ON THE SOLVABILITY OF A VARIATIONAL INEQUALITY PROBLEM AND APPLICATION TO A PROBLEM OF TWO MEMBRANES

A. ADDOU and E. B. MERMRI

(Received 17 March 2000)

ABSTRACT. The purpose of this work is to give a continuous convex function, for which we can characterize the subdifferential, in order to reformulate a variational inequality problem: find $u = (u_1, u_2) \in K$ such that for all $v = (v_1, v_2) \in K$, $\int_{\Omega} \nabla u_1 \nabla (v_1 - u_1) + \int_{\Omega} \nabla u_2 \nabla (v_2 - u_2) + (f, v - u) \ge 0$ as a system of independent equations, where *f* belongs to $L^2(\Omega) \times L^2(\Omega)$ and $K = \{v \in H_0^1(\Omega) \times H_0^1(\Omega) : v_1 \ge v_2$ a.e. in $\Omega\}$.

2000 Mathematics Subject Classification. Primary 35J85.

1. Introduction. We are interested in the following variational inequality problem: find $u = (u_1, u_2) \in K$ such that for all $v = (v_1, v_2) \in K$,

$$\int_{\Omega} \nabla u_1 \nabla (v_1 - u_1) + \int_{\Omega} \nabla u_2 \nabla (v_2 - u_2) + (f, v - u) \ge 0, \qquad (1.1)$$

where *f* belongs to $L^2(\Omega) \times L^2(\Omega)$ and *K* is a closed convex set of $H_0^1(\Omega) \times H_0^1(\Omega)$ defined by

$$K = \{ v = (v_1, v_2) \in H_0^1(\Omega) \times H_0^1(\Omega) : v_1 \ge v_2 \text{ a.e. in } \Omega \}.$$
 (1.2)

Thanks to the orthogonal projection of the space $L^2(\Omega) \times L^2(\Omega)$ onto the cone \mathcal{X} defined by

$$\mathscr{H} = \{ \boldsymbol{v} = (\boldsymbol{v}_1, \boldsymbol{v}_2) \in L^2(\Omega) \times L^2(\Omega) : \boldsymbol{v}_1 \ge \boldsymbol{v}_2 \text{ a.e. in } \Omega \},$$
(1.3)

we construct a functional φ for which we can characterize the subdifferential at a point u, in order to reformulate problem (1.1) to a variational inequality without constraints; that is, find $u = (u_1, u_2) \in H_0^1(\Omega) \times H_0^1(\Omega)$ such that for all $v \in H_0^1(\Omega) \times H_0^1(\Omega)$,

$$\int_{\Omega} \nabla u_1 \nabla (v_1 - u_1) + \int_{\Omega} \nabla u_2 \nabla (v_2 - u_2) + \varphi(v) - \varphi(u) + (h, v - u) \ge 0, \quad (1.4)$$

where φ is a continuous convex function from $H_0^1(\Omega) \times H_0^1(\Omega)$ to \mathbb{R} and h is an element of $L^2(\Omega) \times L^2(\Omega)$ depending only on f.

We prove that the solution $u = (u_1, u_2)$ can be obtained as a solution of a system of independent two Dirichlet problems

$$u_1, u_2 \in H_0^1(\Omega), \quad \Delta u_1 = g_1, \quad \Delta u_2 = g_2 \text{ in } \Omega,$$
 (1.5)

where g_1 and g_2 are two functions of $L^2(\Omega)$ determined in terms of f_1 and f_2 . We will give an algorithm for computing these functions.

This approach can be applied to study a variational inequality arising from a problem of two membranes [2].

