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STABILITY IN E-CONVEX PROGRAMMING

EBRAHIM A. YOUNESS
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Abstract. We define and analyze two kinds of stability in E-convex programming problem
in which the feasible domain is affected by an operator E. The first kind of this stability is
that the set of all operators E that make an optimal set stable while the other kind is that
the set of all operators E that make certain side of the feasible domain still active.
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1. Introduction. The stability notion plays an important role in the mathematical

programming field, it is important for solver or for the decision maker to preserve

effort and time.

Stability in mathematical programming has many types, one of these types depends

on making perturbation to the decision space or to the objective space or to both by a

parameter. This type is called stability in parametric programming problems (see [3, 4,

5]). Other types are called internal and external stability. This kind of stability depends

on the set of efficient solution for multi-objective programming problems, namely, if

for each efficient solution there exist some points in decision space dominated by it

(this is external stability). On the other hand, internal stability means that any efficient

solution is not preferred to another efficient solution, see [6].

In this paper, the author presents a new type of stability in mathematical program-

ming. This type is very important in composite programming [2, 8] and in E-convex

programming which was presented by the author in [9]. This kind of stability is called

E-stability which is discussed in this paper.

Now, we give some examples to show that there are many operators E that transform

an optimal point to another optimal point.

Example 1.1. Consider the following problem:

min(x−1)2+(y−1)2 (1.1)

subject to x,y ≥ 0. It is clear that the optimal solution is (x̄, ȳ) = (1,1). Operators

E :R2 →R2, defined as

E(x,y)= (2x−1,2y−1), E(x,y)= (x2,y2), E(x,y)= (xy,y), (1.2)

map (1,1) to (1,1).

Example 1.2. Consider the problem

max{x+y} (1.3)

subject to M = {(x,y)∈R2 : x+y ≤ 8, x ≤ 6, y ≤ 5, x+y ≥ 1}.
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The set of optimal solutions is

S = {(x,y)∈R2 : (x,y)= λ(3,5)+(1−λ)(6,2), 0≤ λ≤ 1
}
. (1.4)

It is clear that a transformation E :R2 →R2 which maps (x,y) to (9−x,7−y) assigns

any point in S again to a point in S.

Also, for the solution (3,5) we can find more than one E :R2 →R2 such that E(3,5)∈
S, for example

E(x,y)=
(
xy−x−y−1,

1
4
(x+y)

)
,

E(x,y)=
(

1
2
x2, y− 3

2

)
,

E(x,y)=
(
x2y−41,

12y2

25x

)
.

(1.5)

The above two examples lead to the discussion of the set of all these operators qual-

itatively.

2. E-stability of an optimal set. Consider the following mathematical program-

ming problem:

minf(x) subject to M = {x ∈Rn : gr (x)≤ 0, r = 1,2, . . . ,m
}
. (2.1)

Denote S the set of optimal solutions for problem (2.1).

Definition 2.1. An E-stability of S is denoted by D(x̄), x̄ ∈ S and is defined as

D(x̄)= {E :Rn �→Rn : E(x̄)∈ S}. (2.2)

Let ξ be the space of all operators from Rn to Rn then D(x̄) is a point-to-set map

from S to ξ.

Definition 2.2 (see [1]). A point-to-set map F : X → 2Y is said to be closed at a

point x0 ∈ X; if for each pair of sequences {xn} ⊂ X and {yn} ⊂ Y , n = 1,2, . . . with

the properties xn→ x0, yn ∈ F(xn) and yn→y0 it follows that y0 ∈ F(x0).

Proposition 2.3. If S is closed, then a point-to-set map D : S → ξ is closed.

Proof. Let {xt} ⊂ S, xt → x0 as t → ∞ and let {Et} ⊂ ξ, Et → E0 as t → ∞ such

that Et ∈ D(xt), then we have a sequence f(Enxn) with f(Enxn) ≤ f(x) for each

x ∈M . Since S is closed, then f(E0x0)≤ f(x) for all x ∈M . Hence E0 ∈D(x0) and D
is closed.

Proposition 2.4. If f is lower-semicontinuous, then the setD(x0), x0 ∈ S, is closed.

Proof. Let En be a sequence ofD(x0) and En→ E0 asn→∞, then f(Enx0)≤ f(x)
for each x ∈M . Since f is lower-semicontinuous, then

f
(
E0x0)= f( lim

n→∞E
nx0

)
≤ lim
n→∞ inff

(
Enx0)≤ f(x) (2.3)

for each x ∈M , that is, E0x0 ∈ S and E0 ∈D(x0). Hence D(x0) is closed.
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Theorem 2.5. If f is lower-semicontinuous andD is upper-semicontinuous atx0 ∈ S,

then D is closed.

Proof. From Proposition 2.3, the set D(x0) is closed and from [1, Lemma 2.2.1]

the mapping D is closed.

Theorem 2.6. If S is compact, then D is upper-semicontinuous.

Proof. Since S is compact, then S is closed and, from Proposition 2.3, D is closed.

From [1, Lemma 2.2.3] the mapping D is upper-semicontinuous.

