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1. Introduction. The notion of an algebra of chiral differential operators (cdo for
short) over a smooth algebraic variety X has been studied in [8]. (This notion has
been invented and first studied, in a different language, by Beilinson and Drinfeld,
[1, Chapter 3, Section 8].) In the present paper, we consider some examples in more
details. We will work over the ground field C.

We give a classification of cdo over X in the following cases: X = G is an affine
algebraic group; X = G/N or G/P, where N is a unipotent subgroup and P is a para-
bolic subgroup and G is simple (the extension to the case of a semi-simple G being
straightforward).

Before we describe the result, we explain some terminologies and notations. For a
smooth algebraic variety X, an algebra of cdo over X is by definition a Zariski sheaf
V of Z-¢-graded vertex algebras on X such that

(@) if Alg(V) = (A,7,Q,0,y,(-,-),c) is the sheaf of vertex algebroids associated with
v (see [8, Section 2]), then the corresponding extended Lie algebroid (#4,J,Q,0) (see
(2.1)) is identified with (@X,G)X,Q}(,dDR), where ©x denotes the tangent bundle and
dpr the de Rham differential;

(b) the adjunction morphism U #1g (") — % is an isomorphism. Here U is the functor
of vertex envelope defined in [8, Section 9]

For more details see Section 2.

For each Zariski open U C X, we can consider the category (a groupoid in fact) of
cdo over U, or, what is the same, the groupoid of vertex algebroids (defined in [8,
Section 3]) over U satisfying (a) above. When U varies, we get a sheaf of groupoids
Qbiff%h over X—the gerbe of chiral differential operators. As usual, I'(U ;Qbiffg(h) denote
the sections over U; a generic object of this category is sometimes denoted by ¢,
the set of isomorphism classes of cdo over U is denoted by 11y (I'(U ;Qbiff%h)).

Let G be an affine connected algebraic group, and let g be the corresponding Lie
algebra. For each symmetric ad-invariant bilinear form (-,-) € (52g*)% we construct
a cdo QZJE;}}(_,_) over G such that if G is semi-simple, then the correspondence (-,-) —
P, ..., gives rise to a bijection
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(52g*)* — 1o (T (G, Diff ) ). (1.1)
We have a canonical embedding of vertex algebras
i V() = DR, (1.2)

where V..., denotes the vacuum module of the Kac-Moody algebra § at level (-,-).
This embedding is induced by the embedding of g into T :=T'(G;0¢) as left invariant
vector fields.

Let (-, )g;(x) denote the Killing form on g. We define the dual level by

(',')0=—(',')g;(1<)—(',')- (1.3)

Using the embedding g — T by means of right invariant vector fields, one can con-
struct a canonical dual embedding of vertex algebras

i0 )i Vg0 = IR . (1.4)

It is characterised by the requirement that the images of i.,.) and i‘(’,’_) commute in an
appropriate sense (see Theorem 4.1 and Corollary 4.2). This beautiful fact was com-
municated to us by B. Feigin, E. Frenkel, and D. Gaitsgory. We give a proof using the
language of [8].

We pass to homogeneous spaces. Assume that G is simple. Let N C G be a unipotent
group. The classification of cdo over G/N is the same as over G; namely, for each level
(-,-) one can define a cdo ng}N;(_'_) such that the correspondence (-,-) — CGh/N;(_',)
induces a bijection

(S%g*)* = (r(%;gbiffg}N)). (1.5)

The sheaves EDCG}‘/ Ni(-,.y are constructed using the BRST (or quantum Hamiltonian) re-
duction of the corresponding cdo’s on G. More precisely,

DBy = HQRST(Ln;n*QDCG};’(_,_O, (1.6)

where the right-hand side denotes the BRST cohomology of the loop algebra Ln :=
n[T,T~!], n:=Lie(N). For the precise definition see Section 5.

Let B C G be a Borel subgroup. We show that there exists a unique, up to a unique
isomorphism, cdo Eb&h/B on the flag space G/B. Again this cdo may be constructed
using the BRST reduction. Namely,

DG)p = Hirst (LE’ ; "*@CGl;lan- (L.7)

Here % is, by definition, the cdo @, ) . on the criticallevel (-, -)crit=— (-, - )gk) /2-
For the definition of the relative BRST cohomology in the right-hand side, we again
refer the reader to the main body of the paper, see Section 6. (A more explicit con-
struction of the sheaf QDCG}} g for G = SL(n), using vertex operators, has been suggested
in[11, 5.9, 5.10].)
The embeddings (1.4) induce canonical morphisms of vertex algebras
Va0 — DN Vaitan — DE)p- (1.8)

.
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Taking the spaces of sections over a big cell, we get another construction of Feigin-
Frenkel Wakimoto modules (cf. [5, 6, 7]).