2. Formulation of the problem. Let Ω be an open bounded set of \mathbb{R}^n with smooth boundary $\partial \Omega$. We equip $H_0^1(\Omega) \times H_0^1(\Omega)$ with the norm

$$a(u,v) = \int_{\Omega} \nabla u_1 \nabla v_1 + \int_{\Omega} \nabla u_2 \nabla v_2, \qquad (2.1)$$

where

$$u = (u_1, u_2), v = (v_1, v_2) \in H_0^1(\Omega) \times H_0^1(\Omega).$$
(2.2)

For $r \in L^2(\Omega)$, we let

$$r^+ = \max\{r, 0\}, \quad r^- = \min\{r, 0\}.$$
 (2.3)

For $f = (f_1, f_2) \in L^2(\Omega) \times L^2(\Omega)$, we let

$$f^+ = (f_1^+, f_2^-), \qquad f^- = (f_1^-, f_2^+).$$
 (2.4)

For $v = (v_1, v_2) \in H_0^1(\Omega) \times H_0^1(\Omega)$, we let

$$v_{+} = \left(v_{1} + \frac{(v_{2} - v_{1})^{+}}{2}, v_{2} - \frac{(v_{2} - v_{1})^{+}}{2}\right), \qquad v_{-} = \left(-\frac{(v_{2} - v_{1})^{+}}{2}, \frac{(v_{2} - v_{1})^{+}}{2}\right)$$
(2.5)

the projection of v onto the cone \mathcal{X} given by (1.3) with respect to the scalar product of $L^2(\Omega) \times L^2(\Omega)$ (respectively, the projection with respect to the scalar product of $L^2(\Omega) \times L^2(\Omega)$ on the polar cone of \mathcal{X} defined by $\mathcal{K}^0 = \{v = (-r, r) \in L^2(\Omega) \times L^2(\Omega) : r \ge 0 \text{ a.e. on } \Omega\}$). We easily verify that

$$a(v_+, v_-) = 0 \tag{2.6}$$

for all $v \in H_0^1(\Omega) \times H_0^1(\Omega)$. A function φ defined from $H_0^1(\Omega) \times H_0^1(\Omega)$ to \mathbb{R} is called lower semi-continuous (l.s.c.) if its epigraph defined by

$$\operatorname{epi}(\varphi) = \left\{ \nu = (\nu_1, \nu_2) \in H_0^1(\Omega) \times H_0^1(\Omega), \ \lambda \in \mathbb{R} : \varphi(\nu) \le \lambda \right\}$$
(2.7)

is closed in $H_0^1(\Omega) \times H_0^1(\Omega) \times \mathbb{R}$. Let $u \in H_0^1(\Omega) \times H_0^1(\Omega)$, we denote by $\partial \varphi(u)$ the subdifferential of φ at u, defined by

$$\partial \varphi(u) = \{ \mu \in H^{-1}(\Omega) \times H^{-1}(\Omega) : \varphi(u) - \varphi(v) \le \langle \mu, u - v \rangle \ \forall v \in H^1_0(\Omega) \times H^1_0(\Omega) \}.$$
(2.8)

If φ is a convex l.s.c. function, then for all $v \in H_0^1(\Omega) \times H_0^1(\Omega)$, $\partial \varphi(v) \neq \emptyset$.

Let $f = (f_1, f_2) \in L^2(\Omega) \times L^2(\Omega)$. We denote by (\cdot, \cdot) and $\|\cdot\|$ the scalar product and the norm of $L^2(\Omega) \times L^2(\Omega)$, respectively. We consider the following variational inequality problem: find $u = (u_1, u_2) \in K$ such that

$$a(u, v - u) + (f, v - u) \ge 0 \quad \forall v = (v_1, v_2) \in K.$$
 (2.9)

It admits a unique solution. The functional φ defined from $L^2(\Omega) \times L^2(\Omega)$ to \mathbb{R} by $v \mapsto (f^+, v_+)$ is continuous on $H^1_0(\Omega) \times H^1_0(\Omega)$ and convex.

