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Abstract. We study initial-boundary value problem for an equation of composite type in
3-Dmultiply connected domain. This equation governs nonsteady inertial waves in rotating
fluids. The solution of the problem is obtained in the form of dynamic potentials, which
density obeys the uniquely solvable integral equation. Thereby the existence theorem is
proved. Besides, the uniqueness of the solution is studied. All results hold for interior
domains and for exterior domains with appropriate conditions at infinity.
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Modern advances in the theory of waves are mostly concerned with nonlinear phe-
nomena [4, 3, 5, 6]. However, there exist some types of linear waves which are not well
studied yet, for example, nonsteady inertial waves, that is, internal waves in rotating
fluids. These waves are governed by PDEs of composite type and of high order. Such
PDEs possess both elliptic and hyperbolic characteristics, and so they share properties
of both elliptic and hyperbolic equations [13, 23, 24, 25, 26]. Equations of composite
type are not well studied even in linear case and they are not covered by existing clas-
sifications of PDEs. In particular, they do not belong to equations of principal part,
though elliptic, parabolic, and hyperbolic equations belong [7].

Inertial wave equation (see (1.2)) is an evolutionary equation of fourth order and
composite type. This equation comes from ocean dynamics. Different initial-boundary
value problems for analogous equations were treated in [8, 9, 10, 14, 15, 16, 17, 18,
19, 20, 30]. In particular, 2-D problems in multiply connected domains were studied
in [15, 16, 17, 18, 19, 20]. Initial boundary value problems in simply connected do-
mains were studied for 3-D equation of inertial waves and for similar equations in
[8, 9, 10, 14, 30], but 3-D problems were not treated in multiply connected domains
before. The aim of the present paper is to consider initial-boundary value problem in
3-D multiply connected domain (interior and exterior) with Dirichlet boundary con-
dition. To prove existence theorem for our problem we use dynamic potentials [14]
and the method of boundary integral equations. Uniqueness of a solution is also stud-
ied. It should be stressed that the integral equation obtained in the present paper is a
uniquely solvable Fredholm equation of the second kind and index zero. This equation
can be easily computed by discretization and inversion of a matrix. Initial-boundary
value problems for some equations of composite type in a 3-D simply connected
domain were reduced to integral equations in [8, 10, 14]. However, the method of
reduction to integral equations suggested in these papers for simply connected do-
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main is not suitable for multiply connected domain, since obtained integral equations
may not have a solution, while the boundary value problem is solvable. Besides, the
method of reduction to the integral equation proposed in the present paper is differ-
ent from those known before, even in case of exterior simply connected domain.

It is a feature of (1.2) that conditions at infinity are required in the exterior domain
for the well-posedness of the initial-boundary value problems. However, these condi-
tions were omitted in [14] together with analysis of uniqueness of a solution, and so
exterior problems in [14] are not well-posed.

Another approach to studies of initial-boundary value problems for (1.2) in interior
domains has been proposed by Sobolev in [27, 28]. This approach enables us to prove
formal existence theorem in Sobolev spaces, but it does not provide us with the inte-
gral representation for a solution, and so we do not obtain the constructive way for
finding a numerical solution.

1. Formulation of the problem and uniqueness theorem. In Cartesian coordinates
x = (x1,x2,x3)∈ R3 we consider the connected domain � with the boundary Γ of class
C2,λ, λ∈ (0,1]. Suppose that Γ consists of simple closed surfaces Γ0,Γ1, . . . ,ΓN , without
common points, so that Γ0 envelopes all others. The surface Γ0 may be absent, then
the domain � is unbounded. By nx we denote interior normal vector with respect to
the domain � at the point x ∈ Γ . Consider surfaces making up Γ as double sided. The
side of surfaces Γ , which can be seen if we look towards the normal’s tips nx (x ∈ Γ),
is denoted by Γ−, and the opposite side is denoted by Γ+.

Definition 1.1. The function �(t,x) defined in [0,∞)×�̄ belongs to the smooth-
ness class G, if

(1) �,�t ∈ C0([0,∞)×�); (∂k/∂tk)
(
∂p/∂xpj

)
�∈ C0((0,∞)×�), k,p = 0,1,2; j =

1,2,3;
(2) for any t ≥ 0 the limiting value of the function � exists on the boundary Γ in

the sense of a limit in a normal direction to a boundary.

Definition 1.2. Function �(t,x) defined in an unbounded domain is called regular
at infinity if there exist such functions q1(t),q2(t) ∈ C0[0,∞), that as |x| → ∞ the
inequalities hold

∣∣∣∣ ∂j∂tj �(t,x)
∣∣∣∣≤q1(t)|x|−1,

∣∣∣∣ ∂j∂tj �xk(t,x)
∣∣∣∣≤q2(t)|x|−2, where j=0,1,2; k=1,2,3.

(1.1)
Equation of inertial waves in a rotating fluid in the 3-D case has the form [1, 11, 14,

21, 22]:

∂2

∂t2
��+ω2�x3x3 = 0, �= ∂2

∂x2
1
+ ∂2

∂x2
2
+ ∂2

∂x2
3
, (1.2)

where ω ≥ 0 is twice the angular velocity of a rotation around Ox3 axis. We assume
that ω is a constant.