Finally, if P C G is parabolic but not Borel, we show that I'(G /P;QZJiffCGh/ p) is empty.
The classification of cdo over homogeneous spaces is exactly reflected in the BRST
world, namely, the square of the corresponding BRST charge is zero at all levels for
G/N, only at the critical level for G/B and is never zero for G/P.

This introduction would not be complete without mentioning that this paper relies
heavily on the ideas of B. Feigin and E. Frenkel. This paper started from our attempts to
find a proof of Theorem 4.1 and Corollary 4.2. Our sincere gratitude goes to D. Gaits-
gory who had communicated these facts to us and told us that he had known their
proofs. We are also grateful to H. Esnault for a crucial Remark 6.1.

2. Preliminaries on cdo. In this section, we recall the necessary definitions and
theorems from [8]; for all the details the reader is referred to the references therein.

2.1. Let A be a commutative C-algebra. We denote by T4 the Lie algebra of C-
derivations Derc (A, A); it is also canonically a left A-module. Let Q4 denote the A-
module of Kahler differentials Q}, ;c = Homa(T4,A) and d : A — Q4 the de Rham dif-
ferential. The Lie algebra T4 acts canonically on Q4 and d commutes with the action of
T4. We have the tautological A-bilinear pairing (-, ) : Ta XQ4 — A, and all these struc-
tures satisfy the standard identities if differential geometry, cf. [8, (0.1.3)-(0.1.6)] and
(2.2), (2.3), (2.4), and (2.5) below.

A Lie A-algebroid is a Lie algebra T acting by derivations on A and equipped with a
structure of a left A-module, such that

[T,av]=alT,v]+T(a)v, (at)(b) =at(b) 2.1)

for all T,v € T; a,b € A. For example, T, is a Lie A-algebroid.

2.2. An extended Lie algebroid is a quintuple 7 = (A, T,Q,0,(-,-)), where A is as
above, T is a Lie A-algebroid, Q is an A-module equipped with a structure of a module
over the Lie algebra T, 0 : A — Q is an A-derivation and a morphism of T-modules,
(+,-): TxQ — Ais an A-bilinear pairing.

These data must satisfy the following properties (a € A, T,v €T, w € Q):

(t,0a) =T(a), (2.2)

T(aw) =T(a)w +aTt(w), (2.3)
(at)(w) =at(w) +{T,w)oa, (2.4)
T({(v,w)) = ([T,v],w0) + (v, T(w)). (2.5)

We also say that 7 = (A, T,...) is an extended Lie A-algebroid.

We say that J is perfect if the pairing (-,-) induces an isomorphism Q —
Hom,(T,A). Given a Lie A-algebroid T, we may set Q := Homy(T,A), define 0 by
(2.2) and the T-action on Q by (2.5); this way we get a perfect extended Lie algebroid.

2.3. Avertex algebroid is a septuple o = (A, T,9Q,0,y,(-,-),c), where A is as above,
T is a Lie A-algebroid, Q is an A-module equipped with an action of the Lie algebra
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T,0:A — Qis a derivation commuting with the T-action,
(,): (ToQ)x(TeQ) — A (2.6)

is a symmetric C-bilinear pairing equal to zero on Q x Q and such that J, =
(A, T,Q,0,(-,-)rxq) is an extended Lie A-algebroid; c: T x T — Q is a skew symmetric
C-bilinear pairing and y : AX T — Q is a C-bilinear map.

The following axioms must hold (a,b € A; T,7; € T):

y(a,bt)=y(ab,T)—ay(b,t)—-T1(a)ob—T1(b)oa, (2.7)
(aT1,T2) = a{t1,T2) +{y(a,T1),T2) —T1T2(a), (2.8)

c(at,T2) =ac(t1,12) +y(a,[11,72]) —y(T2(a), T1) + T2 (¥ (a,T1))

(2.9)
—%(Tl,T2)8a+ %BTsz(a) - %a(n,y(a,n)),

([T, T2], T3) + {12, [T1,T3]) = T1 ({T2,T3)) — %T2(<T1,T3>) - %1'3((71!"'2)) (2.10)

+(T2,¢(T1,7T3)) +(T3,¢(T1,T2)),

dijec(T1,72,T3) = —%a{qu,Tz],Ts) +([T1, 73], 12) = ([T2, 73], 11) 211)

—T1({T2,73)) + T2({T1,73)) —2(T3,C(T1,T2)>},
where

driec(T1,T2,T3) = —c([T1,T2],13) +c([T1, T3], T2) —c([T2, T3], T1)

+T1(c(12,73)) = T2(c(T1,73)) + T3(c(T1,T2))- (2.12)

We call o perfect if the corresponding extended Lie algebroid 7 is perfect.