604

PROPOSITION 2.1. $u = (u_1, u_2)$ is a solution of the problem (2.9) if and only if u is the solution of the following problem: find $u = (u_1, u_2) \in H_0^1(\Omega) \times H_0^1(\Omega)$ such that

$$a(u, v - u) + \varphi(v) - \varphi(u) + (f^{-}, v - u) \ge 0 \quad \forall v \in H^{1}_{0}(\Omega) \times H^{1}_{0}(\Omega).$$
(2.10)

PROOF. It is well known in the general theory of variational inequalities that problem (2.10) admits a unique solution. So, it is sufficient to show that the solution u of (2.10) is an element of K. Let $v = u_+$, then the inequality of (2.10) becomes

$$a(u, -u_{-}) + \varphi(u) - \varphi(u) + (f^{-}, -u_{-}) \ge 0.$$
(2.11)

By the relation (2.6) we deduce that $u_{-} = 0$, hence $u \in K$.

PROPOSITION 2.2. Problem (2.10) is equivalent to the following problem: find $\mu = (\mu_1, \mu_2) \in L^2(\Omega) \times L^2(\Omega)$, $u = (u_1, u_2) \in H_0^1(\Omega) \times H_0^1(\Omega)$,

$$a(u,v) + (\mu,v) + (f^-,v) = 0 \quad \forall v \in H^1_0(\Omega) \times H^1_0(\Omega), \ \mu \in \partial \varphi(u).$$

$$(2.12)$$

PROOF. If $u \in H_0^1(\Omega) \times H_0^1(\Omega)$ and $\mu \in L^2(\Omega) \times L^2(\Omega)$ are the solution of (2.12), then by definition of $\mu \in \partial \varphi(u)$, we have

$$a(u, v - u) + \varphi(v) - \varphi(u) + (f^{-}, v - u) \ge 0 \quad \forall v \in H_0^1(\Omega) \times H_0^1(\Omega).$$
(2.13)

Conversely, let *u* be the solution of problem (2.10). For $v = u \pm w$, with $w \in H_0^1(\Omega) \times H_0^1(\Omega)$, the inequality of (2.10) gives

$$a(u,w) + (f^{-},w) \ge -(f^{+},w^{+}) \ge -||f^{+}|| ||w||,$$

$$a(u,w) + (f^{-},w) \le (f^{+},(-w)^{+}) \le ||f^{+}|| ||w||.$$
(2.14)

We deduce that

$$|a(u,w) + (f^{-},w)| \le ||f^{+}|| ||w||.$$
 (2.15)

So the linear form

$$w \mapsto a(u,w) + (f^-,w) \tag{2.16}$$

is continuous on $H_0^1(\Omega) \times H_0^1(\Omega)$ equipped with the norm of $L^2(\Omega) \times L^2(\Omega)$. Where μ is an element of $L^2(\Omega) \times L^2(\Omega)$.

We set

$$C = \{ v \in L^2(\Omega) \times L^2(\Omega), (v, v) \le \varphi(v) \ \forall v \in L^2(\Omega) \times L^2(\Omega) \}.$$
(2.17)

LEMMA 2.3. Let $u \in L^2(\Omega) \times L^2(\Omega)$, then the following properties are equivalent: (a) $\mu \in \partial \varphi(u)$. (b) $\mu \in C$ and $(\mu, u) = \varphi(u)$. (c) $\mu \in C$ and $(\nu - \mu, u) \le 0$ for all $\nu \in C$.

PROOF. (a) \Rightarrow (b). Let $\mu \in \partial \varphi(u)$, we have

$$\varphi(v) - \varphi(u) \ge (\mu, v - u) \quad \forall v \in L^2(\Omega) \times L^2(\Omega).$$
(2.18)

605

We put v = 0, next v = 2u in (2.18). Since φ is positively homogeneous of degree 1, we obtain $\varphi(u) = (\mu, u)$ and consequently

$$\varphi(v) \ge (\mu, v) \quad \forall v \in L^2(\Omega) \times L^2(\Omega).$$
(2.19)

(c) \Rightarrow (a). For all $v \in V$, we have

$$(\mu, \nu - u) \le \varphi(\nu) - (\mu, u) \le \varphi(\nu) - (\nu, u) \quad \forall \nu \in C.$$
(2.20)

Hence for $v \in \partial \varphi(u)$, we have $(v, u) = \varphi(u)$, consequently $\mu \in \varphi(u)$.