Let us formulate the initial-boundary value problem for (1.2) in the domain � for
t ≥ 0.
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Problem �. To find a function �(t,x) of class G, which obeys (1.2) in (0,∞)×�

in a classical sense, that satisfies the initial conditions �(0,x) =�t(0,x) = 0, x ∈ �

and the boundary condition on Γ :

�(t,x)|x∈Γ = f0(t,x)|x∈Γ , t ≥ 0. (1.3)

Besides, if � is an exterior domain, then the function �(t,x)must be regular at infinity.

The boundary condition should be satisfied in a sense of a limit in a normal direction
to the boundary Γ .

Together with the class G we consider class of smoothness G1.

Definition 1.3. Function �(t,x) belongs to the class G1, if
(1) �,�t ∈ C0([0,∞)×�̄); ∇�,∇�t ∈ C0([0,∞)×�);

(∂k/∂tk)(∂p/∂xpj )�∈ C0((0,∞)×�), k,p = 0,1,2; j = 1,2,3;
(2) for any t ≥ 0, there exists the uniform limit, for all x ∈ Γ , of the expression

�tx�(t, x̄)= ∂2

∂t2
(
nx,∇x̄

)
�(t, x̄)+ω2 cos

(
nx,x3

)
�x3(t, x̄) (1.4)

as x̄ tends to x ∈ Γ along the normal nx , that is, the limit is understood in
the sense of a limit along a normal to a boundary Γ . The cosine of the angle
between the normal vector nx in the point x ∈ Γ and the direction of the Ox3

axis is denoted by cos(nx,x3).

Note. Evidently, any function of class G1 belongs to the class G. Below
∫
Γ ···dS

denotes the surface integral of the first kind.
Consider the uniqueness theorem for the problem �.

Lemma 1.4. Let �(t,x) be a classical solution of (1.2) in (0,∞)×�, and �(t,x)
belongs to class G1. Besides, assume that the function �(t,x) is regular at infinity in
case of exterior domain �. Then for any t ≥ 0 the identity holds

1
2
d
dt

(∥∥∇�t
∥∥2+ω2

∥∥�x3
∥∥2)=

∫
Γ

�t�tx�ds, (1.5)

where the norm ‖·‖ is taken in the space L2(�).

Lemma 1.4 can be proved by direct verification. To do so we construct equidistant
surfaces [32] in the domain � to the boundary Γ . If � is an exterior domain, then
additionally we consider a sphere of enough large radius R with the center in the
origin. In the domain bounded by equidistant surfaces (and the sphere if � is an
exterior domain), we write energy equality, which is obtained as a result of multiplying
equation (1.2) by �t and integration by parts. Tending equidistant surfaces to the
boundary Γ and using properties of functions of class G1, we prove the identity stated
in Lemma 1.4, in case of interior domain �. If � is an exterior domain, then additionally
we tend R to infinity and use regularity of �(t,x) at infinity. Finally, we arrive at the
identity stated in Lemma 1.4 again.

Next theorem follows from Lemma 1.4.
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Theorem 1.5. If the problem � has a solution in the smoothness class G1, then this
solution is unique.

Solvability of the problem � will be studied under weaker smoothness conditions
on its solutions, than in Theorem 1.5. More precisely, we drop the condition that so-
lution belongs to the class G1. We will prove classical solvability of the problem � and
derive integral representation for a solution in the form of dynamic potentials (see
Theorem 4.2). Density in potentials obeys integral equation, which is solvable.

We now turn to the construction of the classical solution of the problem �.

2. Reduction of the problem to the integral equation. Let us introduce some
classes of functions. Set

C2
0 [0,∞)=

{
ϕ(t) :ϕ(t)∈ C2[0,∞), ϕ(0)=ϕ′(0)= 0

}
. (2.1)

By Ck([0,∞);�) we denote class of k times continuously differentiable at t ≥ 0 ab-
stract functions ϕ(t) with values in the Banach space �. Besides, we introduce the
following class of abstract functions:

C2
0

(
[0,∞);�)= {ϕ(t) :ϕ(t)∈ C2([0,∞);�), ϕ(0)=ϕ′(0)= 0

}
. (2.2)

By the designation C0([0,T ];�), where T > 0, we mean Banach space of abstract func-
tions with the norm

‖·‖C0([0,T ];�) = ‖‖·‖�‖C0[0,T ]. (2.3)

Further on, we use the following result from the theory of abstract functions (see
proof in [29, pages 28–29]).

Lemma 2.1. Classes of functions C0([0,∞);C0(Γ)) and C0([0,∞)×Γ) are equivalent,
that is, any function of the first class belongs to the second and conversely.