2.4. Pushout. Let o = (A, T,Q,...) be a vertex A-algebroid. Let B be a commutative
A-algebra, and let i : A — B be the structure morphism. Set Qg :=B®,Q, Tg:=B®T.
The A-derivation 0 : A — Q induces a B-derivation 0p : B — Qp. The A-bilinear pairing
(-,-): TxQ — A uniquely extends to a B-bilinear pairing (-,-)p: Tg X Qp — B.

Assume that the Lie algebra T acts on B by derivations in such a way that T(i(a)) =
i(t(a)) and (at)(b) =at(b) (a€ A, b€ B, T € T). Then Ty acquires a canonical
structure of a Lie B-algebroid. Namely, the Lie bracket on Tp is given by

[bl ®T1,b2 ®T2] = blbz ® [Tl,Tz] +T1 (bz)bl RTr—T2 (bl)bz ®Ty, (2.13)
and the action of T on B is defined by
(b1®T)(b2) = b17(b2). (2.14)

In such a way, (Tg,Q3,03,(-, )p) becomes an extended Lie B-algebroid.

THEOREM 2.1 (cf. [8, Theorem 1.10.1]). Assume that we are given a C-bilinear map-
pingy : BXT — Qg such that y(i(a),T) = 1®y(a,T) and that (2.7) holds true for all
TeT,aeB, beA.
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Then there exists a unique extension of y to a C-bilinear mapping yp : Bx Tg — Qp
satisfying (2.7) for all a,b € B, T € Tg; there exists a unique extension of the pairing
(+,): TXT — A to a pairing {-,-)p : Tg X Tg — B satisfying (2.8) for all a € B, T; € Tg;
there exists a unique extension of the pairing c : T X T — Q to a pairing cg : Tg X Tg — Qp
satisfying (2.9) for all a € B, T; € Tp.

The septuple g = (B, Tg,Qp,08,Ys,{",)B,C) IS a vertex B-algebroid.

2.5. Morphisms. Let 4 = (A, T,Q,...) and 4’ = (A’,T',Q',...) be two vertex alge-
broids. A morphism g : 4 — o' is, by definition, a quadruple g = (ga,dr,9da,h), where

(1) ga: A — A’ is a morphism of C-algebras;

(2) go : Q — Q' is a morphism of k-modules such that

ga(0a) =dga(a), galaw)=gala)ga(w); (2.15)
(3)gr: T — T’ is a morphism of Lie k-algebras such that

gr(at) =ga(a)gr(t), ga(t(a)) =gr(1)(gala)),

ga(T(w)) =gr(1)(go(w)),  gal{T,w)) = (gr(1),g0(w)); (=10
(4) h: T — Q' is a morphism of k-modules such that
h(at) = ga(@h(t) -y (ga(a),gr (1)) + ga(y(a,1)); (2.17)
(5)
9a((11,12)) = (gr(11),91(12)) + (gr(T1), h(T2)) + (g1 (T2), h(T1)); (2.18)
gale(ri,m2)) =€ (gr(r1),9r(r2)) + 52(gr(n), h(r2)) = 3lgr(r) hm)) ) |

2
—gr(11) (h(T12)) +gr(72) (h(T1)) + h([T1,T2]),
(cf. [8, Theorem 3.5]).
If g’ :d" — A" is another morphism, then the composition g’ o g is defined by
9’29 = (9494,97971,9090,90h + W' gr). (2.20)
The identity morphisms are
Idy = (1da,Idr,Idg,0). (2.21)

This way we get a category of vertex algebroids {1g.

2.6. Let V be a Z.p-graded vertex algebra. Thus, V is a Z.¢-graded vector space
V = @0 V; equipped with an endomorphism 0 :V — V of degree 1, a vector 1 € Vj
and an infinite set of binary operations ;) : V®V — V of degree —n—1 (n € Z). These
data must satisfy the axioms listed, for example, in [8, 0.5].