Theorem 2.7. Let f be linear, S convex, and M∗ a dual space of M . Then a point-

to-set map D : S →M∗ is convex.

Proof. Assume that x̄, x̃ ∈ S and E ∈ D(λx̄+ (1−λ)x̃), 0 ≤ λ ≤ 1, then λEx̄+
(1−λ)Ex̃ ∈ S. Let E �∈ λD(x̄)+ (1−λ)D(x̃) for any 0 ≤ λ ≤ 1, then E �∈ D(x̄)⋃D(x̃)
and hence Ex̄,Ex̃ �∈ S . Therefore, there exist x̂,x∗ ∈M such that

f
(
λx̂+(1−λ)x∗)< f (λEx̄+(1−λ)Ex̃), (2.4)

which is a contradiction. Then

D
(
λx̄+(1−λ)x̃)⊂ λD(x̄)+(1−λ)D(x̃) (2.5)

and hence D is convex.

Definition 2.8. Let S be a subset of Rn and E :Rn→Rn be an operator. The set S
is called an E-convex set if and only if

λEx+(1−λ)Ey ∈ S, ∀x,y ∈ S, 0≤ λ≤ 1. (2.6)

(For more details about E-convex sets see [9].)

Theorem 2.9. If S is an E-convex set with respect to E ∈ D(x̄), x̄ ∈ S, then

D(x̄)=⋂nD(Enx̄).
Proof. Let E ∈ D(x̄), then E(x̄) ∈ S. Let E �∈ D(Ex̄), then E(Ex̄) �∈ S which con-

tradicts the E-convexity of S. Hence E ∈ D(Ex̄), that is, D(x̄) ⊂ D(Ex̄). Similarly,

D(Ex̄)⊂D(E2x̄)⊂ ··· ⊂D(Enx̄). Thus D(x̄)=⋂nD(Enx̄).
Theorem 2.10. Let f be a strictly convex function. If E ∈D(x̄) then E−1 ∈D(x̄).

Proof. Let E ∈D(x̄), then E(x̄)∈ S. If E−1 �∈D(x̄), then E−1(x̄) �∈ S and x̄ �∈ E(S).
Since f is strictly convex, then x̄ is the unique minimal point, that is, s = {x̄} and

hence E(x̄)= x̄. Thus x̄ �∈ E(S) contradicts E(x̄)= x̄. Hence E−1 ∈D(x̄).

Theorem 2.11. Let S be a convex cone with vertex at the origin. If E ∈ D(x̄), then

aE+b ∈D(x̄) for each real numbers a,b ≥ 0, (a,b)≠ 0.

Proof. Since E ∈ D(x̄), then E(x̄) ∈ S. So (aE+b)x̄ = aE(x̄)+bI(x̄), where I is

the identity map. Since S is convex cone, then for a,b ≥ 0, (a,b)≠ 0, aE(x̄) and bI(x̄)
belong to S. Thus aE(x̄)+bI(x̄)∈ S and hence aE+b ∈D(x̄).
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Theorem 2.12. Let S be a convex cone with vertex at the origin. IfD(x)−{I}, x ∈ S,

is compact, then there exists E ∈D(x)−{I} with E(x)= x.

Proof. Suppose that ϕ(x)=minE∈D(x)−{I} ‖Ex−x‖. Since D(x)−{I} is compact,

then the minimal of ϕ exists. Let this minimal be Ē. Therefore

∥∥Ēx−x∥∥≤ ‖Ex−x‖, ∀E ∈D(x)−{I}. (2.7)

Since S is a convex cone with vertex at the origin, then aĒ+b ∈D(x)−{I} and hence

∥∥Ēx−x∥∥≤ ∥∥aĒx+bx−x∥∥, ∀a,b ≥ 0, (a,b)≠ 0. (2.8)

Then for a= b we have

∥∥Ēx−x∥∥≤ ∥∥a(Ēx−x)+(2a−1)x
∥∥≤ a∥∥Ēx−x∥∥+(2a−1)‖x‖ (2.9)

and hence

∥∥Ēx−x∥∥≤ 2a−1
1−a ‖x‖, ∀a≥ 0, (2.10)

which implies Ēx = x and hence the result.

3. E-stability set of a side. Denote ρ(I) the side in the set M which is defined as

ρ(I)= {x ∈Rn : gi(x)= 0, i∈ I = {1,2, . . . ,r}, gi(x) < 0, 1 �∈ I}. (3.1)

Definition 3.1. An E-stability set of a side ρ(I) is denoted by H(x̄,I), x̄ ∈ S, and

is defined as

H
(
x̄, I

)= {E ∈D(x̄) : E
(
x̄
)∈ S∩ρ(I)}. (3.2)

Theorem 3.2. If I1 ≠ I2, then H(x̄,I1)∩H(x̄,I2)=∅.

Proof. Let Ê ∈H(x̄,I1)∩H(x̄,I2), then Ê(x̄)∈ S∩ρ(I1) and Ê(x̄)∈ S∩ρ(I2), that

is,

gi
(
Êx̄
)= 0, i∈ I1, gi

(
Êx̄
)
< 0, i �∈ I1,

gi
(
Êx̄
)= 0, i∈ I2, gi

(
Êx̄
)
< 0, i �∈ I2.