Let us construct the solution of the problem �. Assume that the function f0(t,x)
in the boundary condition (1.3) belongs to the class C2

0 ([0,∞);C0(Γ)), then it can be
expressed in the form

f0(t,x)=
∫ t
0

∫ t1
0
f
(
t2,x

)
dt2dt1 =

∫ t
0
(t−τ)f(τ,x)dτ, (2.4)

where

f(t,x)= ∂2

∂t2
f0(t,x)∈ C0([0,∞);C0(Γ)

)
. (2.5)

By J0(σ) and J1(σ) we denote Bessel functions of zero and first order.
Consider a function introduced in [14] and called dynamic double layer potential

for (1.2),

U[µ̄](t,x)=
∫ t
0

∫
Γ
µ̄(τ,y)�τyW(t−τ,x−y)dSy dτ

− 1
4π

∫
Γ
µ̄(t,y)

∂
∂ny

1
|x−y| dSy,

(2.6)
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where x = (x1,x2,x3)∈�, y = (y1,y2,y3)∈ Γ , operator �tx was introduced in (1.4),

W(t,x)=− 1
4π|x|0

∫ t|x|0/|x|
0

J0(σ)dσ =− t
4π|x| +

|x|0
4π|x|2

(
t∗J1

(
t
|x|0
|x|

))
(2.7)

is a singular solution for (1.2), |x| = (x2
1 +x2

2 +x2
3

)1/2, |x|0 =ω(x2
1 +x2

2

)1/2
. By the

symbol ∗ the convolution operation in time is denoted so that for any two functions
of time a(t), b(t), we have

a(t)∗b(t)=
∫ t
0
a(t−τ)b(τ)dτ =

∫ t
0
a(τ)b(t−τ)dτ. (2.8)

With respect to the density µ̄(t,x) we assume that it has the form

µ̄(t,x)=
∫ t
0

∫ t1
0
µ
(
t2,x

)
dt2dt1 =

∫ t
0
(t−τ)µ(τ,x)dτ, (2.9)

where µ(t,x)∈ C0([0,∞);C0(Γ)), so that µ̄(t,x)∈ C2
0 ([0,∞);C0(Γ)).

As shown in [14], the functionW(t,x) for x �= 0 obeys (1.2) in a classical sense, and
W(0,x)= 0, Wt(0,x)=−(4π|x|)−1.

For the function �τyW(t−τ,x−y) the following representation holds [14]:

�τyW(t−τ,x−y)

= cos
(
x−y,ny

)
4π|x−y|2

[
|x−y|0
|x−y| J

′
0(ζ)+

(τ−t)(x3−y3
)2

|x−y|2 ω2J0(ζ)
]
, ζ = (τ−t)|x−y|0

|x−y| .

(2.10)

Here cos(x −y,ny) is a cosine of the angle between the vectors ��������������������������������������→yx and ny . The
function in the square brackets is continuous for x �= y and uniformly bounded in
all variables on any finite interval of time. Since |cos(x−y,ny)| ≤ const |x−y|λ1 for
x,y ∈ Γ and Γ ∈ C1,λ1 (recall that in our case Γ ∈ C2,λ), then as shown in [14], the
potential U[µ̄](t,x) is continuous for x ∈ Γ .

Next lemma follows from the properties of double layer dynamic potential, pre-
sented in [14].

Lemma 2.2. If µ(t,s)∈ C0([0,∞);C0(Γ)) and µ̄(t,s) is given by (2.9), then the poten-
tial U[µ̄](t,x) belongs to the class G, obeys (1.2) in (0,∞)×� and initial conditions of
the problem �. Besides, if � is exterior domain, then the potential U[µ̄](t,x) is regular
at infinity.

By Y1, . . . ,YN we denote an arbitrary fixed points placed inside surfaces Γ1, . . . ,ΓN and
consider a function

Q[µ̄](t,x)=
N∑
k=1

∫ t
0

∫
Γk
µ(τ,y)dSyW(t−τ,x−Yk)dτ

= 1
4π

N∑
k=1

{
− 1∣∣x−Yk∣∣

∫
Γk
µ̄(t,y)dSy+

∣∣x−Yk∣∣0∣∣x−Yk∣∣2
×
∫ t
0

∫
Γk
µ̄(τ,y)dSyJ1

(∣∣x−Yk∣∣0∣∣x−Yk∣∣ (t−τ)
)
dτ
}
,

(2.11)

where W(t,x) was defined above.
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Function Q[µ̄](t,x) is a linear combination of point sources for (1.2) placed in the
points Yk, k = 1, . . . ,N . If conditions of Lemma 2.2 hold, then Q[µ̄](t,x) belongs to
the class G, obeys (1.2) in (0,∞)×� and satisfies initial conditions of the problem �.
Moreover, Q[µ̄](t,x) is infinitely differentiable in x in R3\(⋃N

k=1Yk
)
and is regular at

infinity.
The solution of the problem � we seek in the form

�[µ̄](t,x)=U[µ̄](t,x)+Q[µ̄](t,x), (2.12)

where µ̄(t,x) is defined by (2.9), for U[µ̄](t,x) the representation (2.6) holds, and
Q[µ̄](t,x) is given by expression (2.11). If we drop the function Q[µ̄](t,x) in (2.12),
then the integral equation obtained below may be not solvable.

The above properties of functions occurring in (2.12) yield the following assertion.

