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A LOGICAL MODEL OF HCP
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Abstract. For an arbitrary undirected graph G, we are designing a logical model for the
Hamiltonian Cycle Problem (HCP), using tools of Boolean algebra only. The obtained model
is a logic formulation of the conditions for the existence of the Hamiltonian cycle, and
uses m Boolean variables, where m is the number of the edges of a graph. This Boolean
expression is true if and only if an initial graph is Hamiltonian. In general, the obtained
Boolean expression may have an exponential length (the number of Boolean literals) and
may be used for construction of the solution algorithm.

2000 Mathematics Subject Classification. 68R10, 94C10.

1. Introduction. In principle, a Boolean function f may be constructed for every

NP-problem. Usually, to obtain the Boolean function, one can reduce the problem to

a satisfiability problem.

A satisfiability problem (SAT) is historically the first NP-complete problem. Classi-

cally, a SAT is formulated in the following way.

Let yi (i= 1,m) be some proposition, and f(y1,y2, . . . ,ym) be a compound propo-

sition constructed from the yi’s. Further we assume that the value 0 for a proposition

yi means that the proposition is false, and 1 means that the proposition yi is true.

Let Bm = {0,1}m, where 0 and 1 mean false and true, respectively. A mapping

f : Bm → {0,1} is called a Boolean function on m variables.

An element σ = (σ1,σ2, . . . ,σm) ∈ Bm, where σi ∈ {0,1} (i = 1,m), is called an

assignment of variables for the function f(y1,y2, . . . ,ym). If f(σ) = 1, then the ele-

ment σ ∈ Bm is called a satisfying assignment of variables for the Boolean function

f(y1,y2, . . . ,ym). We denoteyσii =yi if σi = 1, andyσii = ȳi if σi = 0 (i= 1,m). An ele-

ment yσii is called a literal. The literals y0 and y1 are called contrary. Any conjunction

of r (r ≤m) different noncontrary literals

K =yσi1i1 ∧yσi2i2 ∧···∧yσirir , (1.1)

is called elementary. An elementary conjunction is equal to 1 if all its components are

equal to 1.

Let K1,K2, . . . ,Ks be elementary conjunctions. Then a disjunction

f =K1∨K2∨···∨Ks (1.2)

is called a disjunction normal form (DNF). Obviously, the DNF in (1.2) is equal to 1 if

at least one of its components is equal to 1.
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Any disjunction different noncontrary literals

D =yσi1i1 ∨yσi2i2 ∨···∨yσipip (1.3)

is also elementary. The elementary disjunction is equal to 1 if at least one of the literals

is equal to 1.

Let D1,D2, . . . ,Dh be the elementary disjunctions. Then a conjunction

f =D1∧D2∧···∧Dh (1.4)

is called the conjunction normal form (CNF). Obviously, the CNF in (1.4) is equal to 1

if each component disjunction is equal to 1.

Assume that there is a Boolean function of the form (1.4). We want to find satisfying

assignment for Boolean variables of (1.4) such that f is true.

Thus, we have formulated a SAT in classical form. Unfortunately, variables of a

similar SAT are formal. In fact, they describe some nondeterministic Turing machine

for calculating the solution of the problem.

For example, the ways of constructing a SAT for the given Hamiltonian cycle prob-

lem (see [4]) are known. Obviously, variables of this SAT are formal, that is, these

variables assign no graph element.

In this paper, we design the logic expression that determines existence of a

Hamiltonian cycle in an arbitrary undirected graph. Boolean variables of this expres-

sion correspond to graph elements.

2. The logic expression for HCP. Consider a class Ln of undirected graphs without

loops and multiple edges with n vertices.

Let G = (X,E)∈ Ln, where X = {x1, . . . ,xn} is the set of graph vertices and E the set

of unordered pairs of X, called edges.

A Hamiltonian cycle in a graph G is a cycle, visiting each graph vertex exactly once

(indefinable concepts see in [6]). A graph G ∈ Ln is Hamiltonian if it has a Hamiltonian

cycle. HCP is an NP-complete problem (cf. [1, 2]).

Construct a Boolean expression for HCP.

First, we make some remarks. As it is already mentioned above, the Boolean ex-

pression may be considered as a logical model of any of the NP-problems. Therefore,

we proceed from several assumptions as it is done in the time of construction of any

mathematical model.

For example, let there be a set family S = {S1, . . . ,Sm}. It is required to find a transver-

sal of S. In this case, we mean that each of the sets Si ∈ S (i= 1,m) is nonempty.

Similarly, we shall proceed from several “natural” assumptions when we shall de-

sign the Boolean expression for HCP. Obviously, if some of them are not fulfilled then

the Boolean expression has no satisfying assignments, and the corresponding graph

is not Hamiltonian.

We construct the Boolean expression for HCP as a conjunction of two Boolean

expressions

F = F1∧F2. (2.1)

To formulate each of the Boolean expressions F1 and F2 we shall introduce the

Boolean variables.
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A Hamiltonian cycle CH of G, when it exists, is worth to represent by a totality of n
edges

CH =
{
ei1 ,ei2 , . . . ,ein

}
. (2.2)

Consider an arbitrary vertex x ∈X of G, having a local degree deg(x). Let the edges

ei1 ,ei2 , . . . ,eideg(x) of G be incident to the vertex x.

The first assumption, which we proceed from, is that deg(x)≥ 2 for all x ∈X. The

assumption is evident since a graph G is not two-connected, and has no Hamiltonian

cycle if there are less than two vertices, that is, incident to some vertex of G.

A unique Boolean variable yiq is assigned to each edge eiq (q = 1,deg(x)). Suppose

that yiq = 1 if eiq ∈ CH , and yiq = 0 otherwise.

