(α−ε)/n. This
completes the proof of Lemma 3.4.

Now, we turn to the proofs of Theorems 1.1 and 1.2. We alternatively prove them.

The proof of (1.8) for the condition (c) in Theorem 1.2. Note that, for r > 0,(∫
|x−y|<r |Ω(x−y)|s dy

)1/s ≤ Crn/s‖Ω‖Ls(Sn−1). Hence, we have
MΩ,αf (x)≤ C

[
Mαs′

(|f |s′)(x)]1/s′ . (3.14)

Since 1 ≤ s′ < p < n/α and 1/q = 1/p − α/n, we get 0 < αs′ < n, 1 < p/s′ <
n/αs′, and 1/(q/s′) = 1/(p/s′)−αs′/n. Moreover, (us′ ,vs′) ∈ A∗(p/s′,q/s′) and
σ = (vs′)−(p/s′)′ satisfies the doubling condition by (c). From Theorem 3.1, we know
that the operatorMαs′ is bounded from Lp/s′((vs′)p/s′) to Lq/s′((us′)q/s′). Thus, we get

(∫
Rn

[
MΩ,α f (x)u(x)

]q dx)1/q ≤ C(
∫
Rn

[
Mαs′

(|f |s′)(x)u(x)s′]q/s′ dx)1/q

≤ C
(∫

Rn
|f(x)|pv(x)p dx

)1/p
.

(3.15)

This completes the proof of (1.8) for the condition (c).

The proof of (1.7) for the condition (a) in Theorem 1.1. First, we show
that, under the condition (a) in Theorem 1.1, σ = v−s′(p/s′)′ still satisfies the dou-
bling condition. In fact, by v(x)s′ ∈A(p/s′,q/s′) and (2.9), we have (v(x)s′)−(p/s′)′ ∈
A1+(p/s′)′/(q/s′) ⊂ A∞. Since, every weight function in A∞ satisfies the doubling condi-
tion, and so does σ = v−s′(p/s′)′ .
By Lemma 3.4, there is an ε > 0 satisfying (3.9) and (3.10) such that

(
us′ ,vs′)∈A∗(p

s′
,
qε
s′

)
,

(
us′ ,vs′)∈A∗(p

s′
,
q̄ε
s′

)
, (3.16)

hold at the same time. Where 1/qε = 1/p−(α+ε)/n and 1/q̄ε = 1/p−(α−ε)/n. Let
l1 = 2qε/q, l2 = 2q̄ε/q, then 1/l1+1/l2 = 1. For given ε > 0 above, using (3.1) and
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Hölder’s inequality, we have

∥∥TΩ,αf∥∥q,uq ≤C
(∫

Rn

[
MΩ,α+εf (x)u(x)

]ql1/2dx)1/ql1(
∫
Rn

[
MΩ,α−εf (x)u(x)

]ql2/2dx)1/ql2

=C
(∫

Rn

[
MΩ,α+εf (x)u(x)

]qε dx)1/2qε(
∫
Rn

[
MΩ,α−εf (x)u(x)

]q̄ε dx)1/2q̄ε .
(3.17)

Note that σ = v−s′(p/s′)′ satisfies the doubling condition, applying Lemma 3.4 and the
conclusion of Theorem 1.2 under the condition (c), we get

∥∥TΩ,αf∥∥q,uq ≤ C‖f‖p,vp . (3.18)

This is the conclusion of Theorem 1.1 for the case (a).

The proof of (1.7) for the condition (b) in Theorem 1.1. Since the fractional
integral operator TΩ,α is a linear operator, we denote T∗ := (TΩ,α)∗ as the adjoint
operator of TΩ,α. Then (TΩ,α)∗ = TΩ∗,α, where Ω∗(x) = Ω(−x). Clearly, Ω∗ satisfies
the same conditions as Ω. We have

∥∥TΩ,αf∥∥q,uq = sup
g

∣∣∣∣
∫
Rn
TΩ,α f (x)g(x)dx

∣∣∣∣, (3.19)

where the supremum is taken over all g with ‖g‖q′,u−q′ ≤ 1. On the other hand,∫
Rn
TΩ,α f (x)g(x)dx =

∫
Rn

f (x)T∗g(x)dx. (3.20)

Thus, by Hölder’s inequality, we get

∥∥TΩ,αf∥∥q,uq = sup
g

∣∣∣∣
∫
Rn
TΩ,α f (x)g(x)dx

∣∣∣∣≤ ‖f‖p,vp sup
g
‖T∗g‖p′,v−p′ . (3.21)

From condition (b) of Theorem 1.1, we see that 1/p′ = 1/q′ −α/n and s′ < q′ < n/α.
Since (v−s′ ,u−s′) ∈ A∗(q′/s′,p′/s′) and v(x)−s′ ,v(x)−s′ ∈ A(q′/s′,p′/s′), using the
conclusion of Theorem 1.1 for the case (a), we get

∥∥T∗g∥∥p′,v−p′ ≤ C‖g‖q′,u−q′ . (3.22)

Therefore,
‖TΩ,αf‖q,uq ≤ ‖f‖p,vp ·sup

g
‖T∗g‖p′,v−p′ ≤ C‖f‖p,vp . (3.23)

This is the inequality (1.7) in Theorem 1.1.

The proof of (1.8) for the condition (d) in Theorem 1.2. Finally, we show
how to obtain the weighted inequality (1.8) for the case (d) in Theorem 1.2. Note that
the conclusions of Theorem 1.1 hold also for T|Ω|,α(|f |), hence inequality (1.8) for the
case (d) is a direct result of the following lemma and the conclusion of Theorem 1.1
for the case (b).

Lemma 3.5 (see [2]). Let 0<α<n, Ω ∈ L1(Sn−1). Then we have

MΩ,α f (x)≤ T|Ω|,α(|f |)(x), x ∈Rn. (3.24)
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