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1. Introduction. The notion of an algebra of chiral differential operators (cdo for

short) over a smooth algebraic variety X has been studied in [8]. (This notion has

been invented and first studied, in a different language, by Beilinson and Drinfeld,

[1, Chapter 3, Section 8].) In the present paper, we consider some examples in more

details. We will work over the ground field C.
We give a classification of cdo over X in the following cases: X = G is an affine

algebraic group; X = G/N or G/P , where N is a unipotent subgroup and P is a para-

bolic subgroup and G is simple (the extension to the case of a semi-simple G being

straightforward).

Before we describe the result, we explain some terminologies and notations. For a

smooth algebraic variety X, an algebra of cdo over X is by definition a Zariski sheaf

� of Z≥0-graded vertex algebras on X such that

(a) if �lg(�)= (�,�,Ω,∂,γ,〈·,·〉,c) is the sheaf of vertex algebroids associated with
� (see [8, Section 2]), then the corresponding extended Lie algebroid (�,�,Ω,∂) (see
(2.1)) is identified with (�X,ΘX,Ω1

X,dDR), where ΘX denotes the tangent bundle and

dDR the de Rham differential;

(b) the adjunctionmorphismU�lg(�)→� is an isomorphism. HereU is the functor

of vertex envelope defined in [8, Section 9]

For more details see Section 2.

For each Zariski open U ⊂ X, we can consider the category (a groupoid in fact) of

cdo over U , or, what is the same, the groupoid of vertex algebroids (defined in [8,

Section 3]) over U satisfying (a) above. When U varies, we get a sheaf of groupoids

�iffch
X over X—the gerbe of chiral differential operators. As usual, Γ(U ;�iffch

X ) denote
the sections over U ; a generic object of this category is sometimes denoted by �ch

U ;

the set of isomorphism classes of cdo over U is denoted by π0(Γ(U ;�iffch
X )).

Let G be an affine connected algebraic group, and let g be the corresponding Lie

algebra. For each symmetric ad-invariant bilinear form (·,·) ∈ (S2g∗)g we construct
a cdo �ch

G;(·,·) over G such that if G is semi-simple, then the correspondence (·,·) �
�ch
G;(·,·) gives rise to a bijection

http://ijmms.hindawi.com
http://ijmms.hindawi.com
http://www.hindawi.com


84 VASSILY GORBOUNOV ET AL.

(
S2g∗

)g ∼
��������������������������������������������→π0

(
Γ
(
G,�iffch

G

))
. (1.1)

We have a canonical embedding of vertex algebras

i(·,·) : �g,(·,·) �ch
G;(·,·), (1.2)

where �g;(·,·) denotes the vacuum module of the Kac-Moody algebra ĝ at level (·,·).
This embedding is induced by the embedding of g into TG := Γ(G;ΘG) as left invariant
vector fields.

Let (·,·)g;(K) denote the Killing form on g. We define the dual level by

(·,·)o =−(·,·)g;(K)−(·,·). (1.3)

Using the embedding g ↩ TG by means of right invariant vector fields, one can con-

struct a canonical dual embedding of vertex algebras

io(·,·) : �g;(·,·)o �ch
G;(·,·). (1.4)

It is characterised by the requirement that the images of i(·,·) and io(·,·) commute in an

appropriate sense (see Theorem 4.1 and Corollary 4.2). This beautiful fact was com-

municated to us by B. Feigin, E. Frenkel, and D. Gaitsgory. We give a proof using the

language of [8].

We pass to homogeneous spaces. Assume thatG is simple. LetN ⊂G be a unipotent

group. The classification of cdo over G/N is the same as over G; namely, for each level

(·,·) one can define a cdo �ch
G/N ;(·,·) such that the correspondence (·,·) � �ch

G/N ;(·,·)
induces a bijection (

S2g∗
)g ∼
��������������������������������������������→π0

(
Γ
(
G
N
;�iffch

G/N

))
. (1.5)

The sheaves �ch
G/N ;(·,·) are constructed using the BRST (or quantum Hamiltonian) re-

duction of the corresponding cdo’s on G. More precisely,

�ch
G/N ;(·,·) =H0

BRST

(
Ln;π∗�ch

G;(·,·)
)
, (1.6)

where the right-hand side denotes the BRST cohomology of the loop algebra Ln :=
n[T ,T−1], n := Lie(N). For the precise definition see Section 5.

Let B ⊂G be a Borel subgroup. We show that there exists a unique, up to a unique

isomorphism, cdo �ch
G/B on the flag space G/B. Again this cdo may be constructed

using the BRST reduction. Namely,

�ch
G/B =H0

BRST

(
Lb,h;π∗�ch

G;crit

)
. (1.7)

Here�ch
G;crit is, by definition, the cdo�ch

G;(·,·)crit on the critical level (·,·)crit=−(·,·)g;(K)/2.
For the definition of the relative BRST cohomology in the right-hand side, we again

refer the reader to the main body of the paper, see Section 6. (A more explicit con-

struction of the sheaf �ch
G/B for G = SL(n), using vertex operators, has been suggested

in [11, 5.9, 5.10].)

The embeddings (1.4) induce canonical morphisms of vertex algebras

�g;(·,·)o �→�ch
G/N ;(·,·); �g;(·,·)crit �→�ch

G/B. (1.8)
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Taking the spaces of sections over a big cell, we get another construction of Feigin-

Frenkel Wakimoto modules (cf. [5, 6, 7]).

Finally, if P ⊂ G is parabolic but not Borel, we show that Γ(G/P ;�iffch
G/P ) is empty.

The classification of cdo over homogeneous spaces is exactly reflected in the BRST

world, namely, the square of the corresponding BRST charge is zero at all levels for

G/N , only at the critical level for G/B and is never zero for G/P .
This introduction would not be complete without mentioning that this paper relies

heavily on the ideas of B. Feigin and E. Frenkel. This paper started from our attempts to

find a proof of Theorem 4.1 and Corollary 4.2. Our sincere gratitude goes to D. Gaits-

gory who had communicated these facts to us and told us that he had known their

proofs. We are also grateful to H. Esnault for a crucial Remark 6.1.

2. Preliminaries on cdo. In this section, we recall the necessary definitions and

theorems from [8]; for all the details the reader is referred to the references therein.

2.1. Let A be a commutative C-algebra. We denote by TA the Lie algebra of C-
derivations DerC(A,A); it is also canonically a left A-module. Let ΩA denote the A-
module of Kähler differentials Ω1

A/C = HomA(TA,A) and d : A→ ΩA the de Rham dif-

ferential. The Lie algebra TA acts canonically onΩA and d commutes with the action of

TA. We have the tautological A-bilinear pairing 〈·,·〉 : TA×ΩA→A, and all these struc-

tures satisfy the standard identities if differential geometry, cf. [8, (0.1.3)–(0.1.6)] and

(2.2), (2.3), (2.4), and (2.5) below.

A Lie A-algebroid is a Lie algebra T acting by derivations on A and equipped with a

structure of a left A-module, such that

[τ,aν]= a[τ,ν]+τ(a)ν, (aτ)(b)= aτ(b) (2.1)

for all τ,ν ∈ T ; a,b ∈A. For example, TA is a Lie A-algebroid.