Lemma 2.3. If conditions of Lemma 2.2 hold, then the function (2.12) belongs to the
class G, satisfies (1.2) in (0,∞)×� and initial conditions of the problem �. In addition,
if � is an exterior domain, then the function (2.12) is regular at infinity.

Thus, �[µ̄](t,x) satisfies all conditions of the problem �, except for the boundary
condition (1.3). Using formulas for limiting values of double layer dynamic potential
at the boundary of a domain [14] and satisfying the boundary condition (1.3), we arrive
at integral equation with respect to the function µ(t,x),

−1
2
µ(t,x)−(Aµ)(t,x)+(Bµ)(t,x)= f(t,x), x ∈ Γ , (2.13)

where f(t,x)= (f0(t,x))tt ∈ C0([0,∞);C0(Γ)), f0(t,x)∈ C2
0 ([0,∞);C0(Γ)). By A and

B the following operators are denoted:

(Aµ)(t,x)=
∫
Γ
µ(t,y)�(x,y)dSy,

(Bµ)(t,x)=
∫ t
0

∫
Γ
µ(τ,y)�(t−τ,x,y)dSy dτ,

�(t−τ,x,y)=�τyW(t−τ,x−y)+ 1
4π

N∑
k=1

δk(y)
∣∣x−Yk∣∣0∣∣x−Yk∣∣2 J1

(
(t−τ)

∣∣x−Yk∣∣0∣∣x−Yk∣∣
)
,

�(x,y)= 1
4π

∂
∂ny

1
|x−y| +

1
4π

N∑
k=1

δk(y)
1∣∣x−Yk∣∣ .

(2.14)

Here �τyW(t−τ,x−y) is a function from (2.10) and

δk(y)=

1, y ∈ Γk,
0, y �∈ Γk.

(2.15)

Let us study some properties of operators A and B.
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Lemma 2.4. (1) Kernels �(x,y), �(t,x,y) are continuous for x �= y and have a
weak singularity if x =y .

(2) The operator A acts from C0(Γ) into C0(Γ) and bounded.
(3) The operator B acts from C0([0,∞);C0(Γ)) into C0([0,∞);C0(Γ)).
(4) If h(t,x)∈ C0([0,∞);C0(Γ)), then for any t ≥ 0 the following inequality holds:

∥∥(Bh)(t,·)∥∥C0(Γ) ≤ cB
[∫ t

0

∥∥h(τ,·)∥∥C0(Γ) dτ+
∫ t
0

∫ t1
0

∥∥h(τ,·)∥∥C0(Γ) dτdt1

]
, (2.16)

where cB is a constant.

Proof. Item (1) can be verified directly. Kernel �(x,y) has been studied in [32].
Properties of kernel �(t,x,y) follow from the representation (2.10).

Item (2) follows from [32, Section 17.4] and item (1), since the kernel of the operator
A is polar.

For item (3), let h(t,x) ∈ C0([0,∞);C0(Γ)). According to Lemma 2.1, h(t,x) ∈
C0([0,∞)×Γ). Set

(Bh)(t,x)= (B̂h)(t,x)+(B̌h)(t,x),
(
B̂h
)
(t,x)=

∫ t
0

∫
Γ
h(τ,y)�τyW(t−τ,x−y)dSy dτ,

(
B̌h
)
(t,x)=

∫ t
0

∫
Γ
h(τ,y)

(
�(t−τ,x,y)−�τyW(t−τ,x−y)

)
dSy dτ.

(2.17)

It follows from the results of [14] that the operator B̂ acts from C0([0,∞);C0(Γ))
into C0([0,∞);C0(Γ)). From the explicit expression for the kernel (�(t − τ,x,y)−
�τyW(t−τ,x−y)) it follows that this kernel is continuous. Hence the operator B̌
acts from C0([0,∞)× Γ) into C0([0,∞)× Γ). Taking into account Lemma 2.1, we are
convinced that the operator B̌ acts from C0([0,∞);C0(Γ)) into C0([0,∞);C0(Γ)). Con-
sequently, item (3) of lemma holds for operator B = B̂+ B̌.

Let us prove (4). Let Γ ∈ C1,λ1 ⊂ C2,λ, λ1 ∈ (0,1]. If x,y ∈ Γ , then the following
estimates hold:

∣∣�τyW(t−τ,x−y)
∣∣≤ c1

∣∣cos(x−y,ny)∣∣
|x−y|2

[
1+(t−τ)],

�(t−τ,x,y)≤ c1 |cos
(
x−y,ny

)∣∣
|x−y|2

[
1+(t−τ)]+c2,

(2.18)

where c1, c2 are some constants and first estimate follows from (2.10).
Let h(t,x)∈ C0([0,∞);C0(Γ)), then for operator B the following estimate holds:

∣∣(Bh)(t,x)∣∣≤
∫ t
0

∫
Γ

∣∣h(τ,y)∣∣
{
c1

∣∣cos(x−y,ny)∣∣
|x−y|2

[
1+(t−τ)]+c2

}
dSy dτ

≤
∫ t
0

∥∥h(τ,·)∥∥C0(Γ)