We deduce from Lemma 2.3 the following relations:

$$\mu_1 + \mu_2 = f_1^+ + f_2^-, \quad f_2^- \le \mu_2 \le \mu_1 \le f_1^+ \text{ a.e. in } \Omega.$$
 (2.21)

Indeed, the function φ being positively homogeneous of degree 1, $\mu \in \partial \varphi(u)$ implies

$$(\mu, u) = \varphi(u), \tag{2.22}$$

$$(\mu, \nu) \le \varphi(\nu) \quad \forall \nu \in L^2(\Omega) \times L^2(\Omega).$$
 (2.23)

Finally, it is sufficient to take in (2.23) elements $v = (v_1, v_2)$ with suitable choices on the components v_1 and v_2 .

Let $V = H_0^1(\Omega) \times H_0^1(\Omega)$, and taking into account Lemma 2.3, we can write problem (2.12) as follows: find $u \in H_0^1(\Omega) \times H_0^1(\Omega)$, $\mu \in C$,

$$a(u,v) + (\mu,v) + (f^{-},v) = 0 \quad \forall v \in H_0^1(\Omega) \times H_0^1(\Omega), (v-\mu,u) \le 0 \quad \forall v \in C.$$
(2.24)

Let *A* be the Riesz-Fréchet representation of $H^{-1}(\Omega) \times H^{-1}(\Omega)$ in $H^1_0(\Omega) \times H^1_0(\Omega)$. We set M = A(C), this is a closed convex subset in $H^1_0(\Omega) \times H^1_0(\Omega)$ characterized by

$$M = \{ w \in H_0^1(\Omega) \times H_0^1(\Omega) : a(w, v) \le \varphi(v) \ \forall v \in H_0^1(\Omega) \times H_0^1(\Omega) \}.$$
(2.25)

Problem (2.24) can be written in the following form: find $u \in H_0^1(\Omega) \times H_0^1(\Omega)$, $z \in M$,

$$a(u+z+t,v) = 0 \quad \forall v \in H_0^1(\Omega) \times H_0^1(\Omega),$$

$$a(w-z,u) \le 0 \quad \forall w \in M.$$
(2.26)

with $z = A(\mu)$ and $t = A(f^{-})$. Hence

$$u = -z - t, \quad z = P_M(-t),$$
 (2.27)

where $P_M(-t)$ is the projection of -t onto the closed convex set M with respect to the scalar product $a(\cdot, \cdot)$ of $H_0^1(\Omega) \times H_0^1(\Omega)$.

From the equality of Proposition 2.2, we deduce that the solution u of problem (2.9) verifies the following equations:

$$\Delta u_1 = \mu_1 + f_1^-, \quad \Delta u_2 = \mu_2 + f_2^+ \quad \text{in } \Omega.$$
(2.28)

We notice that the prior knowledge of $\mu = (\mu_1, \mu_2)$ in terms of data of problem (2.9) yields the solutions u_1 and u_2 as solutions of two independent Dirichlet problems given by the system (2.28). We recall that for each element f of $L^p(\Omega)$, the solution of the problem

$$u \in H_0^1(\Omega), \quad -\Delta u = f \quad \text{in } \Omega,$$
 (2.29)

verifies the following properties (see [2]):

$$u \in H^{2,p}(\Omega), \quad \|u\|_{H^{2,p}} \le C \|f\|_{L^p},$$
(2.30)

where *C* is a constant depending only on *p* and Ω . We deduce from (2.28) that u_1, u_2 are in $H^2(\Omega)$ and

$$\begin{aligned} ||u_1||_{H^2(\Omega)} &\leq c_1 ||\mu_1 + f_1^-||_{L^2(\Omega)}, \\ ||u_2||_{H^2(\Omega)} &\leq c_2 ||\mu_2 + f_2^-||_{L^2(\Omega)}, \\ ||u_1 + u_2||_{H^2(\Omega)} &\leq c ||f_1 + f_2||_{L^2(\Omega)}, \end{aligned}$$
(2.31)

where c, c_1 , and c_2 are constants depending only on Ω . We define the domain of noncoincidence [2] by

$$\Omega^+ = \{ x \in \Omega : u_1(x) > u_2(x) \}.$$
(2.32)