2.2. An extended Lie algebroid is a quintuple � = (A,T ,Ω,∂,〈·,·〉), where A is as

above, T is a Lie A-algebroid, Ω is an A-module equipped with a structure of a module

over the Lie algebra T , ∂ : A → Ω is an A-derivation and a morphism of T -modules,

〈·,·〉 : T ×Ω→A is an A-bilinear pairing.
These data must satisfy the following properties (a∈A, τ,ν ∈ T , ω∈Ω):

〈τ,∂a〉 = τ(a), (2.2)

τ(aω)= τ(a)ω+aτ(ω), (2.3)

(aτ)(ω)= aτ(ω)+〈τ,ω〉∂a, (2.4)

τ
(〈ν,ω〉)= 〈[τ,ν],ω〉+〈ν,τ(ω)〉. (2.5)

We also say that �= (A,T , . . .) is an extended Lie A-algebroid.
We say that � is perfect if the pairing 〈·,·〉 induces an isomorphism Ω ∼

��������������������������������������������→
HomA(T ,A). Given a Lie A-algebroid T , we may set Ω := HomA(T ,A), define ∂ by

(2.2) and the T -action on Ω by (2.5); this way we get a perfect extended Lie algebroid.

2.3. A vertex algebroid is a septuple �= (A,T ,Ω,∂,γ,〈·,·〉,c), where A is as above,

T is a Lie A-algebroid, Ω is an A-module equipped with an action of the Lie algebra
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T ,∂ :A→Ω is a derivation commuting with the T -action,

〈·,·〉 : (T ⊕Ω)×(T ⊕Ω) �→A (2.6)

is a symmetric C-bilinear pairing equal to zero on Ω × Ω and such that �� =
(A,T ,Ω,∂,〈·,·〉|T×Ω) is an extended Lie A-algebroid; c : T×T →Ω is a skew symmetric

C-bilinear pairing and γ :A×T →Ω is a C-bilinear map.

The following axioms must hold (a,b ∈A; τ,τi ∈ T):

γ(a,bτ)= γ(ab,τ)−aγ(b,τ)−τ(a)∂b−τ(b)∂a, (2.7)〈
aτ1,τ2

〉= a〈τ1,τ2〉+〈γ(a,τ1),τ2〉−τ1τ2(a), (2.8)

c
(
aτ1,τ2

)= ac(τ1,τ2)+γ(a,[τ1,τ2])−γ(τ2(a),τ1)+τ2(γ(a,τ1))
− 1
2

〈
τ1,τ2

〉
∂a+ 1

2
∂τ1τ2(a)− 1

2
∂
〈
τ2,γ

(
a,τ1

)〉
,

(2.9)

〈[
τ1,τ2

]
,τ3

〉+〈τ2,[τ1,τ3]〉= τ1(〈τ2,τ3〉)− 1
2
τ2
(〈
τ1,τ3

〉)− 1
2
τ3
(〈
τ1,τ2

〉)
+〈τ2,c(τ1,τ3)〉+〈τ3,c(τ1,τ2)〉, (2.10)

dLiec
(
τ1,τ2,τ3

)=−1
2
∂
{〈[
τ1,τ2

]
,τ3

〉+〈[τ1,τ3],τ2〉−〈[τ2,τ3],τ1〉
−τ1

(〈
τ2,τ3

〉)+τ2(〈τ1,τ3〉)−2〈τ3,c(τ1,τ2)〉},
(2.11)

where

dLiec
(
τ1,τ2,τ3

)=−c([τ1,τ2],τ3)+c([τ1,τ3],τ2)−c([τ2,τ3],τ1)
+τ1

(
c
(
τ2,τ3

))−τ2(c(τ1,τ3))+τ3(c(τ1,τ2)). (2.12)

We call � perfect if the corresponding extended Lie algebroid �� is perfect.

2.4. Pushout. Let �= (A,T ,Ω, . . .) be a vertex A-algebroid. Let B be a commutative

A-algebra, and let i : A→ B be the structure morphism. Set ΩB := B⊗AΩ, TB := B⊗T .
The A-derivation ∂ : A→Ω induces a B-derivation ∂B : B →ΩB . The A-bilinear pairing
〈·,·〉 : T ×Ω→A uniquely extends to a B-bilinear pairing 〈·,·〉B : TB×ΩB → B.
Assume that the Lie algebra T acts on B by derivations in such a way that τ(i(a))=

i(τ(a)) and (aτ)(b) = aτ(b) (a ∈ A, b ∈ B, τ ∈ T). Then TB acquires a canonical

structure of a Lie B-algebroid. Namely, the Lie bracket on TB is given by

[
b1⊗τ1,b2⊗τ2

]= b1b2⊗[τ1,τ2]+τ1(b2)b1⊗τ2−τ2(b1)b2⊗τ1, (2.13)

and the action of TB on B is defined by

(
b1⊗τ

)(
b2
)= b1τ(b2). (2.14)

In such a way, (TB,ΩB,∂B,〈·,·〉B) becomes an extended Lie B-algebroid.

Theorem 2.1 (cf. [8, Theorem 1.10.1]). Assume that we are given a C-bilinear map-

ping γ : B×T → ΩB such that γ(i(a),τ) = 1⊗γ(a,τ) and that (2.7) holds true for all

τ ∈ T , a∈ B, b ∈A.
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Then there exists a unique extension of γ to a C-bilinear mapping γB : B×TB → ΩB
satisfying (2.7) for all a,b ∈ B, τ ∈ TB ; there exists a unique extension of the pairing

〈·,·〉 : T ×T → A to a pairing 〈·,·〉B : TB×TB → B satisfying (2.8) for all a ∈ B, τi ∈ TB ;
there exists a unique extension of the pairing c : T×T →Ω to a pairing cB : TB×TB →ΩB
satisfying (2.9) for all a∈ B, τi ∈ TB .

The septuple �B = (B,TB,ΩB,∂B,γB,〈·,·〉B,cB) is a vertex B-algebroid.

2.5. Morphisms. Let � = (A,T ,Ω, . . .) and �′ = (A′,T ′,Ω′, . . .) be two vertex alge-

broids. A morphism g : �→�′ is, by definition, a quadruple g = (gA,gT ,gΩ,h), where
(1) gA :A→A′ is a morphism of C-algebras;
(2) gΩ :Ω→Ω′ is a morphism of k-modules such that

gΩ(∂a)= ∂gA(a), gΩ(aω)= gA(a)gΩ(ω); (2.15)

(3) gT : T → T ′ is a morphism of Lie k-algebras such that

gT (aτ)= gA(a)gT (τ), gA
(
τ(a)

)= gT (τ)(gA(a)),
gΩ
(
τ(ω)

)= gT (τ)(gΩ(ω)), gA
(〈τ,ω〉)= 〈gT (τ),gΩ(ω)〉; (2.16)

(4) h : T →Ω′ is a morphism of k-modules such that

h(aτ)= gA(a)h(τ)−γ′
(
gA(a),gT (τ)

)+gΩ(γ(a,τ)); (2.17)

(5)

gA
(〈
τ1,τ2

〉)= 〈gT (τ1),gT (τ2)〉′ +〈gT (τ1),h(τ2)〉+〈gT (τ2),h(τ1)〉; (2.18)

gΩ
(
c
(
τ1,τ2

))= c′(gT (τ1),gT (τ2))+ 1
2
∂
〈
gT
(
τ1
)
,h
(
τ2
)〉− 1

2
∂
〈
gT
(
τ2
)
,h
(
τ1
)〉

−gT
(
τ1
)(
h
(
τ2
))+gT (τ2)(h(τ1))+h([τ1,τ2]), (2.19)

(cf. [8, Theorem 3.5]).