Let the edges ei1 ,ei2 be incident to the vertex x ∈ X, and belong to a Hamiltonian

cycle CH of G. Obviously, a conjunction

K =yi1∧yi2∧ȳi3∧···∧ȳideg(x) (2.3)

is equal to 1.

In general, for a vertex x ∈X we can compose

t =
(

deg(x)
2

)
= deg(x)·(deg(x)−1

)
2

(2.4)

conjunctions in the form (2.3), each of which contains two Boolean variables without

negations. Let K(x) = {K1,K2, . . . ,Kt} be the set of all similar conjunctions.

We assign a disjunction

d(x)=
∨

∀Kg∈K(x)
Kg (2.5)

of conjunctions in the form (2.3) to each vertex x ∈X of G.

Thus, for any graph G ∈ Ln we may determine a Boolean expression

F1 = d
(
x1
)∧d(x2

)∧···∧d(xn). (2.6)

Let there be a set W of cycles C(X1), . . . ,C(Xw) of G = (X,E). The set W is called a

partition of G into disjoint cycles if Xi ≠∅ for all i = 1,w, Xi∩Xj =∅ (i ≠ j) for all

i,j ∈ {1, . . . ,w} and
⋃w
i=1Xi = X. Else, in this case the set W is called a 2-factor of G

[3, 6], or a vertex disjoint cycle cover [1].

Lemma 2.1. The Boolean expression (2.6) is true if and only if a graph vertices are

split into disjoint cycles.

Proof. Obviously, if a graph vertices are split into disjoint cycles then expression

(2.6) is true.

On the other hand, a satisfying assignment of Boolean variables (2.6) determines

some totality E1 of graph edges. By construction of (2.6), for any vertex of G in E1

there exists exactly two edges which are incident to the given vertex. Therefore, the

totality E1 determines some partition W of G into disjoint cycles.
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Note that expression (2.6) may be true ifG is unconnected, for instance, if it consists

of two unconnected distinct cycles.

The question raised: how can we take into account the two-connectedness of G in

SAT for HCP?

Consider some cycle C(S) of G, where S is the vertex set of the cycle. The edge set

of G, for which one and only one terminal vertex is incident to some vertex of S ⊂X,

we denote by E(S). Further, let R(S) be the set of edge pairs of E(S) such that they

have no common vertex in S.

The second assumption is that for any cycle C(S) of G, the set R(S) is nonempty if

S ≠X. That is, if some cycle of G does not contain all graph vertices then there exists

at least two edges for it, each of which has one terminal vertex only, that is, incident

to distinct vertex of this cycle.

In other words, if the graph is Hamiltonian then any Hamiltonian cycle must go into

any cycle C(S) (S ⊂X), and goes out from the cycle.

As the first assumption, the second assumption is also natural since if it is fulfilled,

then the graph, obviously, is not two-connected, and, hence, it has no Hamiltonian

cycles.

Let C(S) be some cycle of a Hamiltonian graph G. We shall assign a conjunction

yi1∧yi2 to each edge pair (ei1 ,ei2)∈ R(S). Clearly this conjunction is absent in F1 if

the corresponding edges have no common vertices.

For the cycle C(S) we compose a disjunction

D(S)=
∨(

yi1∧yi2
)

(2.7)

of conjunctions, each of which corresponds to one of the elements of the set R(S).
Then a set of disjunctions D(S) for all cycles C(S) of G induce an expression

F2 =
∧
D(S). (2.8)

Theorem 2.2. Expression (2.1) has an exponential number of conjunctions.

Proof. An exponential number of conjunctions in the expression for SAT follows

from an exponential number of cycles of G (cf. [5]).

Theorem 2.3. The expression F = F1 ∧ F2 is true if and only if a graph G is

Hamiltonian.

Proof. Indeed, let G ∈ Ln be a Hamiltonian graph. By Lemma 2.1, the expression

F1 is true. Besides, if C(S) is a cycle such that S ⊂X, S ≠X, then at least two edges of

E(S) belong to a Hamiltonian cycle, that is, the expression F2 is also true.

Conversely, if the expression F = F1∧F2 is true then we have a partition of G into

disjoint cycles. If we suppose that this partition contains more than one cycle then we

have a contradiction since the expression F2 is true.

Example 2.4. Let there be a graph shown in Figure 2.1a. Construct the Boolean

expression for HCP of the given graph. The edges of the given graph are assigned to

the Boolean variables a,b, . . . ,g. It is not difficult to see that the expression F1 has the
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Figure 2.1.

following form (further we cast out the symbol of the conjunction in the expressions):

F1=(fg)
(
adf̄∨ad̄f∨ādf )(abc̄∨ab̄c∨ābc)(ceḡ∨cēg∨c̄eg)(bcd̄∨bc̄d∨b̄cd).

(2.9)

The given graph has the following cycles, each of which does not contain all vertices

of the graph: 1-2-5-4, 2-3-5, 2-3-4-5, 3-4-5.

The disjunction for the cycle 1-2-5-4 has a form: (ab ∨ ac ∨ bc), for the cycle

2-3-5: (ce ∨ cf ∨ ef), for the cycle 2-3-4-5: (fg), and, at last, for the cycle 3-4-5:

(ad∨ag∨dg).
Thus, the expression F2 will have to be a form:

F2 = (ab∨ac∨bc)(ce∨cf ∨ef)(fg)(ad∨ag∨dg). (2.10)

Thus we obtain

F = F1∧F2 = ābcdēfg∨abc̄d̄efg. (2.11)

Obviously, the expression F determines two Hamiltonian cycles, each of which con-

tains edges whose Boolean variables have no negatives.

On the other hand, if we consider the theta-graph, shown in Figure 2.1b, we obtain

the value F = 0.
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