From relations (2.21), (2.22), and (2.23) we deduce that

$$\mu_1 = f_1^+, \quad \mu_2 = f_2^- \quad \text{a.e. in } \Omega^+.$$
 (2.33)

When u_1 and u_2 are continuous on Ω , the following relations are verified:

$$\Delta u_1 = f_1, \quad \Delta u_2 = f_2 \quad \text{in } \Omega^+. \tag{2.34}$$

2.1. Algorithm for computing *z*. We consider the following projection problem:

$$z \in H_0^1(\Omega) \times H_0^1(\Omega), \quad z = P_M(t'), \text{ where } t' = -t.$$
 (2.35)

Let z_0 belong to M, we compute the element w_0 of M which verifies the following inequality:

$$a(w - w_0, z_0 - t') \ge 0 \quad \forall w \in M.$$
 (2.36)

Next we compute

$$z_1 = P_{[z_0, w_0]}(t'). \tag{2.37}$$

So, the algorithm is: z_n being given in M, we construct w_n verifying

$$a(w - w_n, z_n - t') \ge 0 \quad \forall w \in M.$$

$$(2.38)$$

Next $z_{n+1} = P_{[z_n,w_n]}(t')$. The sequence $\{z_n\}$ converges in $H_0^1(\Omega) \times H_0^1(\Omega)$ strongly to the solution of problem (2.35) [1]. Since M = A(C), then the inequality (2.38) implies that there exists $\{v_n\}$ in C which verifies

$$(v - v_n, t' - z_n) \le 0 \quad \forall v \in C \tag{2.39}$$

and Lemma 2.3 shows that v_n is an element of $\partial \varphi(t' - z_n)$.

2.2. Application. This method of solvability can be applied to the study of a variational inequality arising from a problem of two membranes [2],

$$\Delta u_{1} + \lambda u_{1} = f_{1}, \quad \Delta u_{2} = f_{2} \text{ in } \Omega^{+}, \quad u_{1} = u_{2},$$

$$\frac{\partial u_{1}}{\partial x_{i}} = \frac{\partial u_{2}}{\partial x_{i}}, \quad 1 \le i \le n,$$

$$\Delta u_{1} + \left(\frac{\lambda}{2}\right) u_{1} = \frac{1}{2} (f_{1} + f_{2}) \quad \text{in } \Omega^{-},$$
(2.40)

where Ω^+ and Ω^- , are two parts of Ω (unknown) separated by a hypersurface Γ of \mathbb{R}^n such that $\Omega = \Omega^+ \cup \Gamma \cup \Omega^-$; f_1 , f_2 are two regular functions and $\lambda \in \mathbb{R}$. Formally, Ω^+ is the non-coincidence domain given by (2.32).

References

- [1] A. Degueil, *Résolution par une méthode d'éléments finis d'un problème de Stephan en terme de temperature et en teneur en matériau non gelé*, Thèse 3ème cycle, Université de Bordeaux, Bordeaux, 1977.
- [2] D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and their Applications, Pure and Applied Mathematics, vol. 88, Academic Press [Harcourt Brace Jovanovich Publishers], New York, 1980. MR 81g:49013. Zbl 457.35001.

A. ADDOU: UNIVERSITY MOHAMED I, FACULTY OF SCIENCES, DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCES, OUJDA, MOROCCO *E-mail address*: addou@sciences.univ-oujda.ac.ma

E. B. MERMRI: UNIVERSITY MOHAMED I, FACULTY OF SCIENCES, DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCES, OUJDA, MOROCCO

E-mail address: mermri@sciences.univ-oujda.ac.ma, mermri@hotmail.com