CHARACTERIZATION OF AN H*-ALGEBRAS IN TERMS OF A TRACE

PARFENY SAWOROTNOW

(Received 6 March 2000)

ABSTRACT. Arbitrary proper H^* -algebra is characterized in terms of the trace defined on a certain subset of the algebra.

2000 Mathematics Subject Classification. 46K15, 46K10.

This paper deals with characterizations of an arbitrary proper (not necessarily commutative) H^* -algebra. More specifically, we show that any Banach *-algebra with a partially defined trace, and some additional properties, has a Hilbert space structure with respect to which it is an H^* -algebra. In the past, the author worked in characterizations of commutative H^* -algebras (e.g., [3, 4]). As in [3], we do not assume both the existence of an inner product and the commutativity.

Now, we state our first result.

THEOREM 1. Let *A* be a Banach algebra with an involution $x \to x^*$, $x \in A$, such that $||x^*|| = ||x||$. Assume that the set $A^2 = \{xy : x, y \in A\}$ has a complex valued trace, that is, there is a complex valued function tr on A^2 with the following properties:

- (i) if x, y, and x + y belong to A^2 , then tr(x + y) = tr x + tr y,
- (ii) $\operatorname{tr}(\lambda x) = \lambda \operatorname{tr} x$ for all $x \in A^2$ and any complex number λ ,
- (iii) $\operatorname{tr}(x^*x) \ge 0$ and $\operatorname{tr} x^*x = 0$ if and only if $x = 0, x \in A$,
- (iv) $\operatorname{tr} x^* = \operatorname{tr} x$ for all $x \in A^2$.

Suppose also that

- (v) $\operatorname{tr}(xy) = \operatorname{tr}(yx)$ for all $x, y \in A$,
- (vi) $|\operatorname{tr}(xy)| \le ||x|| \cdot ||y||$ for all $x, y \in A$,
- (vii) for each bounded linear functional $f(f \in A^*)$, there exists $a \in A$ such that $f(x) = tr(xa^*)$ for all $x \in A$.

Then A is a proper H^* -algebra with respect to some scalar product whose corresponding norm || || is equivalent to the original norm. This means that there exists a scalar product (,) on A such that A is an H^* -algebra with respect to this scalar product (and the original involution) and such that $k_1 ||x||^2 \le (x,x) \le k_2 ||x||^2$ for some $k_1, k_2 \ge 0$ and all $x \in A$ (and $(xy,z) = (y,x^*z) = (x,zy^*)$ for all $x, y, z \in A$).

REMARK 2. Note that each proper H^* -algebra A has all the properties stated in Theorem 1 [5].

PROOF OF THEOREM 1. For any $x, y \in A$, let $(x, y) = tr(xy^*) = tr(y^*x)$. Then (,) is an inner product on *A* [6] (in the terminology of Loomis [1], (,) is a scalar product). Let $|| ||_2$ be the corresponding norm, $(x, x) = ||x||_2^2$, $x \in A$.

PARFENY SAWOROTNOW

We show that *A* is complete with respect to this new norm $|| ||_2$. Let $\{a_n\}$ be a Cauchy sequence, $\lim_{m,n} ||a_n - a_m||_2 = 0$. Then there exists M > 0 such that $||a_n||_2 \le M$ for all n (every Cauchy sequence is bounded). For any fixed $x \in A$, the sequence $\{\operatorname{tr}(xa_n^*)\}$ of complex numbers is also Cauchy

$$(|\operatorname{tr}(xa_n^*) - \operatorname{tr}(xa_n^*)| \le ||x||_2 ||a_n - a_m||_2).$$
(1)

So there is a complex number λ_x such that $tr(xa_n^*) \to \lambda_x$, $n \to \infty$. Define the complex valued function f on A by setting $f(x) = \lambda_x$. It follows from

$$f(x) = \liminf (xa_n^*), \qquad ||a_n||_2 \le M,$$
 (2)

and the linearity of tr that f is a bounded linear functional on $A(f \in A^*)$. Assumption (vii) in Theorem 1 implies that there exists $a \in A$ such that

$$(x,a) = f(x) = \lim_{n \to \infty} \operatorname{tr} x a_n^*.$$
(3)

