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Abstract. The aim of this note is to introduce the class of free geometries purely in terms
of morphisms. Several classes of well-known matroid morphisms are characterized via the
new concept.
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1. Introduction. We shall assume familiarity with category and matroid theories;

for an introduction, see [2, 3], respectively. In particular, a matroid M is an ordered

pair (E,FM) where FM is a collection of subsets, called flats of M , of a finite set E such

that E is a flat of M , the intersection of any two flats of M is a flat of M and if F ∈ FM
and {F1,F2, . . . ,Fk} is the set of minimal members of FM (with respect to inclusion) that

properly contain F (denoted by Fi � F ), then F1∪F2∪···∪Fk = E. The set E is called

the ground set of M . A formal notation for the matroid on the ground set E with flats

FM is M(E,FM), but when no confusion will arise, we refer to this matroid asM. When

several matroids M(Ei,Fi), i = 1,2, . . . ,n are being considered, we shall often denote

these matroids by M1, M2, . . . ,Mn.

By a combinatorial geometry we mean a loopless matroid with no multiple elements,

that is, a matroid in which the empty set and each point, if any exists, is a flat. We will

use the shorter “geometry” in place of “combinatorial geometry.” A free geometry is

a geometry which has every subset of its ground set as a flat. If the ground set of a

free geometry has m elements, then we denote that geometry by Um,m.

Our main goal in this note is to introduce a categorical definition of a free object

in the category � of geometries and strong maps. We define a functor, which we call

a free functor, from the subcategory � of free geometries to the category �. Lastly,

we show that � is a coreflective subcategory of � and the free functor is a faithful

functor which is a right adjoint of the inclusion functor.

The category of free geometries play an important role in solving the following open

problem:

Find a finite set of elementary axioms that characterize the category �.

It was that problem which prompted us to study the notion of free geometries.

2. Free objects. Define the isthmus 1 to be an object in � with exactly one endo-

morphism. Since in any category with an object M , the identity map iM is always an

endomorphism of M , i1 is the endomorphism of 1. Observe that 1 is the terminal

object of � while the initial object 0 is the empty geometry which is isomorphic to

U0,0.
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Proposition 2.1. For every object M , x is an element of M , or x ∈M , if and only if

x is a morphism with 1
x
���������→M .

In the concrete category of geometries and strong maps, 1 is isomorphic to the free

geometry U1,1. Clearly U1,1 has one element and one endomorphism. We shall denote

the element of 1 by c. Next, we give a categorical definition of free objects which has

never been introduced before. We remark that this definition is not obvious.

Definition 2.2. An object D is called a free object if for every x ∈D there exists a

morphism hx with D hx������������������������������������→ 1�1 such that for every y ∈D, y ≠ x, we have hxx ≠ hxy .

Clearly the objects 0, 1 are free. Also 1�1 is free since 1�1 has only two elements

and the identity on 1�1 satisfies the property of hx in the definition of free objects.

We notice as 1 is isomorphic to U1,1 that has a ground set isomorphic to {c}, the

geometry 1�1 has a ground set isomorphic to {c1,c2}. Next, we state and prove our

first main result.

Theorem 2.3. A geometry is free if and only if it is isomorphic to Un,n.

Proof. Let D = M(E,FD) be a free geometry such that |E| = n. If n = 0, then

D � U0,0. If n = 1, then D � 1 � U1,1. If n ≥ 2, then to show D � Un,n it is sufficient

to show that {x} and E\{x} are flats of D for all x ∈ E. Since then, for every proper

subset F ⊂ E such that |F| ≤ n−1, F ∈ FD . Let x ∈ E. Then the constant map fx with

1
fx�������������������������������→ D where fx(c) = x is a strong map. Hence as D is free, there exists a strong

map hx with M hx������������������������������������→ 1�1 such that for every strong map g with 1
g
�������→ M , g ≠ fx , we

must have hxfx ≠ hxg. Thus assume hxf(c) = c1 . Again as D is free and as for all

y ∈ E\{x}, the constant map fy as above is a strong map such that fy ≠ fx , we have

hxfx(c)≠ hxfy(c). Thus, hx(y)= c2 for all y ∈ E\{x}. As {c1} and {c2} are flats of

1�1, {x} = h−1
x ({c1}) and E\{x} = h−1

x ({c2}) are flats of D. Therefore, D �Un,n.