If g′ : �′ →�′′ is another morphism, then the composition g′ ◦g is defined by

g′ ◦g = (g′AgA,g′TgT ,g′ΩgΩ,g′Ωh+h′gT ). (2.20)

The identity morphisms are

Id� =
(
IdA, IdT , IdΩ,0

)
. (2.21)

This way we get a category of vertex algebroids �lg.

2.6. Let V be a Z≥0-graded vertex algebra. Thus, V is a Z≥0-graded vector space

V = ⊕i≥0 Vi equipped with an endomorphism ∂ : V → V of degree 1, a vector 1 ∈ V0
and an infinite set of binary operations (n) : V⊗V → V of degree −n−1 (n∈ Z). These
data must satisfy the axioms listed, for example, in [8, 0.5].

Set A= V0; let Ω ⊂ V1 be the subspace generated by all elements a(−1)∂b (a,b ∈A);
set T = V1/Ω. We choose a splitting

s : T �→ V1 (2.22)
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of the projection V1 → T . Using operations (n), n = −1,0,1, one defines a vertex al-

gebroid �(V) = (A,T ,Ω,∂,γ,〈·,·〉,c). Roughly speaking, the multiplication on A and

the structures of A-modules on T and Ω are induced by (−1), the Lie bracket on T and

the action of T on A and Ω are induced by (0), and the pairing 〈·,·〉 is induced by (1).

For the details, see Section 2.

This algebroid depends on the choice of a splitting s, (2.22), so the notation for

it could be �(V ,s). However, given the second splitting s′, there exists a canonical

isomorphism of vertex algebroids φs,s′ : �(V ,s′) ∼
��������������������������������������������→ �(V ,s). We have φs,s = Id�(V ,s)

and φs,s′ ◦φs′,s′′ =φs,s′′ . This way we get a functor

� : �ert �→�lg (2.23)

from category of Z≥0-graded vertex algebras to the category of vertex algebroids.

This functor admits a left adjoint

U : �lg �→�ert (2.24)

called vertex envelope, see [8, Section 9]. This functor is fully faithful; for each � the

adjunction morphism �→�(U�) is an isomorphism.

2.7. We call a vertex algebroid �= (A,T , . . .) standard if it is perfect and the canon-
ical morphism T → TA =DerC(A,A) is an isomorphism.

We fix an algebra A and consider the subcategory �lgA ⊂ �lg whose objects are

standard algebroids whose underlying commutative algebra is A, and whose mor-

phisms are quadruples g = (gA,gT ,gΩ,h) with gA = IdA. This category is a groupoid,

that is, all morphisms are isomorphisms.

We define a category Ω[2,3〉A whose objects are closed 3-formsω∈Ω3,cl
A , a morphism

betweenω andω′ being a 2-form η∈Ω2
A such that dη=ω′−ω. The composition of

morphisms is given by the addition of 2-forms. The addition of 3-forms makes Ω[2,3〉A
an Abelian group in categories.

If �= (A,T ,Ω,∂,γ,〈·,·〉,c)∈�lgA and ω∈Ω3,cl
A , then

��ω := (A,T ,Ω,∂,γ,〈·,·〉,c+ω) (2.25)

is also an object of �lgA. This way we get an action

� : �lgA×Ω[2,3〉A �→�lgA (2.26)

which makes �lgA an Ω[2,3〉A -torseur. This means that, for each � ∈�lgA the functor

Ω[2,3〉A →�lgA sendingω to ��ω is an equivalence of categories, see [8, Example 7.1].

If TA is a free A-module admitting a base which consists of mutually commuting

vector fields then �lgA is nonempty, see [8, Example 7.1].

A vertex algebra V is called a cdo over A if �(V) ∈ �lgA and the adjunction mor-

phism U�(V)→ V is an isomorphism. Such algebras form a category ���A and the

functor of vertex envelope

U : �lgA �→���A (2.27)

is an equivalence of categories.
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2.8. Let X be a smooth scheme. We call a cdo on X a sheaf of vertex algebras �

over X (in the Zariski topology) such that for every open U ⊂X the algebra Γ(U ;�) is
a cdo over Γ(U ;�X). Such algebras form a groupoid ���X . In a similar manner, one

defines a groupoid �lgX ; the (sheafified versions of) functors � and U determine an

equivalence of categories �lgX
∼
��������������������������������������������→���X .

First we discuss the case of an affine scheme X = Spec(A). Given a vertex algebroid

� ∈�lgA, we may apply the pushout construction 2.4 to all localization morphisms

A→Af and get a sheaf of vertex algebroids�∼ over Spec(A). This gives an equivalence
of categories �lgA

∼
����������→ �lgSpec(A), the inverse equivalence being the functor of global

sections.

Returning to the case of an arbitrary X, we have a sheaf of categories �iffch
X over X

where by definition Γ(U ;�iffch
X )=�lgU =���U . Consider the truncated de Rham com-

plex Ω[2,3〉X :Ω2
X →Ω3,cl

X , with the first sheaf living in degree 0. By a general homological

formalism (cf. [8, 7.3]) we have a canonical characteristic class

c
(

�iffch
X

)
∈H2

(
X;Ω[2,3〉X

)
(2.28)

which is zero if and only if ���X =∅. The set of isomorphism classes π0(���X) is a
torseur under H1(X;Ω[2,3〉X ) and the automorphism group of cdo over X is isomorphic

to H0(X;Ω[2,3〉X ).
To compute the class (2.28), note first that we have an obvious map H2(X;Ω[2,3〉X )→

H2(X;Ω≥2X ) which is easily seen to be an embedding (cf. Subsection 6.1). Here

Ω≥iX =
(
ΩiX �→Ωi+1X �→ ···) (2.29)

with the first sheaf living in degree zero. The collections of spaces {Hi(X;Ω≥iX )} form
a cohomology theory which satisfies the Grothendieck axioms for constructing Chern

classes. Thus, for each vector bundle E on X, its Chern classes ci(E)∈Hi(X;Ω≥iX ) are
defined; its images in Hi(X;ΩiX) are the usual Chern classes “style Hodge.”

Now, the following theorem is one of the main results in [8] (see [8, Section 7]).

Theorem 2.2. The image of c(�iffch
X ) inH2(X;Ω≥2X ) is equal to 2ch2(ΘX) := c1(ΘX)2

−2c2(ΘX), where ΘX denotes the tangent bundle.

3. Chiral differential operators over an algebraic group. Perfect vertex algebroids

over constants.

The discussion below is nothing but the specification of [8, Sections 1, 2, 3, 4] to

the case A= C.
3.1. Let g be a Lie algebra. We need two complexes connected with g, both concen-

trated in nonnegative degrees. The first one, C·(g)= C·(g;C), is the cochain complex

of g with trivial coefficients. Thus, by definition Ci(g) = (Λig)∗ = the space of skew

symmetric polylinear maps f : gi→ C, i≥ 0.

The differential d : Ci−1(g)→ Ci(g) acts as
df
(
τ1, . . . ,τi

)= ∑
1≤p<q≤i

(−1)p+q+1f ([τp,τq],τ1, . . . , τ̂p, . . . , τ̂q, . . . ,τi). (3.1)

The cohomology spaces Hi(C·(g)) is denoted by Hi(g).
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The second complex, C̃·(g), is the shifted by 1 and augmented cochain complex

of g with coefficients in the coadjoint representation g∗. By definition, C̃0(g)= C and

C̃i(g)=Homk(Λi−1g,g∗)= the space of skew symmetric polylinear maps h : gi−1→ g∗

for i≥ 1.