We show that $\lim_{n\to\infty} ||a_n - a||_2 = 0$. Let $\epsilon > 0$ be arbitrary, and let n_0 be such that $||a_n - a_m||_2 < \epsilon/2$ for all $n, m > n_0$. Let $n > n_0$ be fixed and arbitrary. The following relation:

$$||a-a_{n}||_{2}^{2} = |(a-a_{n}, a-a_{m}) + (a-a_{n}, a_{m}-a_{n})|$$

$$= |(a-a_{n}, a) - (a-a_{n}, a_{m}) + (a-a_{n}, a_{m}-a_{n})|$$

$$\leq |f(a-a_{n}) - (a-a_{n}, a_{m})| + ||a-a_{n}||_{2} \cdot ||a_{n}-a_{m}||_{2}$$

$$\leq |f(a-a_{n}) - (a-a_{n}, a_{m})| + \frac{\epsilon}{2} ||a-a_{n}||_{2}$$
(4)

shows that $||a - a_n||_2^2 \le \epsilon ||a - a_n||_2$, since we can always find $m > n_0$ so that $|f(a - a_n) - (a - a_n, a_m)| \le \epsilon/2 ||a - a_n||_2$. Hence, $||a - a_n||_2 \le \epsilon$ for any $n > n_0$. This proves that *A* is complete in this new norm $||||_2$.

It follows from (vi) that $||x||_2 \le ||x|| ((x,x) \le ||x|| ||x^*|| = ||x||^2$ for all $x \in A$). Closed graph theorem [1] tells us that $|||_2$ is equivalent to the original norm.

Now, it is an easy exercise to show that *A* is an H^* -algebra with respect to the inner product (,).

Now we state a slightly different characterization. It may not look like much of improvement over Theorem 1, but it allows for a larger class of examples. In fact, if we take any proper H^* -algebra A and replace its norm by any other norm equivalent to the original one, we get a canonical example of a Banach algebra which both satisfies the conditions of the following theorem and is characterized by it.

THEOREM 3. Let A be a Banach algebra with continuous involution $x \to x^*$, $x \in A$. Assume that the set $A^2 = \{xy : x, y \in A\}$ has a trace tr with the following properties: (i) if $x, y, x + y \in A^2$, then $\operatorname{tr}(x + y) = \operatorname{tr} x + \operatorname{tr} y$,

- (ii) $\operatorname{tr}(\lambda x) = \lambda \operatorname{tr} x$ for all $x \in A^2$ and each complex number λ ,
- (iii) $\operatorname{tr}(x^*x) \ge 0$ and $\operatorname{tr}(x^*x) = 0$ if and only if x = 0 $(x \in A)$,
- (iv) $\operatorname{tr} x^* = \overline{\operatorname{tr}} x$, $x \in A^2$,
- (v) $\operatorname{tr}(xy) = \operatorname{tr}(yx)$ for all $x, y \in A$.

Assume further that

- (vi)' for each $a \in A$ the map $T_a : x \to tr(xa^*) (= T_a(x))$ is continuous $(T_a \in A^* for each a \in A)$,
- (vii) for each bounded linear functional $f(f \in A^*)$ there exists $a \in A$ such that $f(x) = tr(xa^*)$ for all $x \in A$.

Then *A* has a structure of a proper H^* -algebra with respect to some scalar product (,) such that $k||x||^2 \le (x,x) \le K||x||^2$ for all $x \in A$ and some k, K > 0.

REMARK 4. Note that (vi)' is equivalent to the following condition: (vi)'' there exists M > 0 such that $|\operatorname{tr}(xy)| \le M ||x|| \cdot ||y||$ for all $x, y \in A$.

It is a consequence of uniform boundness theorem [6, page 239]. Proof of this fact is similar to the proof of Lemma 1 in [2]. Note also that continuity of involution implies that there exists B > 0 such that $||x^*|| \le B||x||$, $x \in A$.

PROOF OF THEOREM 3. We leave it to the reader to modify the proof of Theorem 1 in order to verify validity of Theorem 3.

REFERENCES

- L. H. Loomis, An Introduction to Abstract Harmonic Analysis, D. Van Nostrand Company, New York, 1953. MR 14,883c. Zbl 052.11701.
- P. P. Saworotnow, On continuity of multiplication in a complemented algebra, Pacific J. Math. 14 (1964), 1399-1403. MR 30#2361. Zbl 154.15102.
- [3] _____, A simple characterization of commutative H*-algebras, Int. J. Math. Math. Sci. 22 (1999), no. 4, 885-888. MR 2000i:46045. Zbl 991.48198.
- [4] _____, An exotic characterization of a commutative H*-algebra, Int. J. Math. Math. Sci. 24 (2000), no. 1, 1-4. CMP 1 773 964. Zbl 991.64627.
- [5] P. P. Saworotnow and J. C. Friedell, *Trace-class for an arbitrary H*-algebra*, Proc. Amer. Math. Soc. 26 (1970), 95-100. MR 42#2304. Zbl 197.39701.
- [6] G. F. Simmons, *Introduction to Topology and Modern Analysis*, McGraw-Hill Book Co., New York, 1963. MR 26#4145. Zbl 105.30603.

PARFENY SAWOROTNOW: DEPARTMENT OF MATHEMATICS, CATHOLIC UNIVERSITY OF AMERICA, WASHINGTON, DC 20064, USA

E-mail address: saworotnow@cua.edu