{
c1
∫
Γ

∣∣cos(x−y,ny)∣∣
|x−y|2 dSy

[
1+(t−τ)]+c2

∫
Γ
1dSy

}
dτ

≤
∫ t
0

∥∥h(τ,·)∥∥C0(Γ)
{
c̃1
[
1+(t−τ)]+ c̃2}dτ

= c̃1
∫ t
0

∫ t1
0

∥∥h(τ,·)∥∥C0(Γ) dτdt1+
(
c̃1+ c̃2

)∫ t
0

∥∥h(τ,·)∥∥C0(Γ) dτ,

(2.19)
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where c̃1, c̃2 are some constants and Lemma 2.1 from [32, Section 27.4] has been used.
This lemma states that the integral

∫
Γ

∣∣cos(x−y,ny)∣∣
|x−y|2 dSy (2.20)

is uniformly bounded by a constant for all x ∈ Γ . Taking supx∈Γ on both sides of the
inequality (2.19), we obtain

∥∥(Bh)(t,·)∥∥C0(Γ) ≤
(
c̃1+ c̃2

){∫ t
0

∫ t1
0

∥∥h(τ,·)∥∥C0(Γ) dτdt1+
∫ t
0

∥∥h(τ,·)∥∥C0(Γ) dτ
}
,

(2.21)
and so we complete the proof of estimate (2.16).

In the next section, we continue analysis of operators included in integral equation
(2.13).

3. Properties of operators included in the integral equation. On the contour Γ we
consider integral equation with respect to the function h(x)∈ C0(Γ),

−1
2
h(x)−(Ah)(x)= g(x), x ∈ Γ , (3.1)

whereA is an operator from (2.13), and g(x) belongs toC0(Γ). According to Lemma 2.4,
the kernel of the operator A is polar, therefore (3.1) is a Fredholm equation of the
second kind and index zero.

Let us prove that (3.1) is uniquely solvable in C0(Γ). To this end, it is sufficient to
show that homogeneous equation (3.1) has only a trivial solution. We give a proof by
contradiction. Let the homogeneous equation have a nontrivial solutionh0(x)∈ C0(Γ)
for which the identity holds

−1
2
h0(x)−

(
Ah0

)
(x)= 0, x ∈ Γ . (3.2)

We write this identity in the form

−1
2
h0(x)=

∫
Γ
h0(y)�1(x,y)dSy+

∫
Γ
h0(y)�2(x,y)dSy, (3.3)

where

�1(x,y)= 1
4π

∂
∂ny

1
|x−y| , �2(x,y)= 1

4π

N∑
k=1

δk(y)
1∣∣x−Yk∣∣ . (3.4)

We show that h0(x)∈ C1,ω(Γ) withω∈ (0,1). Indeed, the second integral term in the
right part of (3.3) is infinitely differentiable in x since it does not have any singularity
at x =y . According to [2, Theorem 2.15], the first integral term in the right-hand side
of (3.3) is a Hölder function in x on Γ . It follows from the identity (3.3) for the function
h0(x) that h0(x) is also Hölder function in x on Γ . Using [2, Theorem 2.22], we obtain
that the first integral term in (3.3) belongs to C1,ω(Γ) in x for some ω ∈ (0,1). Now
from the identity (3.3) for the function h0(x) we get: h0(x)∈ C1,ω(Γ), ω∈ (0,1). So,
we complete the proof.
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Lemma 3.1. Any solution of the homogeneous equation (3.1) (with g ≡ 0) in C0(Γ)
automatically belongs to C1,ω(Γ), where ω∈ (0,1).

Consider a harmonic function in � constructed with the help of h0(x) in the form
of a sum of double layer potential and point sources placed inside surfaces Γk in the
points Yk,

v
[
h0
]
(x)=− 1

4π

∫
Γ
h0(y)

∂
∂ny

1
|x−y| dSy−

1
4π

N∑
k=1

∫
Γk
h0(y)dSy

1∣∣x−Yk∣∣ . (3.5)

This function belongs to C0(�̄)
⋂
C2(�) and meets all conditions of the homogeneous

Dirichlet problem

�v(x)= 0, x ∈�; v|Γ = 0. (3.6)

Besides, if � is an exterior domain, then

∣∣v(x)∣∣=O(|x|−1), as |x| �→∞. (3.7)

Note that when satisfying the boundary condition v|Γ = 0, we obtain identity (3.3).
According to the maximum principle for harmonic functions, the solution of this
Dirichlet problem is unique. Consequently,

v
[
h0
]
(x)≡ 0, x ∈ �̄. (3.8)

By �j we denote the interior simply connected domain, bounded by the surface
Γj (j = 1, . . . ,N). Let � be simple smooth closed surface, lying in the domain � and
enveloping only the surface Γj among all surfaces making up Γ . Assuming that nx is
continuous normal on the surface �, we compute

∫
�

∂v
[
h0
]
(x)

∂nx
dSx = 0=−

∫
Γj
h0(y)

∂
∂ny

(
1
4π

∫
�

∂
∂nx

1
|x−y| dSx

)
dSy

−
∫
Γj
h0(y)dSy

1
4π

∫
�

∂
∂nx

1∣∣x−Yj∣∣ dSx.
(3.9)