The differential d : C̃0(g)→ C̃1(g) is zero, and d : C̃i(g)→ C̃i+1(g) acts as

dh
(
τ1, . . . ,τi

)= i∑
p=1
(−1)pτp

(
h
(
τ1, . . . , τ̂p, . . . ,τi

))

+
∑

1≤p<q≤i
(−1)p+qh([τp,τq],τ1, . . . , τ̂p, . . . , τ̂q, . . . ,τi)

(3.2)

for i ≥ 1. Define embeddings Ci(g) ↩ C̃i(g) by assigning to f ∈ Ci(g) an element

f̃ ∈ C̃i(g) given by 〈
τ1, f̃

(
τ2, . . . ,τi

)〉= f (τ1, . . . ,τi). (3.3)

We identify Ci(g) with its image in C̃i(g).
One checks that the embeddings (3.3) are compatible with the differentials, so that

one has an embedding of complexes C·(g)↩ C̃·(g).

3.2. We consider the groupoid �lgg of vertex algebroids of the form � =
(C,g,g∗,∂,γ,〈·,·〉,c), where � = (C,T ,Ω,∂) = (C,g,g∗,0) is a perfect extended Lie al-

gebroid over C, see Subsection 2.2, with T = g. Note that the last object is uniquely
defined by the Lie algebra g = T ; we must have Ω = g∗, the “Lie derivative” action of

T on Ω must be the coadjoint one, and a C-linear derivation ∂ : C→Ω must be zero.

Turning to the axioms of a vertex algebroid, Subsection 2.3, we see that for � as

above, 〈·,·〉 : g× g → C is a symmetric bilinear map (which may be regarded as an

element of C̃2(g)), c ∈ C̃3(g), equation (2.7) implies that γ = 0, (2.8) and (2.9) hold true

automatically, (2.10) takes the form〈[
τ1,τ2

]
,τ3

〉+〈τ2,[τ1,τ3]〉= 〈τ2,c(τ1,τ3)〉+〈τ3,c(τ1,τ2)〉, (3.4)

and (2.11) takes the form

dc = 0, (3.5)

where d is the differential in C̃·(g) given by (3.2).

So, an object of �lgg has a form

�g;〈·,·〉,c =
(
C,g,g∗,0,0,〈·,·〉,c), (3.6)

where 〈·,·〉 ∈ C̃2(g)Z/2Z, c ∈ C̃3(g) satisfy (3.4) and (3.5).

The vertex envelope

�g;〈·,·〉,c =U�g;〈·,·〉,c (3.7)

(see [8, Section 9]) is generated by the fields τ(z) (τ ∈ g) and ω(z) (ω ∈ g∗) of
conformal weight 1, subject to operator product expression (OPE)

τ(z)τ′(w)∼ 〈τ,τ′〉
(z−w)2 +

[
τ,τ′

]
(w)−c(τ,τ′)(w)
z−w , (3.8)

τ(z)ω(w)∼ τ(ω)(w)
z−w ; ω(z)ω′(w)∼ 0 (3.9)

(cf. [8, (9.9.1)–(9.9.3)]).
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A morphism

f : �g,〈·,·〉,c �→�g,〈·,·〉′,c′ (3.10)

is by definition an element h∈ C̃2(g) such that

〈
τ1,h

(
τ2
)〉+〈τ2,h(τ1)〉= 〈τ1,τ2〉−〈τ1,τ2〉′, dh= c−c′, (3.11)

see Subsection 2.5. The composition ofmorphisms is induced by the addition in C̃2(g).

3.3. As a corollary, we have a canonical bijection

π0
(

�lgg

)=H3(g). (3.12)

More precisely, for a 3-cocycle c ∈ C3,cl(g) we have a vertex algebroid

�g;c :=�g;0,c , (3.13)

and the correspondence c��g;c induces the bijection (3.12).

The enveloping algebra �g;c := U�g;c is generated by the same fields as in

Subsection 3.2, subject to OPE

τ(z)τ′(w)∼
[
τ,τ′

]
(w)−c(τ,τ′)(w)
z−w , (3.14)

and (3.9).

We define another interesting class of objects of �lgg. Namely, each symmetric ad-

invariant bilinear form (·,·)∈ (S2g∗)g gives rise to an object

�̃g;(·,·) :=�g;(·,·),0. (3.15)

The enveloping algebra �̃g;(·,·) := U �̃g;(·,·) is generated by the same fields as in

Subsection 3.2, subject to OPE

τ(z)τ′(w)∼
(
τ,τ′

)
(z−w)2 +

[
τ,τ′

]
(w)

z−w , (3.16)

and (3.9).

It is easy to see that, we have an isomorphism

f(·,·) : �̃g;(·,·)
∼
��������������������������������������������→�g;c(·,·) (3.17)

given by a map h(·,·) : g→ g∗, where

〈
τ1,h(·,·)

(
τ2
)〉= 1

2

(
τ1,τ2

)
, (3.18)

and the cocycle c(·,·) is defined by

c(·,·)
(
τ1,τ2,τ3

)= ([τ1,τ2],τ3) (3.19)

(cf. [8, Theorem 4.5]).
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3.4. Given (·,·)∈ (S2g∗)g, consider a vertex algebroid

�g;(·,·) :=
(
C,g,g∗,0,0,(·,·),0). (3.20)

Its vertex envelope �g;(·,·) :=U�g;(·,·) is generated by fields τ(z) (τ ∈ g) of conformal

weight 1, subject to OPE (3.16).

The correspondence τ ·Tn� τ(n) defines on �g;(·,·) a structure of the vacuum mod-

ule over the Kac-Moody algebra ĝ = g[T ,T−1]⊕C·1 at level (·,·).
We have an obvious embedding of vertex algebroids �g;(·,·) ↩ �g;0 which induces

an embedding of vertex algebras

�g;(·,·) �̃g;(·,·). (3.21)

Remark 3.1. If the Lie algebra g is semi-simple then the correspondence (·,·) �
c(·,·) induces a bijection (

S2g∗
)g ∼
��������������������������������������������→H3(g). (3.22)

Therefore, in this case the algebroids �̃g;(·,·) form a complete set of representatives

of isomorphism classes in �lgg. In other words,

(1) if g is semi-simple, then the correspondence (·,·)� �̃g;(·,·) induces a bijection

(
S2g∗

)g ∼
��������������������������������������������→π0

(
�lgg

)
(3.23)

passing to a group.

3.5. LetG = Spec(A) be an affine algebraic group, and let g be the corresponding Lie
algebra. The tangent bundle ΘG is trivial, so the obstruction c(�iffch

G ) to the existence
of a cdo over G, �ch

G ∈ Γ(G;�iffch
G ) (cf. [8, Corollary 7.11]) vanishes.

From Section 4, the set of isomorphism classes of cdo’s over G, π0(Γ(G;�iffch
G )) is a

nonempty torseur under the “Chern-Simons group” H3
DR(G)=H3(G;C).

In fact the groupoid Γ(G;�iffch
G ) has a distinguished object �ch

G;0, so that we have a

canonical bijection

π0
(
Γ
(
G;�iffch

G

)) ∼
��������������������������������������������→H3

DR(G). (3.24)

This is a consequence of the following general construction.