If D �Un,n for some n where Un,n has a ground set É , then for every strong map f

with 1
f
��������→D, define a strong map h with Un,n

h
�������→ 1�1 by h(z)= c1 when z = f(c), and

h(z)= c2 otherwise. For every strong map g with 1
g
�������→M such that g ≠ f , g(c)≠ f(c)

and hence hg ≠ hf . Therefore, D is free.

The proof of the following weak axiom of choice follows directly from the axiom of

choice for sets.

Theorem 2.4. For every morphism f with M1
f
��������→ D where M1 � 0 and D is a free

object, there exists a morphism g with D
g
�������→M1 such that f = fgf .

Next, we show 1 is a generator and use that to give a sufficient condition for a

morphism in the category � to be an epimorphism.

Lemma 2.5. The isthmus object 1 is a generator.

Proof. If M and N are objects and f ,g are morphisms from M to N such that

f ≠ g, then there exists x ∈M (i.e., x is a morphism with 1
x
���������→M) such that fx ≠ gx.

Thus 1 is a generator.
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Figure 2.1. The converse of Proposition 2.5 does not hold.

Proposition 2.6. If M1 and M2 are two objects and f is a morphism with M1
f
��������→M2

such that for every element g ∈M2 there exists an element h ∈M1 satisfying g = fh,

then f is an epimorphism.

Proof. If N is an object and f1, f2 are two morphisms withM2
f1��������������������������→N andM2

f2��������������������������→N
such that f1f = f2f , then we need only show the right cancellation law holds, that

is, f1 = f2. Suppose f1 ≠ f2. By Lemma 2.5, 1 is a generator and hence there exists a

morphism m with 1
m
����������������������→M2 such that f1m≠ f2m. Thus by assumption, there exists a

morphism k with 1
k
����→ M1 such that m = fk and hence, f1fk = f1m ≠ f2m = f2fk.

That is, f1fk ≠ f2fk which is a contradiction to the fact that f1fh = f2fh (because

f1f = f2f ).

Next we show the converse of the preceding proposition need not hold in �.

Example 2.7. Consider the matroids M and N given by the point configurations in

Figure 2.1. By [1, Proposition 3], the inclusion map i with M i
�→N is an epimorphism.

Define a strong map f with 1
f
��������→N by f(c)= e. If g is a strong map with 1

g
�������→M such

that f = ig, then g(c) = ig(c) = f(c) = e which is a contradiction to the fact that

e ∉ E(M). Therefore, the converse of Proposition 2.6 does not hold.

3. Some peculiar morphisms. In [1], Crapo proved that a strong map is a mono-

morphism if and only if it is a one to one map on points. It was also shown that an

onto strong map, on points, is an epimorphism but an epimorphism need not be onto,

on points. Next, we show that an epimorphism with free codomain is onto, on points.

Proposition 3.1. If f with M
f
��������→D is an epimorphism where D is free, then f is an

onto map on points.

Proof. Suppose E(M) and E(D) are the ground sets of M and D, respectively. If

f is not onto, then there exists x ∈ E(D) such that x ∉ f(E(M)). Let H be a geometry

on the set {x,y} and define strong maps g and h from D to H by g(x)=y , g(z)= x
when z ∈ f(E(M)) and h(z)= x for all z ∈ E(D). Then gf = hf and g ≠ h. Therefore,

f is not an epimorphism.

Proposition 3.2. Every nonzero object M has elements and the morphism t with

M t
�→ 1 is an epimorphism.
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Proof. By Theorem 2.4, there exists a morphism h with 1
h
�������→M such that t = tht

and hence th= thth. Therefore, th= i1 and as i1 is the only endomorphism of 1, by

Proposition 2.6, t is an epimorphism.

Proposition 3.3. Any bimorphism (= a monomorphism and an epimorphism) f

with M1
f
��������→M2 with free domain and codomain is an isomorphism.

Proof. If M1 � 0, by Proposition 3.2, M2 � 0 since f is an epimorphism. If M1 � 0,

by Theorem 2.4, there exists a morphism g with M2
g
�������→ M1 such that f = fgf and

since f is a bimorphism gf = iM1 and fg = iM2 . Thus f is an isomorphism.

The following theorem indicates that the category of free objects and strong maps

is a coreflective subcategory of �. The proof of that theorem is not hard and is thus

left to the reader.

