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A GAUSS TYPE FUNCTIONAL EQUATION
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ABSTRACT. Gauss’ functional equation (used in the study of the arithmetic-geometric mean)
is generalized by replacing the arithmetic mean and the geometric mean by two arbi-
trary means.
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1. Introduction. By mean we understand a function M : R, Xx R, — R, which satis-
fies the condition
min(a,b) < M(a,b) <max(a,b) Va,b>0. (1.1)
The mean is called symmetric if
M(a,b) =M (b,a) Va,b>0. (1.2)

Usual examples are the power means given by

n ny 1/n
Pa(a,b) = (%) (1.3)
for n # 0, while for n = 0 it is the geometric mean
Py(a,b) = G(a,b) =+ab. (1.4)

Of course, the arithmetic mean is A = P;.
If M is amean and p : R, — R is a strictly monotonous function, the expression

M(p)(a,b) =p~'[M(p(a),p(b))] (1.5)

defines another mean M (p) which is called M-quasi mean (see [1]). For example, the

power means are A-quasi means. More exactly P, = A(e;,), where
en(x)=x" forn=+0, eo(x) =Inx. (1.6)

In what follows, we refer to another famous example of mean. Given two positive
numbers a and b, we define define successively the terms

An+1 = A(ansbn), by = G(an,bn)a n=0, (1.7)

where a, = a and b, = b. It is known (see [1]) that (ay)n=o and (by)n=, are convergent
to a common limit which is denoted by A® G(a, b). It defines the arithmetic-geometric
mean of Gauss A® G.
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The following representation formula is also known (see [1])
A®G(a,b) = [f(a,b)] ", (1.8)

where )

1 m dao
(a,b) = J .
f 2.1 Jo +a?-cos20+b2-sin?0

The proof of this formula is based on the fact that the function f verifies the relation

(1.9

f(A(a,b),G(a,b)) = f(a,b), (1.10)

which is called Gauss’ functional equation.
These results were generalized as follows. We denote

7n(0) = (a™-cos?0+b"-sin20)"", n=0,

in’ (1.11)
¥(0) = 111’1’(1)1",1(9) = aCOSZQbstO.
n-
If p: R, — R is a strictly monotonous function, then
1 1 21
Myn(ab) =p 7 (5 | p(ra0)do) w12)

defines a symmetric mean. The arithmetic-geometric mean of Gauss is obtained for
n=2and p(x) =x"!. For n = -2 and p(x) = x~? the mean can be found in [7]. The
case n = 1 and p = log was studied in [2]. The essential step was done in [4] by the
consideration of the definition (1.12) for n = 2 with an arbitrary p. The values n = —1
and n = 1 were studied in [5, 6]. The general case (of arbitrary n) was studied in [8]
and continued in [9]. In [8], Gauss’ functional equation was also replaced by a more
general equation

F(P4(a,b),Ps(a,b)) =F(a,b). (1.13)

In this paper, we generalize the mean (1.12) as well as the functional equation (1.13).

2. Anintegral mean. We consider the strictly monotonous functions p and g. Using
them, we define the functions

74(0) =g '[q(a)-cos? 0 +q(b) -sin® 0],
1 (" (2.1)
f(a,b;p,q)=§jo plra(0)]do.

It is easy to prove that
Mpq(a,b) =p~'[f(ab;p,a)] (2.2)

defines a mean. Choosing q = e, we obtain M, 4, = M, . We so have generalized the
means (1.12). On the other hand, if we let pog~! = Q, we have My 4 = Mq,1(q). Thus,
M, 4 is a Mo 1-quasi mean.

It is thus enough to consider the function

21

f(a,b;p) = L p(a-cos?0+b-sin®0)do (2.3)
21T Jo
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which defines the mean M, = M,,; by
Mp(a,b) = p~'[f(a,b;p)]. (2.4)

In what follows, we assume that the function p is two times differentiable. From
any of the papers [5, 6, 8, 9], we can deduce the following result.

LEMMA 2.1. The function f defined by (2.3) has the following partial derivatives:

fate,cip) = fyle,cip) =5 /@),
walc,cp) = fi,(c,cp) =%-}9”(C), (2.5)

fip(c,cp) = % -p"(c).

3. The functional equation. We replace (1.13) by a more general functional equation

F(M(a,b),N(a,b)) = F(a,b), (3.1)
where M and N are two given means. We prove the following result.