Set A = Vp; let Q C V; be the subspace generated by all elements a(-1)0b (a,b € A);
set T = V1 /Q. We choose a splitting

s:T—V; (2.22)
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of the projection V; — T. Using operations ), n = —1,0,1, one defines a vertex al-
gebroid 4 (V) = (A,T,Q,0,Yy,(-,-),c). Roughly speaking, the multiplication on A and
the structures of A-modules on T and Q are induced by (1), the Lie bracket on T and
the action of T on A and Q are induced by (), and the pairing (-, -) is induced by ().
For the details, see Section 2.

This algebroid depends on the choice of a splitting s, (2.22), so the notation for
it could be #(V,s). However, given the second splitting s’, there exists a canonical
isomorphism of vertex algebroids ¢y ¢ : A(V,s") — A (V,s). We have ¢ = Idyv.s
and ¢ 0Py o = ¢y . This way we get a functor

A:Vert — Alg (2.23)

from category of Z.(-graded vertex algebras to the category of vertex algebroids.
This functor admits a left adjoint

U:dAlg — Vert (2.24)

called vertex envelope, see [8, Section 9]. This functor is fully faithful; for each « the
adjunction morphism o — #(Us) is an isomorphism.

2.7. We call a vertex algebroid « = (A, T,...) standard if it is perfect and the canon-
ical morphism T — T4 = Derc(A, A) is an isomorphism.

We fix an algebra A and consider the subcategory dlg, C «lg whose objects are
standard algebroids whose underlying commutative algebra is A, and whose mor-
phisms are quadruples g = (ga,dr,9ga,h) with g5, = Id4. This category is a groupoid,
that is, all morphisms are isomorphisms.

We define a category 91[42’3) whose objects are closed 3-forms w Qi’d, a morphism
between w and w’ being a 2-form n € Qi such that dn = w’ — w. The composition of
morphisms is given by the addition of 2-forms. The addition of 3-forms makes Qf‘”
an Abelian group in categories.

If d = (A, T,Q,0,y,{-,-),c) €Alg, and w € Qi’\’d, then

A+w:=(AT,Q,0,y,{-,),c+w) (2.25)
is also an object of «lg,. This way we get an action

+sllg, xQ2Y — s1g, (2.26)

which makes «lg, an QE‘”-torseur. This means that, for each « € slg, the functor

Qf’” — dAlg 4 sending w to o + w is an equivalence of categories, see [8, Example 7.1].

If T4 is a free A-module admitting a base which consists of mutually commuting
vector fields then $lg, is nonempty, see [8, Example 7.1].

A vertex algebra V is called a cdo over A if (V) € dlg, and the adjunction mor-
phism U« (V) — V is an isomorphism. Such algebras form a category %0, and the
functor of vertex envelope

U:dAlg, — 60, (2.27)

is an equivalence of categories.
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2.8. Let X be a smooth scheme. We call a cdo on X a sheaf of vertex algebras s
over X (in the Zariski topology) such that for every open U C X the algebra I'(U; ) is
a cdo over I'(U;0x). Such algebras form a groupoid é%0y. In a similar manner, one
defines a groupoid «dlgy; the (sheafified versions of) functors «f and U determine an
equivalence of categories #lgy — €%0y.

First we discuss the case of an affine scheme X = Spec(A). Given a vertex algebroid
A € Alg 4, we may apply the pushout construction 2.4 to all localization morphisms
A — Ay and get a sheaf of vertex algebroids s¢~ over Spec(A). This gives an equivalence
of categories sllg, — Algspec(a), the inverse equivalence being the functor of global
sections.

Returning to the case of an arbitrary X, we have a sheaf of categories Qbiff}h over X
where by definition T'(U ;Ebiffg(h) = Algy = €P0y. Consider the truncated de Rham com-
plex QE(ZS) (0% — Q?gd, with the first sheaf living in degree 0. By a general homological
formalism (cf. [8, 7.3]) we have a canonical characteristic class

c(iff) e H2(X; Q%) (2.28)

which is zero if and only if €%0x = . The set of isomorphism classes 1y (€%0x) is a
torseur under H! (X; QEE’”) and the automorphism group of cdo over X is isomorphic
to HO(X; Q).