Herewe take into account the following property of harmonic functions: if the function
V(x) is harmonic inside the surface � and ∇V(x) can be continuously extended on �

from inside, then ∫
�

∂V
∂nx

dSx = 0. (3.10)

We keep in mind that thanks to the Ostrogradsky-Gauss formula

1
4π

∫
�

∂
∂nx

1
|x−y| dSx =

1
4π

∫
�

∂
∂nx

1∣∣x−Yj∣∣ dSx =±1, (3.11)

where the sign depends on the selection of the direction of the normal nx on the
surface �. Hence, ∫

�

∂v[h0](x)
∂nx

dSx =∓
∫
Γj
h0(y)dSy = 0. (3.12)
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So, we obtain the identity ∫
Γj
h0(y)dSy = 0, (3.13)

which guarantees that the function v[h0](x) does not have a point source inside
the surface Γj . Therefore v[h0](x) is a harmonic function in �j . Proceeding from
Lemma 3.1, h0(x)∈ C1,ω(Γ). As shown in [2, Theorem 2.23] under such density h0(x)
the derivatives of the double layer potential in v[h0](x) are continuously extended
on Γj from inside and outside. Moreover,

lim
x1→x∈Γj
x1∈�

∂v
[
h0
](
x1
)

∂nx
= lim
x1→x∈Γj
x1∈�j

∂v
[
h0
](
x1
)

∂nx
= 0, (3.14)

where (3.8) has been used. Clearly, the function v[h0](x) satisfies the following
Neumann problem in �j :

∆v(x)= 0, x ∈�j ;
∂v
∂nx

∣∣∣∣
Γj
= 0. (3.15)

It is well known [32] that the solution of such problem is a constant, that is,

v
[
h0
]
(x)≡ const= c, x ∈�j . (3.16)

Employing the theorem on the jump of the double layer potential and using (3.8), we
obtain

lim
x1→x∈Γj
x1∈�

v
[
h0
](
x1)− lim

x1→x∈Γj
x∈�j

v
[
h0
](
x1)=−h0(x)=−c, (3.17)

so that h0(x) = c on Γj . It follows from (3.13), that c = 0. Therefore h0(x) ≡ 0 on
Γj . Recall that Γj is an arbitrary closed surface (j = 1, . . . ,N), belonging to Γ . Hence,
h0(x)≡ 0 on Γ1, . . . ,ΓN . Thus, h0(x)≡ 0 on Γ if � is an exterior domain and h0(x)≡ 0
on Γ \Γ0 if � is an interior domain. Finally, we should clarify the value of h0(x) on Γ0
in case of interior domain �.

Let � be an interior domain, then h0(x) ≡ 0 on Γ \ Γ0, and the function v[h0](x)
take the form of double layer potential

v
[
h0
]
(x)=− 1

4π

∫
Γ0
h0(y)

∂
∂ny

1
|x−y| dSy. (3.18)

Let �0 be an exterior domain, bounded by the surface Γ0. The potential v[h0](x) is
harmonic in �0 and v(x) = O(|x|−1), ∇v(x) = O(|x|−2) as |x| → ∞. Taking into
account smoothness of h0(x) on Γ , ensured by the Lemma 3.1 and employing [22,
Theorem 2.23], we obtain

lim
x1→x∈Γ0
x1∈�

∂v
[
h0
](
x1
)

∂nx
= lim
x1→x∈Γ0
x1∈�0

∂v
[
h0
](
x1
)

∂nx
= 0, (3.19)
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where (3.8) has been used. Consequently, the function v[h0](x) satisfies the following
Neumann problem in �0:

∆v(x)= 0, x ∈�0;
∂v
∂nx

∣∣∣∣
Γ0
= 0;

v(x)=O(|x|−1), ∇v(x)=O(|x|−2), |x| �→∞.
(3.20)

It is known that (see [32]) this problem has only the trivial solution: v[h0](x) ≡ 0 in
�0. Using the theorem on the jump of the double layer potential [32] and using (3.8),
we obtain

lim
x1→x∈Γ0
x1∈�

v
[
h0
](
x1)− lim

x1→x∈Γ0
x∈�0

v
[
h0
](
x1)=−h0(x)= 0, (3.21)

so that h0(x) ≡ 0 on Γ0, if Γ0 ⊂ Γ . On the basis of previous results h0(x) ≡ 0 on Γ in
case of both interior and exterior domain �.

Thereby we arrive at the contradiction to the assumption that h0(x) is a nontrivial
solution of the homogeneous equation (3.1) (with g ≡ 0). Thus, the homogeneous
equation (3.1) has only the trivial solution. Since Fredholm alternative holds for (3.1),
we arrive at the following statement.

Lemma 3.2. Equation (3.1) is uniquely solvable in C0(Γ) for any right-hand side
g(x)∈ C0(Γ).