3.6. Let �g;〈·,·〉,c be an arbitrary object of �lgg. We apply to it the pushout construc-

tion of Subsection 2.4 with respect to the structure morphism C→ A. Here the mor-

phism g→ T :=DerC(A) is defined as the embedding of left invariant vector fields, and

the map γ :A×g→Ω :=Ω1(A) is set to be zero. This way we get a vertex A-algebroid
�G;〈·,·〉,c . Its enveloping algebra

�ch
G;〈·,·〉,c =U�G;〈·,·〉,c (3.25)

obviously belongs to Γ(G;�iffch
G ).

We have a canonical embedding

�g,〈·,·〉,c �ch
G;〈·,·〉,c . (3.26)
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We use the notation �G;(·,·) :=�G;(·,·),0, �G;c :=�G;0,c , �G;0 :=�G;0,0, and �ch
G;(·,·), etc.

for the corresponding enveloping algebras.

If �G;0 = (A,T ,Ω,dDR,γ0,〈·,·〉0,c0) andω∈Ω3,cl(A) is a closed 3-form, then we can

form a vertex algebroid

�G;ω :=�G;0�ω=
(
A,T ,Ω,dDR,γ0,〈·,·〉0,c0+ω

)
. (3.27)

The correspondence ω��G;ω induces the bijection (3.24).

If c ∈ C3,cl(g) is a 3-cocycle with trivial coefficients, then by definition

�G;c =�G;ωc , (3.28)

where ωc ∈Ω3,cl(A) is the left invariant 3-form on G corresponding to c.

Corollary 3.2. Assume that G is reductive. Then the correspondence c � �G;c
induces a bijection

H3(g) ∼
��������������������������������������������→π0

(
Γ
(
G;�iffch

G

))
. (3.29)

Indeed, one knows that for a reductive group the correspondence c�ωc gives rise
to an isomorphism H3(g) ∼

��������������������������������������������→H3
DR(G).

Corollary 3.3. Assume that G is semi-simple. Then the correspondence (·,·) �
�G;(·,·) induces a bijection

(
S2g∗

)g ∼
��������������������������������������������→π0

(
Γ
(
G;�iffch

G

))
. (3.30)

This follows from Corollary 3.2 and Remark 3.1.

3.7. Note that for an arbitraryG and (·,·)∈ (S2g∗)g one has a canonical embedding

i(·,·) : �g;(·,·) �ch
G;(·,·). (3.31)

It is the composition of (3.21) and (3.26).

4. Dual embedding

4.1. Let G = Spec(A) be a smooth affine connected algebraic group with the Lie

algebra g. Pick a symmetric ad-invariant bilinear form (“level”) (·,·)∈ (S2g∗)g.
Let (·,·)(K) denote the Killing form on g,

(
x,y

)
(K) = trg

(
adx ·ady

)
. (4.1)

We pick a base {τi} of g. In terms of structure constants

[
τi,τj

]= cijp τp, (4.2)

the form (4.1) is given by (
τi,τj

)
(K) = cipq cjqp . (4.3)

We define the dual level (·,·)o ∈ (S2g∗)g by

(·,·)o =−(·,·)(K)−(·,·). (4.4)
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Define the critical level (·,·)crit by (·,·)crit = (·,·)ocrit, that is,

(·,·)crit =−1
2
(·,·)(K). (4.5)

If we want to stress the dependence on g, we write (·,·)g;(K),(·,·)g;crit.
4.2. We have two commuting left actions of G on itself: the left multiplication,

(g,x)� gx and the right one, (g,x)� xg−1.
Let T = Derk(A) denote the Lie A-algebroid of vector fields over G. The above two

actions induce two embeddings of Lie algebras

iL : g T , iR : g T , (4.6)

such that [
iL(x),iR(y)

]= 0 ∀x,y ∈ g. (4.7)

Below we identify g with its image under iL, that is, write simply x instead of iL(x).
We also use the notation xR := iR(x) (x ∈ g).
Embedding iL induces an isomorphism of left A-modules

A⊗k g
∼
��������������������������������������������→ T . (4.8)

Thus, {τi} form an A-base of T . In particular,

τRi = aijτj (4.9)

for some invertible matrix (aij) over A.
The commutation relations [

τi,τRj
]
= 0 (4.10)

are equivalent to the identities

τi
(
ajs

)+cips ajp = 0, (4.11)

true for all i,j,s.
We write down the relations

[
τRi ,τ

R
j

]
= [τi,τj]R (4.12)

in coordinates. We have

[
τRi ,τ

R
j

]
=
[
τRi ,a

jsτs
]
= τRi

(
ajs

)
τs = aipτp

(
ajs

)
τs (4.13)

due to (4.10). Plugging this into (4.12), we get

aipτp
(
ajs

)= cijq aqs ∀i,j,s. (4.14)
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4.3. We set Ω :=Ω1
A/k = HomA(T ,A), and denote by 〈·,·〉 : T ×Ω→A the canonical

A-bilinear pairing. Let {ωi} be the A-base of Ω dual to {τi}. The Lie algebra T acts on

Ω by the Lie derivative.

We have τi(ωj)=αijsωs , where

αijs = 〈τs,τi(ωj)〉= τi(〈τs,ωj〉)−〈[τi,τs],ωj〉=−cisj = csij . (4.15)

Thus,

τi
(
ωj
)= csij ωs. (4.16)

Similarly,

τRi
(
ωj
)= 0. (4.17)

4.4. Recall that we have an embedding of vertex algebras

i(·,·) : �g;(·,·) �ch
G;(·,·), (4.18)

see Subsection 3.7. More precisely, it is induced by an embedding of conformal weight

1 components

jL : g =�g,(·,·)1 �→�ch
G;(·,·)1 = T ⊕Ω (4.19)

defined by a composition

g T T ⊕Ω, (4.20)

where the first arrow is iL and the second one sends x to (x,0).
The fact that jL induces a map of vertex algebras (4.18) simply means that, we have

the identities in �ch
G;(·,·)

jL(τ)(1)jL
(
τ′
)= (τ,τ′); jL(τ)(0)jL(τ′)= jL([τ,τ′]), ∀τ,τ′ ∈ g. (4.21)

Theorem 4.1 (B. Feigin-E. Frenkel, D. Gaitsgory). (i) There exists a unique embedding

jR : g �ch
G;(·,·)1, (4.22)

such that

(a) the composition of (4.22) with the canonical projection �ch
G;(·,·)1→ T is equal to iR ;

(b) for all τ,τ′ ∈ g and n≥ 0

jL(τ)(n)jR
(
τ′
)= 0. (4.23)

(ii) We have

jR(τ)(1)jR
(
τ′
)= (τ,τ′)o, (4.24)

jR(τ)(0)jR
(
τ′
)= jR([τ,τ′]), (4.25)

for each τ,τ′ ∈ g.
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Corollary 4.2 (B. Feigin-E. Frenkel, D. Gaitsgory). The map (4.22) induces an em-

bedding of chiral algebras

jR : �g;(·,·)o �ch
G;(·,·). (4.26)

The images of jL and jR commute in the following sense:

jL(x)(n)jR
(
y
)= 0 (4.27)

for each x ∈�g;(·,·), y ∈�g;(·,·)o , and n≥ 0.