To compute the class (2.28), note first that we have an obvious map H? (X ;QE(Z’”) —
H?(X;Q%?) which is easily seen to be an embedding (cf. Subsection 6.1). Here

Qi = (QL — Qirt — ...) (2.29)

with the first sheaf living in degree zero. The collections of spaces {H!(X;Q3')} form
a cohomology theory which satisfies the Grothendieck axioms for constructing Chern
classes. Thus, for each vector bundle E on X, its Chern classes c; (E) € H'(X; Q;i) are
defined; its images in H' (X ;Q}'() are the usual Chern classes “style Hodge.”

Now, the following theorem is one of the main results in [8] (see [8, Section 7]).

THEOREM 2.2. The image of ¢(Biff$) in H?(X;Q3°) is equal to 2 chy (Ox) := ¢1 (Ox)?
—2c2(0x), where Ox denotes the tangent bundle.

3. Chiral differential operators over an algebraic group. Perfect vertex algebroids
over constants.

The discussion below is nothing but the specification of [8, Sections 1, 2, 3, 4] to
the case A =C.

3.1. Let g be a Lie algebra. We need two complexes connected with g, both concen-
trated in nonnegative degrees. The first one, C' (g) = C'(g;C), is the cochain complex
of g with trivial coefficients. Thus, by definition Ci(g) = (Alg)* = the space of skew
symmetric polylinear maps f:g! — C, i = 0.

The differential d: Ci-1(g) — Ci(g) acts as

af (T, ti) = > (=D ([T, Tg)s Tryeees Tpyeeey Tayeens Ti)- (3.1)

l<p<g<i

The cohomology spaces H:(C (g)) is denoted by Hi(g).
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The second complex, C'(g), is the shifted by 1 and augmented cochain complex
of g with coefficients in the coadjoint representation g*. By definition, C°(g) = C and
Ci(g) = Homy (A'"1g,g*) = the space of skew symmetric polylinear maps h :g'~! — g*
fori=>1.

The differential d : C°(g) — C1(g) is zero, and d : C(g) — Ci*1(g) acts as

1
dh(ty,...,T;) = z (1)1 (h(T1,..., Tpy..., Ti))
p=1 (3.2)
+ > (DPR([Tp, Tals Thyeens Tpyeees Tapeees Ti)
l<p<g=<i
for i > 1. Define embeddings C'(g) — Ci(g) by assigning to f € Ci(g) an element
f € Ci(g) given by

(11, f(T2,...,Ti)) = f(T1,...,T0). (3.3)
We identify Ci(g) with its image in Ci(g).
One checks that the embeddings (3.3) are compatible with the differentials, so that
one has an embedding of complexes C"(g) — C (g).

3.2. We consider the groupoid #lg; of vertex algebroids of the form & =
(C,g,9%,0,y,(-,-),c), where I = (C,T,Q,0) = (C,g,g*,0) is a perfect extended Lie al-
gebroid over C, see Subsection 2.2, with T = g. Note that the last object is uniquely
defined by the Lie algebra g = T; we must have Q = g*, the “Lie derivative” action of
T on Q must be the coadjoint one, and a C-linear derivation 0 : C — Q must be zero.

Turning to the axioms of a vertex algebroid, Subsection 2.3, we see that for # as
above, (-,-) : gx g — C is a symmetric bilinear map (which may be regarded as an
element of Cz(g)), c € C3(g), equation (2.7) implies that y =0, (2.8) and (2.9) hold true
automatically, (2.10) takes the form

([T1, 2], 13) + (T2, [T1, T3]) = (T2,¢(T1,T3)) + (T3,¢(T1,T2)), (3.4)
and (2.11) takes the form
dc =0, (3.5)
where d is the differential in C"(g) given by (3.2).
So, an object of sflg, has a form
&Qg;('y'),c = ((C!g!g*101ol<.!.>!c)l (36)

where (-,-) € C2(g)%/?Z, ¢ e C3(g) satisfy (3.4) and (3.5).
The vertex envelope
Ve =Udg(, e (3.7)

(see [8, Section 9]) is generated by the fields T(z) (T € g) and w(z) (w € g*) of
conformal weight 1, subject to operator product expression (OPE)

(t,7) . [T, 7' ](w)—c(T,7") (W)