Theorem 3.4. For every object M , there exists a free object |M| together with a

morphism tM with |M| tM���������������������������������→M such that for every free object D and a morphism h with

D h
�������→M , there exists a unique morphism k with D k

����→ |M| such that h = tMk. That is to

say, the subcategory � of free geometries and strong maps is a coreflective subcategory

of �.

Next, we state and prove several facts related to the morphisms tM and the objects

|M|, all purely in terms of morphisms only.

Proposition 3.5. The morphism tM is a bimorphism.

Proof. By Theorem 3.4 and Proposition 2.6, tM is an epimorphism. If x and y are

elements of |M| such that tMx = tMy , then as 1 is a free object, by Theorem 3.4, there

exists a unique element h ∈ |M| such that tMx = tMh. But as tMy = tMx, x = h = y
and hence tM is a monomorphism.

Observe that |M| is defined up to isomorphism and the operation “| |” is a functor

which we call the free functor. Next, we prove the free functor is a faithful functor

that is also a right adjoint of the inclusion functor from � to �.

Proposition 3.6. The free functor is faithful, that is, for every morphisms f , g from

M to N such that |f | = |g|, then f = g. Moreover, the free functor is a right adjoint of

the inclusion functor �↩ �.

Proof. We prove the first part of the proposition and leave the other to the reader.

If |f | = |g|, then ftM = tN |f | = tN |g| = gtM and since tM is an epimorphism,

f = g.

The proof of the following proposition is immediate and is left to the reader.

Proposition 3.7. A morphism f is a bimorphism if and only if |f | is a bimorphism.

Corollary 3.8. If f is a bimorphism with D
f
��������→ N where D is a free object, then

D � |N|.
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Figure 3.1. Coproduct of free objects is free.
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Figure 3.2. A regular epimorphism with free domain has a free codomain.

Corollary 3.9. If f is a monomorphism withM1
f
��������→M2 andM2 is a free object, then

M1 is a free object.

Proof. For every morphism g with 1
g
�������→M1, fg is a morphism from 1 toM2 and as

M2 is a free object, there exists a morphism hfg from M2 to 1�1 such that hfgfg ≠
hfgm for every morphismmwith 1

m
����������������������→M2 such thatm≠ fg. Let e be a morphism with

1
e
�→M1 such that e≠ g. Then as f is a monomorphism, fe≠ fg. Thushfgfe≠ hfgfg.

Therefore, hf ≠ hg where h= hfgf and hence M1 is a free object.

Corollary 3.10. If M1 and M2 are free objects, then M1�M2 is a free object.

Proof. As M1 and M2 are free objects, M1 � |M1| and M2 � |M2|. By definition of

the coproduct M1�M2, there exists a unique morphism u with M u
����������→ |M|, where M �

M1�M2, such that |iM1 | =uiM1 and |iM2 | =uiM2 . (See the diagram in Figure 3.1.) Thus

tMuiM1 = tM |iM1 | and tMuiM2 = tM |iM2 |. But by definition of |iM1 | and |iM2 |, we have

tM |iM1 | = iM1 and tM |iM2 | = iM2 . Therefore, iM = tMu and then as iM is a monomor-

phism, u is a monomorphism. Thus since |M| is a free object, by Corollary 3.9, M is

a free object.

Corollary 3.11. A regular epimorphism with a free domain has a free codomain.

Proof. If f is a morphism with M1
f
��������→M2 where M1 is a free object, M´ is an object

and f1, f2 are two morphisms from M´ to M1 such that 〈M1,f 〉 is isomorphic to the

coequalizer Coeq(f1,f2) of f1 and f2, then by Theorem 3.4, there exists a unique

morphism q with M1
q
�����→ |M2| such that f = tM2q. (See the diagram in Figure 3.2.)

Thus, tM2qf1 = ff1 = ff2 = tM2qf2 and since tM2 is a monomorphism, qf1 = qf2.

By definition of the coequalizer Coeq(f1,f2), there exists a unique morphism u with

M2
u
����������→ |M2| such that q = uf . Thus iM2f = f = tM2q = tM2uf . Since f is an epimor-

phism, iM2 = tM2u and as iM2 is a monomorphism, u is a monomorphism. As |M2 | is

a free object, by Corollary 3.9, M2 is a free object.
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