Proof of Theorem 4.1. (i) As usual, we denote jL(τ) simply by τ . We are looking

for jR(τ) in the form

jR
(
τi
)= τRi +biqωq (4.28)

for some biq ∈A. We have, by [8, 1.4(A2)],

τRi(1)τj =
〈
τRi ,τj

〉
= 〈aipτp,τj〉= aip(τp,τj)−τpτj(aip). (4.29)

Using (4.4) and (4.11),

−τpτj
(
aip

)= τp(cjsp ais)=−cpup cjsp aiu = cups cjsp aiu = (τu,τj)(K)aiu, (4.30)

so

τRi(1)τj =−
(
τp,τj

)oaip. (4.31)

On the other hand, (
biqωq

)
(1)τj =

〈
biqωq,τj

〉= bij. (4.32)

Therefore, the condition

jR
(
τi
)
(1)τj = 0 (4.33)

defines the matrix (biq) uniquely, we must have

jR
(
τi
)= τRi +(τp,τq)oaipωq. (4.34)

We prove that

τi(0)jR
(
τj
)= 0. (4.35)

We have

τi(0)jR
(
τj
)= τi(0){τRj +(τs,τu)oajsωu

}
. (4.36)

On one hand,

τi(0)τRj = τi(0)
(
ajqτq

)= τi(0)(ajq(−1)τq
)
= τi

(
ajq

)
(−1)τq+ajq(−1)

[
τi,τq

]= 0, (4.37)

using (4.11). On the other hand,

τi(0)
{(
τs,τu

)oajsωu}
= (τs,τu)oτi(ajsωu)
= (τs,τu)o{τi(ajs)ωu+ajsτi(ωu)}
=−(τs,τp)ociqs ajqωp−(τs,τu)ocipu ajsωp using (4.11) and (4.16)

=−([τi,τq],τp)oajqωp−(τs,[τi,τp])oajsωp = 0

(4.38)

due to the invariance of the form (·,·)o. This proves (4.35).
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Evidently τi(n)jR(τj)= 0 for n≥ 2. This proves part (i) of the theorem.

We compute jR(τi)(1)jR(τj). We have

jR
(
τi
)
(1)jR

(
τj
)= {τRi +(τp,τq)oaipωq

}
(1)

{
τRj +

(
τs,τu

)oajsωu}. (4.39)

This is a sum of four terms,

I := τRi(1)τRj =
〈
aipτp,ajsτs

〉
= aipajs(τp,τs)−aipτsτp(ajs)−ajsτpτs(aip)
−τp

(
ajs

)
τs
(
aip

)
using [8, (1.8.3)〈 ,〉].

(4.40)

Using (4.4) and (4.11) we see that

−aipτsτp
(
ajs

)=−ajsτpτs(aip)= τp(ajs)τs(aip)= (τp,τs)(K)aipajs, (4.41)

whence

I=−(τp,τs)oaipajs. (4.42)

Next,

II := {(τp,τq)oaipωq}(1)τRj = (τp,τq)o〈aipωq,ajsτs〉= (τp,τq)oaipajq. (4.43)

Similarly,

III := τRi(1)
{(
τs,τu

)oajsωu}= II, (4.44)

and evidently

IV := {(τp,τq)oaipωq}(1){(τs,τu)oajsωu}= 0. (4.45)

Adding up, we get

jR
(
τi
)
(1)jR

(
τj
)= (τp,τq)oaipajq. (4.46)

We differentiate this statement. We have

τs
{(
τp,τq

)oaipajq}= (τp,τq)o{τs(aip)ajq+aipτs(ajq)}
= (τp,τq)o{−csup aiuajq−csvqaipajv}
=−([τs,τu],τq)oaiuajq−(τp,[τs,τv])oaipajv
= 0.

(4.47)

Therefore, equation (4.46) is a constant. It may be computed by noticing that the

matrix (aij), considered as a function on the group G, is equal to the identity at the

identity of the group. Hence (4.46) is equal to (τi,τj)o, which proves (4.24).

We compute

jR
(
τi
)
(0)jR

(
τj
)∈�ch

G;(·,·)1 = T ⊕Ω. (4.48)

We have

jR
(
τi
)
(0)jR

(
τj
)= jR(τi)(0){ajqτq+(τs,τu)oajsωu}. (4.49)
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We compute the first summand. Using (4.35), we have

jR
(
τi
)
(0)
(
ajqτq

)= (jR(τi)(0)ajq
)
τq = aipτp

(
ajq

)
τq =

[
τRi ,τ

R
j

]
= [τi,τj]R (4.50)

by (4.14) and (4.17).

On the other hand,

jR
(
τi
)
(0)
{(
τs,τu

)oajsωu}
= τRi(0)

{(
τs,τu

)oajsωu}= (τs,τu)oτRi (ajsωu)
= (τs,τu)oaipτp(ajs)ωu = (τs,τu)ocijq aqsωu by (4.17) and (4.14).

(4.51)

Adding up (4.50) and (4.51) we see that

jR
(
τi
)
(0)jR

(
τj
)= jR([τi,τj]) (4.52)

which proves (4.25) and part (ii) of the theorem.

Proof of Corollary 4.2. The first claim is a reformulation of (4.24) and (4.25).

The second claim is a trivial consequence of (4.23) and two Borcherds’ formulas

x(n)y(−1)z =y(−1)x(n)z+
n∑
j=0

(
n
j

)(
x(j)y

)
(n−1−j)z (n≥ 0), (4.53)

(cf. [8, (0.5.12)]), and

(
x(−1)y

)
(n)z =

∑
j≥0

{
x(−1−j)y(n+j)z+y(−n−1−j)x(j)z

}
(4.54)

(cf. [8, (0.5.4)]).

5. BRST

5.1. Recall the definition of the BRST reduction due to Feigin (see [4]); the definition

in the language of vertex algebras was given in [3, Section 4] see also [6, Appendix A];

for a more modern treatment see [1, 3.7], [2, 7.13].

Let a be a finite-dimensional Lie algebra. Choose a base {ai} in a; denote the struc-
ture constants [

ai,aj
]= cijp ap. (5.1)

Recall that the Killing form (·,·)(K) : a×a → C is given by

(
ai,aj

)
(K) = cipq cjqp . (5.2)

LetΠa be the space a with the reversed parity; denote by {φi =Πai} the corresponding
base and by {φ∗j } the dual base of Πa∗ given by

〈
φi,φ∗j

〉
= δij. (5.3)

Let CBRST(La) denote a graded vertex superalgebra generated by odd fields φi(z) of
conformal dimension 1 and odd fields φ∗i (z) of conformal dimension 0 with OPE

φi(z)φ∗j (w)∼
δij
z−w . (5.4)
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We identify the spaces Πa and Πa∗ with their obvious images in CBRST(La)1 and

CBRST(La)0, respectively.
We introduce an odd element Da ∈ CBRST(La) of conformal dimension 1 by

Da =−1
2
cijp φpφ∗i φ

∗
j . (5.5)

Thus, we have the corresponding field Da(z)=
∑
Da;nz−n−1 and we set

da :=Da;0. (5.6)

The pair (CBRST(La),da)may be regarded as a chiral analogue of the Chevalley cochain

complex C(a). However, in the chiral case the square d2a may be nonzero. It is easy to

compute it. Namely, we write down the OPEDa(z)Da(w) using Wick theorem. We have

Da(z)Da(w)∼
(
ai,aj

)
(K)φ

∗
i (z)φ

∗
j (w)

(z−w)2 . (5.7)

Therefore,

d2a =
(
ai,aj

)
(K)

∫
φ∗i (w)

′φj(w). (5.8)

Corollary 5.1. If the Lie algebra a is nilpotent then d2a = 0.