T(2)T (W) ~ z_w)? —w (3.8)
T(2)w(w) ~ M; w(z)w' (w) ~0 (3.9)
zZ—Ww

(cf. [8, (9.9.1)-(9.9.3)]).
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A morphism
S oy (e — gy e (3.10)

is by definition an element h € €2(g) such that
(T1,h(T2)) + (T2, h(T1)) = (T1,T2) = (T1,T2), dh=c-C, (3.11)
see Subsection 2.5. The composition of morphisms is induced by the addition in C2(g).
3.3. As a corollary, we have a canonical bijection
o (stlgy) = H(g). (3.12)
More precisely, for a 3-cocycle ¢ € C>9(g) we have a vertex algebroid
Agie 1= Ag,cs (3.13)

and the correspondence ¢ — sdg, induces the bijection (3.12).
The enveloping algebra Vg, := Udg. is generated by the same fields as in
Subsection 3.2, subject to OPE
[T,7](w) —c(T,T') (W)

T(2)T (W) ~ — —w : (3.14)

and (3.9).
We define another interesting class of objects of s#lg;. Namely, each symmetric ad-
invariant bilinear form (-, -) € (52g*)9 gives rise to an object

A,y 1= gy ),0- (3.15)

The enveloping algebra ¥y, .., := Usdlg,..) is generated by the same fields as in
Subsection 3.2, subject to OPE

(t,7) [T, T'](w)

T(2)T' (W) ~ , (3.16)
(z—w)? zZ-w
and (3.9).
It is easy to see that, we have an isomorphism
S :'9@9:(-,-) ;’&qg;q.,.) (3.17)
given by a map h.,.) : g — ¢*, where
1
(T1,h(,(T2)) = E(TlaTZ), (3.18)
and the cocycle c(.,.) is defined by
o (11,12, 13) = ([T1,T2],T3) (3.19)

(cf. [8, Theorem 4.5]).
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3.4. Given (-,-) € (5%g*)9, consider a vertex algebroid
g = (C,8,9%,0,0,(+,-),0). (3.20)

Its vertex envelope V(.. 1= Uslg(.,.) is generated by fields T7(z) (T € g) of conformal
weight 1, subject to OPE (3.16).

The correspondence T -T" — T(y) defines on V. .y a structure of the vacuum mod-
ule over the Kac-Moody algebra § =g[T, T ']eC-1 at level (-,-).

We have an obvious embedding of vertex algebroids sg;(.,.) — g0 which induces
an embedding of vertex algebras

V() —— V() (3.21)

REMARK 3.1. If the Lie algebra g is semi-simple then the correspondence (-,-) —
C(.,.y induces a bijection
(S°g*)" — H*(g). (3.22)

Therefore, in this case the algebroids sig(...) form a complete set of representatives
of isomorphism classes in s{lg,. In other words,
(1) if g is semi-simple, then the correspondence (-,-) — &ﬁ;;<.,.) induces a bijection

(S%g%)? — o (sdlg,) (3.23)

passing to a group.

3.5. Let G = Spec(A) be an affine algebraic group, and let g be the corresponding Lie
algebra. The tangent bundle O is trivial, so the obstruction c(@iffgl) to the existence
of a cdo over G, % € I'(G;@iffd) (cf. [8, Corollary 7.11]) vanishes.

From Section 4, the set of isomorphism classes of cdo’s over G, 11y ﬂ"(G;QDiffZ-h)) is a
nonempty torseur under the “Chern-Simons group” H3 (G) = H3(G;C).

In fact the groupoid F(G;EbiffCGh) has a distinguished object 2258?0, so that we have a
canonical bijection

o (I (G Diff ) ) — Hig (G). (3.24)

This is a consequence of the following general construction.
3.6. Let dgy.,.) . be an arbitrary object of #lg,. We apply to it the pushout construc-
tion of Subsection 2.4 with respect to the structure morphism C — A. Here the mor-
phismg — T := Derc(A) is defined as the embedding of left invariant vector fields, and

the map y: Axg — Q:=Q!(A) is set to be zero. This way we get a vertex A-algebroid
Agi(.,y,c. Its enveloping algebra

DL e =Udgi e (3.25)

obviously belongs to I"(G;Qbiffg‘).
We have a canonical embedding

Vatore > DRy er (3.26)
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We use the notation H¢;(.,.) := Ac:(-,-),00 AGic := HA0,c, Aco := Ae:0,0, and Sbg;l(_,_), etc.
for the corresponding enveloping algebras.