The inverse operator to (−1/2−A) is denoted by (−1/2−A)−1, then the solution
of (3.1) can be expressed in the form

h(x)=
((
− 1

2
−A

)−1
g
)
(x). (3.22)

Let g(t,x) ∈ C0([0,∞);C0(Γ)). Consider an analogue of (3.1) with respect to the
function h(t,x)∈ C0([0,∞);C0(Γ)),

−1
2
h(t,x)−(Ah)(t,x)= g(t,x). (3.23)

For any fixed t, the operator (−1/2−A) is invertible,

h(t,x)=
((
− 1

2
−A

)−1
g
)
(t,x), (3.24)

and for any t, h(t,x)∈ C0(Γ).
Since the operator (−1/2 − A) is linear and bounded in C0(Γ) (see item (2) of

Lemma 2.4), then thanks to Banach theorem [31, page 59], the linear operator
(−1/2−A)−1 is also bounded in C0(Γ). Therefore, for any t ≥ 0,

∥∥h(t,·)∥∥C0(Γ) ≤ cA
∥∥g(t,·)∥∥C0(Γ), (3.25)

where cA is a constant. From the boundedness of the operator (−1/2−A)−1 it follows
its continuity. This means that if

∥∥g(t,·)−g(t0,·)∥∥C0(Γ) �→ 0, t �→ t0, (3.26)



598 PAVEL A. KRUTITSKII

then for any functions h(t,x), h(t0,x), constructed on the basis of formula (3.24),
the following relationship holds

∥∥h(t,·)−h(t0,·)∥∥C0(Γ) �→ 0, t �→ t0. (3.27)

Hence h(t,x)∈ C0([0,∞);C0(Γ)). Thereby the lemma holds.

Lemma 3.3. If g(t,x)∈ C0([0,∞);C0(Γ)), then (3.23) has the unique solution h(t,x)
of class C0([0,∞);C0(Γ)), and this solution obeys estimate (3.25).

4. Solution of the integral equation and the existence theorem. We seek the so-
lution of the integral equation (2.13) in the form of the series [10],

µ(t,x)=
∞∑

m=0
µm(t,x), (4.1)

where the functions µm(t,x) ∈ C0([0,∞);C0(Γ)) are subsequently defined from the
equalities, which are obtained when substituting (4.1) into (2.13) formally

−1
2
µ0(t,x)−

(
Aµ0

)
(t,x)= f(t,x), (4.2)

−1
2
µm(t,x)−

(
Aµm

)
(t,x)=−(Bµm−1)(t,x), m= 1,2, . . . . (4.3)

Since operator A does not depend on t, this variable in (4.2) and (4.3) is a parameter.
Since the function f(t,x) ∈ C0([0,∞);C0(Γ)), then according to Lemma 3.3, equa-

tion (4.2) has the unique solution µ0(t,x)∈C0([0,∞);C0(Γ)), which satisfies the fol-
lowing inequality

∥∥µ0(t,·)
∥∥
C0(Γ) ≤ cA

∥∥f(t,·)∥∥C0(Γ) ≤ cA‖f‖C0([0,t];C0(Γ)). (4.4)

The norm in the Banach space C0([0,T ];C0(Γ)) is defined by

‖·‖C0([0,T ];C0(Γ)) =
∥∥‖·‖C0(Γ)

∥∥
C0[0,T ]. (4.5)

Substituting µ0(t,x) found above into the right side of (4.3), we obtain the equation
with respect to µ1(t,x):

−1
2
µ1(t,x)−

(
Aµ1

)
(t,x)=−(Bµ0

)
(t,x). (4.6)

Using item (3) of Lemma 2.4, (Bµ0)(t,x)∈ C0([0,∞);C0(Γ)).
According to Lemma 3.3, equation (4.6) has the unique solution

µ1(t,x)∈ C0([0,∞);C0(Γ)
)
. (4.7)

Besides, on the basis of Lemmas 2.4 and 3.3, the function µ1(t,x) satisfies the estimate

∥∥µ1(t,·)
∥∥
C0(Γ) ≤ cA

∥∥(Bµ0
)
(t,·)∥∥C0(Γ)

≤ cAcB
[∫ t

0

∥∥µ0(τ,·)
∥∥
C0(Γ) dτ+

∫ t
0

∫ t1
0

∥∥µ0(τ,·)
∥∥
C0(Γ) dτdt1

]
.

(4.8)
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We continue the proof by induction. Let µm−1(t,x)∈C0([0,∞);C0(Γ)), then µm(t,x)
must satisfy (4.3). On the basis of Lemma 2.4,

(
Bµm−1

)
(t,x)∈ C0([0,∞);C0(Γ)

)
. (4.9)

Using Lemma 3.3, equation (4.3) has the unique solution µm(t,x) ∈ C0([0,∞);
C0(Γ)). Using Lemmas 2.4 and 3.3 this solution satisfies the estimate

∥∥µm(t,·)∥∥C0(Γ) ≤ cAcB
[∫ t

0

∥∥µm−1(τ,·)∥∥C0(Γ) dτ+
∫ t
0

∫ t1
0

∥∥µm−1(τ,·)∥∥C0(Γ) dτdt1

]