Indeed, the Killing form of a nilpotent Lie algebra is zero.

5.2. Let (·,·) : a×a → C be an arbitrary symmetric invariant bilinear form (“level”).

Recall that the vertex algebra �a;(·,·) is generated by even fields ai(z) of conformal

weight 1, subject to OPE

ai(z)aj(w)∼
(
ai,aj

)
(z−w)2 +

[
ai,aj

]
(w)

z−w . (5.9)

Lemma 5.2. The rule

ai � �→ cipq φqφ∗p (5.10)

defines an embedding of vertex algebras

�a;(·,·)a;(K) CBRST
(
La
)
. (5.11)

5.3. Let � be a vertex module over �a;−(·,·)a;(K) . We introduce a space

CBRST
(
La;�

)
:= CBRST

(
La
)⊗�. (5.12)

According to Lemma 5.2, this space is canonically a graded (by conformal weight)

�a;0-supermodule. This space is also graded by “fermionic charge”

CBRST
(
La;�

)=⊕p∈Z CpBRST(La;�
)
, (5.13)

where we assign to φi (respectively, φ∗i ,m∈�) the charge −1 (respectively, 1,0).
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Introduce an odd element Da;� ∈ CBRST(La;�) of conformal weight 1 and fermionic

charge 1 by

Da;� =φ∗i ⊗ai+Da⊗1. (5.14)

It follows from (5.7) that

Da;�(z)Da;�(w)∼ 0. (5.15)

Therefore, setting

da;� :=
∫
Da;�(z), (5.16)

we get a differential

d2a;� = 0. (5.17)

By definition d increases the fermionic charge by 1.

The pair (CBRST(La;�),da;�) is called the BRST complex of La with coefficients in

�, and its cohomology H∗BRST(La;�) is called the BRST cohomology.

Example 5.3. Let N be a unipotent algebraic group with the Lie algebra n. Consider
a �n;0-module �ch

N ;0 (note that according to Subsection 3.5 this algebra represents a

unique isomorphism class of cdo’s over N). Inside the loop algebra Ln = n[T ,T−1],
consider two Lie subalgebras: n− and n+, generated by all elements τTn (τ ∈ n) with
n< 0 and n≥ 0, respectively. Then �ch

N ;0 is a free n−-module and a cofree (i.e., the dual

module is free) n+-module.

It follows that

HiBRST
(
Ln;�ch

N ;0

)
= 0 (i≠ 0); H0

BRST

(
Ln;�ch

N ;0

)
= C, (5.18)

(cf. [6, page 178]).

6. Homogeneous spaces

6.1. Let X be a smooth variety. We have an exact triangle

Ω[2,3〉X �→Ω[2X �→ C, (6.1)

where

Ω[2X : 0 �→Ω2
X �→Ω3

X �→ ··· (6.2)

(Ω2
X sitting in degree 0) and

C : 0 �→ Ω4
X

dΩ3
X
�→Ω5

X �→ ··· (6.3)

(Ω4
X/dΩ

3
X sitting in degree 2). The following remark follows.

Remark 6.1 (due to H. Esnault). The canonical map

Hi
(
X;Ω[2,3〉X

)
�→Hi

(
X;Ω[2X

)
(6.4)

is injective for i= 2 and bijective for i= 0,1.
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6.2. Let G be a simple algebraic group. In this section, we discuss the chiral differ-

ential operators on homogeneous spaces, G/G′ where G′ =N—a unipotent subgroup,

G′ = P—a parabolic but not minimal parabolic, or G′ = B—a Borel subgroup.

The case G/N

6.3. Consider the projection π :G→ X :=G/N . The variety X is quasiaffine, there-

fore we have

Hi
(
X;Ω[2X

)
=HiΓ

(
X;Ω[2X

)
=Hi+2DR (X) (i≥ 1). (6.5)

On the other hand,

H∗DR(X)=H∗(X;C) (6.6)

by Grothendieck’s theorem, (cf. [9, Theorem 1′]).
The projection π is an affine morphism which is a Zariski locally trivial bundle with

fiber N isomorphic to an affine space, so π∗ :H∗(X;C) ∼
��������������������������������������������→H∗(G;C). It follows that

π∗ :Hi
(
X;Ω[2X

) ∼
��������������������������������������������→Hi

(
G;Ω[2G

)
(i≥ 1). (6.7)

We have a short exact sequence

0 �→ΘG/X �→ΘG �→π∗ΘX �→ 0, (6.8)

and the vector bundles ΘG,ΘG/X are trivial (a base of global sections of ΘG/X is given

by left invariant vector fields coming from the Lie algebra n := Lie(N)).
Therefore, we have

π∗c
(

�iffch
X

)
=π∗ ch2

(
ΘX
)= ch2

(
ΘG
)= 0, (6.9)

hence

c
(

�iffch
X

)
= 0 (6.10)

by Remark 6.1.

Therefore, we have the following corollary.

Corollary 6.2. The groupoid Γ(X;�iffch
X ) is nonempty. The set of isomorphism

classes π0(Γ(X,�iffch
X )) is a torseur under H3

DR(X)=H3
DR(G).

6.4. Let �ch
G;(·,·) be the sheaf of chiral differential operators onG of level (·,·), where

(·,·) : g×g �→ C (6.11)

is a fixed symmetric invariant bilinear form on g = Lie(G), see Subsection 3.6. The

form (6.11) is a scalar multiple of the Killing form

(·,·)= c(·,·)g;(K), c ∈ C. (6.12)

The Killing form on g restricts to zero on n (since the trace of a nilpotent endomor-

phism is zero). Therefore, we have the canonical embedding of vertex algebras

�n;0 �G;(·,·) �ch
G;(·,·), (6.13)

so that the sheaf �ch
G;(·,·) becomes a sheaf of �n;0-modules.
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Applying the BRST construction, see Subsection 5.3, to � = π∗�ch
G;(·,·) and a = n,

we get a sheaf of BRST complexes CBRST(Ln;π∗�ch
G;(·,·)) and BRST cohomology sheaves

H∗BRST(Ln;π∗�ch
G;(·,·)) over X. They are sheaves of Z≥0-graded vertex superalgebras.

Theorem 6.3. We have

HiBRST
(
Ln;π∗�ch

G;(·,·)
)
= 0 (i≠ 0). (6.14)

The sheaf H0
BRST(Ln;π∗�ch

G;(·,·)) is an algebra of chiral differential operators over X.
The correspondence

�ch
G;(·,·) � �→H0

BRST

(
Ln;π∗�ch

G;(·,·)
)

(6.15)

induces a bijection of the sets of isomorphism classes

π0
(
Γ
(
G;�iffch

G

)) ∼
��������������������������������������������→π0

(
Γ
(
X;�iffch

X

))
. (6.16)

We use the notation �ch
X;(·,·) for the cdo H

0
BRST(Ln;π∗�ch

G;(·,·)).
Note that higher direct images Riπ∗�ch

G;(·,·) are trivial for i > 0 since the morphism

π is affine and the sheaves �ch
G;(·,·) admit a filtration whose quotients are coherent (in

fact, locally free) �G-modules.

Proof (sketch). Locally on X the projection π :G→X is isomorphic to the direct

product U ×N → U . If � is an algebra of chiral differential operators on U ×N then

�
∼
��������������������������������������������→�U ��N , where �U (respectively, �N ) is an algebra of differential operators on

U (respectively, N). Now the first claim of the theorem follows from (5.18).