If dgo = (A, T,Q,dpr, Yo, (+,)0,c0) and w € Q3 (A) is a closed 3-form, then we can
form a vertex algebroid

AGw 1= Ago +w = (A, T,Q,dpr, ¥o0,{", - )o,C0o+ W). (3.27)

The correspondence w — ¢, induces the bijection (3.24).
If ¢ € C3(g) is a 3-cocycle with trivial coefficients, then by definition

&QG;C = &qG;wcy (328)

where w, € Q39 (A) is the left invariant 3-form on G corresponding to c.

COROLLARY 3.2. Assume that G is reductive. Then the correspondence ¢ — g
induces a bijection
H? (g) — o (T (G:@iffd ) ). (3.29)

Indeed, one knows that for a reductive group the correspondence ¢ — w, gives rise
to an isomorphism H?(g) — H(G).

COROLLARY 3.3. Assume that G is semi-simple. Then the correspondence (-,-) —
dAg,.,.) induces a bijection

(8%g%)* — 1o (T (G; Dif " )). (3.30)

This follows from Corollary 3.2 and Remark 3.1.
3.7. Note that for an arbitrary G and (-,-) € (S%g*)% one has a canonical embedding
i) V) = ). (3.31)

It is the composition of (3.21) and (3.26).

4. Dual embedding

4.1. Let G = Spec(A) be a smooth affine connected algebraic group with the Lie
algebra g. Pick a symmetric ad-invariant bilinear form (“level”) (-,-) € (S2g*)8S.
Let (-, -) ) denote the Killing form on g,

(x,¥) k) = trg (ady -ad,, ). 4.1)

We pick a base {T;} of g. In terms of structure constants

(10,71 = cp/ T, 4.2)
the form (4.1) is given by o
(T ) ) = €d ¢’ (4.3)

We define the dual level (-,-)° € (S2g*)% by

() == ) — (). (4.4)
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o

Define the critical level (-, )it BY (-, ) crie = (-, -) &4, that is,

1
Gy et = =5 () ). (4.5)

If we want to stress the dependence on g, we write (-, )g:(x), (*, * ) g:crit-

4.2. We have two commuting left actions of G on itself: the left multiplication,
(g,x) — gx and the right one, (g,x) —» xg~!.

Let T = Dery(A) denote the Lie A-algebroid of vector fields over G. The above two
actions induce two embeddings of Lie algebras

ir:g = T, ir:g & T, (4.6)

such that
[ir(x),ir(¥)] =0 Vx,y €g. (4.7)

Below we identify g with its image under i, that is, write simply x instead of iz (x).
We also use the notation x® := iz (x) (x € g).
Embedding i; induces an isomorphism of left A-modules

A®rg —T. (4.8)
Thus, {T;} form an A-base of T. In particular,
TR =alt; 4.9)

for some invertible matrix (ai/) over A.
The commutation relations

[ti.T8] =0 (4.10)
are equivalent to the identities
Ti(@’) +cPal? =0, (4.11)
true for all i, j, s.
We write down the relations
[Tf,'rf] = [, 7;]1% (4.12)
in coordinates. We have
[TlR’TH = [Tf,aﬁn] =18 (a’)Ts = a1y (a’*) Ty (4.13)

due to (4.10). Plugging this into (4.12), we get

a?t,(a’®) =cia® Vi,j,s. (4.14)
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4.3. Weset Q:= Q},‘/k =Homu(T,A), and denote by (-,-) : T xQ — A the canonical
A-bilinear pairing. Let {w;} be the A-base of Q) dual to {7;}. The Lie algebra T acts on
Q by the Lie derivative.

We have T;(w;) = &¥$w;, where

&S = (16, Ti(w;)) = Ti((Ts, ;) = {[Ti, Ts], ;) = —c¥ = ¢} (4.15)
Thus,
Ti(w;) = ¢ ws. (4.16)
Similarly,
™ (w;) =0. (4.17)

4.4. Recall that we have an embedding of vertex algebras
i) Ve S I, (4.18)

see Subsection 3.7. More precisely, it is induced by an embedding of conformal weight
1 components

JLi8 =Yg — Dg ) =TeQ (4.19)

defined by a composition
g T ToQ, (4.20)

where the first arrow is i; and the second one sends x to (x,0).
The fact that j; induces a map of vertex algebras (4.18) simply means that, we have
the identities in 9.