≤ c2Ac2B
[∫ t

0

∫ t1
0

∥∥µm−2(τ,·)∥∥C0(Γ) dτdt1

+
∫ t
0

∫ t1
0

∫ t2
0

∫ t3
0

∥∥µm−2(τ,·)∥∥C0(Γ) dτdt3dt2dt1

]

≤ ···

≤ cmA cmB
[∫ t

0

∫ t1
0
···

∫ tm−1
0

∥∥µ0(τ,·)
∥∥
C0(Γ) dτdtm−1 ···dt1

+
∫ t
0

∫ t1
0
···

∫ t2m−1
0

∥∥µ0(τ,·)
∥∥
C0(Γ) dτdt2m−1 ···dt1

]

≤ cm+1A cmB ‖f‖C0([0,t];C0(Γ))

[∫ t
0

∫ t1
0
···

∫ tm−1
0

dτdtm−1 ···dt1

+
∫ t
0

∫ t1
0
···

∫ t2m−1
0

dτdt2m−1 ···dt1
]

= cA‖f‖C0([0,t];C0(Γ))

((
cBcAt

)m
m!

+
(√
cBcAt

)2m
(2m)!

)
,

(4.10)

where the inequality (4.4) has been used.
Thus, all functions µm(t,x), making up series (4.1), are found subsequently. On the

basis of Lemma 2.1 each function µm(t,x) belongs to C0([0,∞)× Γ). Besides, each
function meets inequality (4.10).

Let us show that series (4.1) converges absolutely and uniformly in [0,T ]× Γ for
any T > 0. To prove this we use the Weierstrass theorem [12] and majorize the terms
of series (4.1) by terms of the convergent number series. Employing inequality (4.10),
we obtain that for any (t,x)∈ [0,T ]×Γ the following inequality holds∣∣µm(t,x)∣∣≤ ∥∥µm(t,·)∥∥C0(Γ) ≤ sup

t∈[0,T ]

∥∥µm(t,·)∥∥C0(Γ) =
∥∥µm∥∥C0([0,T ];C0(Γ))

≤ cA
[(
cAcBT

)m
m!

+
(√
cAcBT

)2m
(2m)!

]
×‖f‖C0([0,T ];C0(Γ)).

(4.11)

Thereby any term of the series (4.1) is majorized on the set [0,T ]× Γ by the term of
the number series

cA‖f‖C0([0,T ];C0(Γ))

[(
cAcBT

)m
m!

+
(√
cAcBT

)2m
(2m)!

]
, (4.12)
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which converges and its sum is equal to

cA‖f‖C0([0,T ];C0(Γ))
[
exp

(
cAcBT

)+ch
(√
cAcBT

)]
. (4.13)

Consequently, using the Weierstrass theorem, series (4.1) converges absolutely and
uniformly on the set [0,T ]× Γ for any T > 0. These arguments and continuity of
the terms of the series prove that the series can be integrated term-by-term when
substituting this series in (2.13). Moreover, the integrated series is also absolutely
and uniformly convergent [12] on [0,T ]× Γ for any T > 0, and so its terms can be
summed in an arbitrary order. Using the subsequence of equalities (4.2) and (4.3),
equation (2.13) becomes an identity. Thereby the function µ(t,x), defined as a sum
of series (4.1), obeys (2.13), because all formal operations used in the substitution of
(4.1) into (2.13) are justified.

According to the theorem on continuity of the sum of a series [12], from uniform
convergence of series (4.1) in [0,T ]× Γ for any T > 0, and from continuity of its
terms in [0,∞)× Γ it follows that µ(t,x) ∈ C0([0,∞)× Γ). By Lemma 2.1, µ(t,x) ∈
C0([0,∞);C0(Γ)). Thus, the desired solution of (2.13) has been constructed.

Theorem 4.1. For any function f(t,x) ∈ C0([0,∞);C0(Γ)) equation (2.13) has a
solution µ(t,x)∈ C0([0,∞);C0(Γ)).

Note that a function f(t,x)= [f0(t,x)]tt ∈ C0([0,∞);C0(Γ)) in a right-hand side of
the integral equation (2.13) corresponds to an arbitrary function f0(t,x)∈ C2

0 ([0,∞);
C0(Γ)) in the boundary condition (1.3) of the problem �.

Theorem 4.1 ensures the existence of the solution µ(t,x) of the integral equation
(2.13) in the required class of smoothness. Hence, the potential (2.12), constructed
for this function µ(t,x), satisfies the boundary condition of the problem �. Besides,
according to Lemma 2.3, the potential (2.12) constructed in such a way belongs to the
smoothness class G and satisfies all other conditions of the problem �. We arrive at
the following theorem.

Theorem 4.2. For any function f0(t,x) ∈ C2
0 ([0,∞);C0(Γ)) the classical solution

of the problem � exists and is given by formula (2.12), where the density µ(t,x) ∈
C0([0,∞);C0(Γ)) is the solution of the integral equation (2.13), which is always solvable.

One can show that if f0(t,x) ∈ C2
0 ([0,∞);C1,λ(Γ)), λ ∈ (0,1], then the solution of

the problem � constructed in Theorem 4.2 belongs to the smoothness class G1. In
this case, the solution of problem � is unique, by Theorem 1.5.
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