The second claim is Corollary 6.2.

Corollary 6.4. The dual embedding

jR : �G;(·,·)o �→�ch
G;(·,·) (6.17)

defined in Corollary 4.2 induces a canonical morphism of vertex algebras

io(·,·) : �G;(·,·)o �→�ch
X;(·,·). (6.18)

Indeed, we know that (6.17) commutes with the left action of ĝ hence with the BRST
differential.

In particular, the Kac-Moody algebra ĝ at level (·,·)o acts canonically on Wakimoto

modules which may be defined as the spaces of sections Γ(U ;�ch
X,(·,·)), where U is a

big cell. This is a result due to Feigin-Frenkel obtained in [5, 6, 7] in a different way.

The case G/B

6.5. Let B ⊂G be a Borel subgroup,π :G→X :=G/B. Then X is a smooth projective

variety and we have

Hp
(
X;ΩqX

)= 0 (p ≠ q), (6.19)

Hi
(
X;ΩiX

)=H2i(X;C). (6.20)
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It follows that H2(X;Ω[2) = H4(X;C), and Theorem 7.5 in [8] says that the image of

c(�iffch
X ) in H4(X;C) is equal to

2ch2
(
ΘX
)
:= c21

(
ΘX
)−c2(ΘX), (6.21)

where ci(ΘX)∈H2i(X;C) are the Chern classes of the tangent bundle ΘX .

Lemma 6.5. We have

ch2
(
ΘX
)= 0. (6.22)

Proof. The space H2(X;C) may be identified with the complexification of the

root lattice of G. The classical theorem by J. Leray says that the cohomology alge-

bra H∗(X;C) is equal to the quotient of the symmetric algebra of the space H2(X;C)
modulo the ideal generated by the subspace of invariants of the Weyl groupW having

positive degree (cf. [10, Théoreme 2.1b]).

The class [ΘX] in the Grothendieck group of vector bundles is equal to the sum∑
[�α], where α runs through all negative roots, and �α is the line bundle with

c1(�α) = α. Hence ch2(ΘX) =
∑
α2; this element is invariant under the action of W ,

therefore its image in H4(X;C) is zero.

This lemma implies that

c
(

�iffch
X

)
= 0 (6.23)

by Remark 6.1. On the other hand, it follows from Remark 6.1 and (6.19) that

Hi
(
X;Ω[2,3〉X

)
= 0 (i= 0,1). (6.24)

Thus, by [8], we get the following theorem.

Theorem 6.6. The groupoid Γ(X;�iffch
X ) is nonempty and trivial. In other words,

there exists a unique, up to a unique isomorphism, algebra of chiral differential oper-

ators �ch
X over X.

6.6. We construct the algebra �ch
X using the BRST reduction. Consider the sheaf

�ch
G;(·,·) as in Subsection 6.4. Let (·,·)b denote the restriction of (·,·) to b := Lie(B).
We have a canonical embedding of vertex algebras

�b;(·,·)b �ch
G;(·,·), (·,·)g;(K)|b×b = 2(·,·)b;(K). (6.25)

Therefore, to get the minus Killing on b we have to start from −(·,·)g,(K)/2, that is,
from the critical level on g. Thus, by construction 5.3, we have the following.

6.6.1. The BRST complexCBRST(Lb;π∗�ch
G;(·,·)) is defined if and only if (·,·)=(·,·)g;crit,

that is, on the critical level, see (4.5).

We denote the algebra �ch
G;(·,·)g;crit by �ch

G;crit.

6.7. Let �b;crit denote the vacuum module on the critical level �b;(·,·)b;crit . Let � be a

vertex algebra equipped with a morphism of vertex algebras �b;crit→�.

We have a decomposition

b= h⊕n, (6.26)
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where n ⊂ b (respectively, h ⊂ b) is the maximal nilpotent (respectively, the Cartan)

subalgebra; n is spanned by elements eα, α being a positive root. We define a vertex

subalgebra

CBRST(Lb,h;�)⊂ CBRST(Lb;�). (6.27)

The vector space CBRST(Lb;�) is spanned by all the monomials

h1;i1 ·····h∗1;j1 ·····eα1;k1 ·····e∗α′1;l1 ····⊗mµ, (6.28)

where the indices ip,jp,kp,lp denote the conformal weight, ip,kp ≥ 1; jp,lp ≥ 0,

mµ ∈� is a vector of weight µ ∈ h∗.
By definition, the subspace CBRST(Lb,h;�) is spanned by all monomials (6.28) such

that

(a) all jp ≥ 1;

(b)
∑
αp−

∑
α′q+µ = 0.

It is a vertex subalgebra. One checks that the BRST differential d in CBRST(Lb;�)
preserves CBRST(Lb,h;�).
We define the relative BRST cohomology H∗BRST (Lb,h;�) as the cohomology of

CBRST(Lb,h;�) with respect to this differential. It is canonically a vertex algebra.

6.8. Applying the previous definition to � =π∗�ch
G;crit, we get the BRST cohomology

sheaves H∗BRST(Lb,h;π∗�ch
G;crit) on X.

Theorem 6.7. We have

HiBRST
(
Lb,h;π∗�ch

G;crit

)
= 0 (i≠ 0), (6.29)

and the sheaf of vertex algebrasH0
BRST(Lb,h;π∗�ch

G;crit) is canonically isomorphic to �ch
X .

The proof is the same as that of Theorem 6.3.

Corollary 6.8. We have a canonical isomorphism of vertex algebras

H∗
(
X;�ch

X

)
=H∗BRST

(
Lb,h;Γ

(
G;�ch

G;crit

))
. (6.30)

Indeed, as we have already remarked, sheaves of cdo �ch
G on G have a filtration

whose graded quotients are vector bundles; but the variety G and the morphism π
are affine, hence Hi(G;�ch

G )= Riπ∗�ch
G = 0 for i > 0.

Corollary 6.9. The dual embedding

jR : �G;crit �→�ch
G;crit (6.31)

defined in Corollary 4.2 induces a canonical morphism of vertex algebras

icrit : �G;crit �→�ch
X . (6.32)

Indeed, we know that (6.31) commutes with the left action of ĝ hence with the BRST
differential.
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In particular, the Kac-Moody algebra ĝ on the critical level acts canonically on

Wakimoto modules which may be defined as the spaces of sections Γ(U ;�ch
X ), where

U is a big cell. This is a result of Feigin-Frenkel proved in [5, 6, 7] in a different way.

The case G/P

6.9. Let P ⊂ G be a parabolic but not Borel, p = Lie(P), π : G → X := G/P . The
discussion in Subsection 6.5 applies as it is, except for Lemma 6.5, which is replaced

by the following lemma.

Lemma 6.10. We have

ch2
(
ΘX
)
≠ 0. (6.33)

Hence c(�iffch
X )≠ 0, and we get the following theorem.

Theorem 6.11. The groupoid Γ(X;�iffch
X ) is empty. In other words, there is no cdo

over X.

6.10. We see how this fact is reflected in the BRSTworld.Wewould like to get a sheaf

of cdo over X as the BRST cohomology of Lp with coefficients in some sheaf π∗�ch
G;(·,·).

However, no form (·,·) on G restricts to the Killing form on p, which implies that the

square of the BRST differential in CBRST(Lp;π∗�ch
G;((·,·)) is always nonzero. Thus, the

BRST cohomology is not defined, which is compatible with Theorem 6.11.
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