(3.3)

Therefore gs(Êx̄) = 0, gs(Êx̄) < 0 for at least one S ∈ {1,2, . . . ,r} which is a contra-

diction. Hence the result.
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Theorem 3.3. If S and ρ(I) are closed, then the set H(x,I) with x ∈ S is closed.

Proof. Let En be a sequence in H(x,I) and En tends to E0 as n tends to infinity,

then En(x) ∈ S⋂ρ(I). Since S and ρ(I) are closed, then E0(x) ∈ S⋂ρ(I). So E0 ∈
H(x,I). Hence the result.

Theorem 3.4. Let f ,gi, i= 1,2, . . . ,m be convex functions and ρ(I) be a convex set,

then H(x,I) is convex.

Proof. Let E1,E2 ∈ H(x,I), then E1,E2 ∈ S∩ρ(I). Since f and gi, i = 1,2, . . . ,m,

are convex, then S is convex and hence S∩ρ(I) is convex since ρ(I) is convex. Thus

λE1+(1−λ)E2 ∈ S∩ρ(I), 0≤ λ≤ 1. Therefore H(x,1) is convex.

Definition 3.5. LetM ⊆Rn be locally arcwise connected at x∗ ∈ M̄ (closure ofM).

A vector e ∈ Rn is said to be tangent to M at x∗ if and only if there exists a positive

number ν and a continuous function δx(·) : (0,ν)→Rn such that

(i) x∗+αδx(α)∈M for all α∈ (0,ν),
(ii) δx(α)→ e as α→ 0.

Definition 3.6. For M ⊆Rn, with x∗ ∈ M̄ , the set of points

T = {e∈Rn : e tangent to M at x∗
}

(3.4)

is called the tangent cone to M at x∗. (For more details see [7].)

Theorem 3.7. Let T be a tangent cone of ρ(I) and f convex and of class C1. The

sufficient condition to have E ∈H(x,I) with x ∈ S is (∂f(Ex)/∂x)e > 0 for all nonzero

vectors e∈ T .

Proof. Let (∂f(Ex)/∂x)e > 0 for all nonzero vectors e∈ T , then E(x) is a proper

local minimum of f . Since f is convex, then E(x) is a global minimum for f on ρ(I),
that is, E(x)∈ S∩ρ(I). Hence E ∈H(x,I).

References

[1] B. Bank, J. Guddat, D. Klatte, B. Kummer, and K. Tammer, Nonlinear Parametric Optimiza-
tion, Birkhäuser Verlag, Basel, 1983. MR 84i:90147.

[2] V. Jeyakumr and X. Q. Yang, Convex composite multiobjective non smooth programming,
Math. Programming 59 (1993), 325–343.

[3] M. S. A. Osman, Solvability of a convex program with parameters in the objective function,
Proceeding of the Third Annual Operations Research Conf. (Egypt), vol. 3, Zagazig
University, 1976.

[4] , Qualitative analysis of basic notions in parametric convex programming. I. Pa-
rameters in the constraints, Apl. Mat. 22 (1977), no. 5, 318–332. MR 56 #7993.
Zbl 383.90097.

[5] , Qualitative analysis of basic notions in parametric convex programming. II. Param-
eters in the objective function, Apl. Mat. 22 (1977), no. 5, 333–348. MR 56 #7994.
Zbl 383.90098.

[6] Y. Sawaragi, H. Nakayama, and T. Tanino, Theory of Multiobjective Optimization, Academic
Press, Florida, 1985. MR 87b:90129. Zbl 566.90053.

[7] L. V. Thomas and J. G. Walter, Optimality in Parametric Systems, John Wiley & Sons, New
York, 1981. MR 83d:90001.

http://www.ams.org/mathscinet-getitem?mr=84i:90147
http://www.ams.org/mathscinet-getitem?mr=56:7993
http://www.emis.de/cgi-bin/MATH-item?383.90097
http://www.ams.org/mathscinet-getitem?mr=56:7994
http://www.emis.de/cgi-bin/MATH-item?383.90098
http://www.ams.org/mathscinet-getitem?mr=87b:90129
http://www.emis.de/cgi-bin/MATH-item?566.90053
http://www.ams.org/mathscinet-getitem?mr=83d:90001


648 EBRAHIM A. YOUNESS

[8] X. Q. Yang, Second-order global optimality conditions for convex composite optimization,
Math. Programming 81 (1998), no. 3, Ser. A, 327–347. MR 2000g:90106.

[9] E. A. Youness, E-convex sets, E-convex functions, and E-convex programming, J. Optim.
Theory Appl. 102 (1999), no. 2, 439–450. MR 2000d:90057. Zbl 937.90082.

Ebrahim A. Youness: Department of Mathematics, Faculty of Science, Tanta Univer-

sity, Tanta, Egypt

http://www.ams.org/mathscinet-getitem?mr=2000g:90106
http://www.ams.org/mathscinet-getitem?mr=2000d:90057
http://www.emis.de/cgi-bin/MATH-item?937.90082