LEMMA 3.1. If the function f, defined by (2.3), verifies the functional equation (3.1),
then the function p is a solution of the differential equation

p’(c)- {[3 ‘M, (c,c)+ Ny (c,c)]-M;(c,c)+[M,(c,c)+3-N,(c,c)]-Nj(c,c) —1}

+4-p"(c) - [M},(c,c)+N/,(c,c)] =0.
(3.2)

PrROOF. Taking in (3.1) the partial derivatives with respect to a, we obtain
F,[M(a,b),N(a,b)]-M/(a,b)+F,[M(a,b),N(a,b)]-N,(a,b) =F,(a,b). (3.3)
Taking again the derivatives with respect to b, it follows that
{F,’l’a[M(a,b),N(a,b)] -Mj (a,b)+F,,[M(a,b),N(a,b)] -Nl',(a,b)} -M;(a,b)
+{F;,[M(a,b),N(a,b)] - M} (a,b) +F}j,[M(a,b),N(a,b)] Ny (a,b)} - Nj,(a,b)

+F,[M(a,b),N(a,b)]-M},(a,b)+F,[M(a,b),N(a,b)]-Nj},(a,b) =F},(a,b).
(3.4)

For a = b = ¢ and the function F = f, defined by (2.3), we apply Lemma 2.1 and
obtain (3.2). O

CONSEQUENCE 3.2. If the function f, defined by (2.3), verifies the functional equa-
tion (3.1), where the means M and N are symmetric, the function p is a solution of
the differential equation

p’(c)+4-p'(c)-[M),(c,c)+N,(c,c)]=0. (3.5)
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PROOF. As the means are symmetric, their partial derivatives of the first order are
equal to 1/2 (see [3]), thus (3.2) becomes (3.5). O

CONSEQUENCE 3.3. If the function f, defined by (2.3), verifies the functional equa-
tion (1.13), then the function p is given by

pc)=C-c" 14D, (3.6)
where C and D are arbitrary constants.
PROOF. We have in (3.5), M = P, and N = Ps. Thus
r 1-s

77 1- rr
Mab(C,C):E, Nah(C,C):H. (37)

Replacing them in (3.5), we obtain the differential equation
’ 2—-r—s ’
P (C)+f-p(c)=0 (3.8)
with the solution given above. O

REMARK 3.4. This last result was obtained in [8]. As it is shown in [9], the condition
is also sufficient for r = —s = 1.

REMARK 3.5. Equation (3.1) can be further generalized at
F(g(M(a,b)),g(N(a,b))) = h(F(a,b)), (3.9)

where g and h are two given functions. We have in view the following result given
in [2]. The function f, defined by (2.3), verifies the relation

f(A%(a,b),G*(a,b);log) =2 f(a,b;log). (3.10)
4. Special means. A problem which is studied for the integral means defined in
[4, 5, 6, 8, 9] is that of the determination of the cases in which the mean reduces at

a given one, usually a power mean. Similar results can be given also in more general
circumstances. We prove the following lemma.

LEMMA 4.1. If for a given mean N, we have M, = N, then the function p verifies the
equation
p”(c)-[8-N,(c,c)-Ny(c,c)-1]+8-p’(c)-N},(c,c) =0. (4.1)

PROOF. In the given hypotheses, we have
f(a,b;p) = p[N(a,b)]. (4.2)
Taking the partial derivatives with respect to a, we have
fala,b;p) =p'[N(a,b)]-Ny(a,b). (4.3)
Then we take the derivative with respect to b, we obtain
fap(a,b;p) =p"[N(a,b)]-Ny(a,b)-Ny(a,b) +p'[N(a,b)] -Nj,(a,b).  (4.4)

For a = b = ¢, Lemma 2.1 gives (4.1). O
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CONSEQUENCE 4.2. If we have M,, = N, with the symmetric mean N, then the func-
tion p verifies the equation

p"(c)+8-p’'(c)-N,,(c,c)=0. 4.5)

CONSEQUENCE 4.3. If we have M, = P,, then the function p is given by
p(c)=C-c?" ' +D, (4.6)

where C and D are arbitrary constants.

REMARK 4.4. In [9], it is shown that the above condition is also sufficient for » = 0,
1/2, and 1.
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