Jaj(t) = (t,7); amoi(t) =a(T,7]), V1,7 €q. (4.21)
THEOREM 4.1 (B. Feigin-E. Frenkel, D. Gaitsgory). (i) There exists a unique embedding
Jr:g = B, (4.22)

such that

(a) the composition of (4.22) with the canonical projection QZJCG?(___)I — T is equal to ig;
(b) forallT,t" €egandn =0

JL(T)mJjr(T) =0. (4.23)

(i) We have
JrR(T@r(T) = (1,7)°, (4.24)
JR(T) o Jr(T") = jr([T,T']), (4.25)

for each T,7’ €g.
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COROLLARY 4.2 (B. Feigin-E. Frenkel, D. Gaitsgory). The map (4.22) induces an em-

bedding of chiral algebras
Jr Vg0 = DE .
The images of ji and jr commute in the following sense:
JL () jr(y) =0

for each x € Vg...), ¥ € Vg(.,.y0, and n = 0.

(4.26)

(4.27)

PROOF OF THEOREM 4.1. (i) As usual, we denote j; (T) simply by T. We are looking

for jr(T) in the form
Jr(Ti) =R+ bw,
for some b € A. We have, by [8, 1.4(A2)],
Tin Ty = <T1R’Tj> =(a"Tp, 7)) = a” (Tp, Tj) = TpT;(a’”).

Using (4.4) and (4.11),

i Js i pu_js i up Jjs i i
—T,Tj(a"”) =1, (cp a”) =—cp cpat=cs cpa™=(Ty,Tj) i a™,
S0
R _ RPN
TiyTi = —(Tp,Tj) a'”.

On the other hand,
(biqwq)u)'rj = (b wg, ;) = bY.
Therefore, the condition
Jr (Ti)(1)Tj =0
defines the matrix (b') uniquely, we must have
Jr(Ti) = TR+ (Tp, Tg)’a’” wg.
We prove that
Ti0)Jr (Tj) = 0.
We have
TiJr (1)) = Tuo { TR+ (16, ) *a’ wu .
On one hand,
Tio T} = Ti0) (a/174) = Tio) (a{?)Tq) = Ti(a@?) _yyTq +al? [11,74] = 0,
using (4.11). On the other hand,
Tio) {(Ts, Tu) " a’”* wu}
= (76, T)’Ti (@ wy)
= (75, 7u)’ {Ti(@”) wu +a” Ti(wu) }
= —(16,Tp)’ca’w, — (15,7,)°cif a’*w, using (4.11) and (4.16)
= —([Ti,74),Tp) @’ w0, — (T5,[Ti,Tp]) @ wp = 0

due to the invariance of the form (-, -)°. This proves (4.35).

(4.28)

(4.29)

(4.30)

(4.31)

(4.32)

(4.33)

(4.34)

(4.35)

(4.36)

(4.37)

(4.38)



ON CHIRAL DIFFERENTIAL OPERATORS OVER HOMOGENEOUS SPACES

Evidently T jr(T;) = 0 for n = 2. This proves part (i) of the theorem.
We compute jgr(T;)1)jr(Tj). We have

IR i (1) = {TR+ (1, 1) @ waf | 8+ (5, m) @ wul.
This is a sum of four terms,

I:= 'rlR(l)T}z = (a'?1,,a’5 1)
=a'?a’ (1,,7s) —a'? 1,1, (a’*) — a1, (a'?)

-1, (a’)1s(a’?) using [8, (1.8.3)(,].
Using (4.4) and (4.11) we see that
—aistTp (ajs) = _ajSTst (aip) =Tp (ajS)TS (aw) = (Tp,TS)(K)aipajS,

whence
1= —(1p,T5)’aa’.

Next,

I:= {(Tnqu)oaipwq}u)Tf = (1p,74)° (@ Wq,a” T5) = (Tp,T4) aP a’i.

Similarly,
I:=1f, (15, Tw)’a wy ) =11,

and evidently
V= {(1p,Tq) @ wg} 1) { (15, Tu) @ wu} = 0.

Adding up, we get
Jr (1) (1) Jr () = (Tp,T4) a’” a’?,
We differentiate this statement. We have
T {(Tp,Tq) aPa’®} = (1,,7,)° {15 (aP) @’ + a1, (a’?)}
= (Tp,79)"{ - quuai"ajq —cVagiP gV}
= —([1s,Tul, Tq)oaiuajq —(Tp, [TS,TU])Oai’”aj”

=0.
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(4.39)

(4.40)

(4.41)

(4.42)

(4.43)

(4.44)

(4.45)

(4.46)

(4.47)

Therefore, equation (4.46) is a constant. It may be computed by noticing that the
matrix (a'/), considered as a function on the group G, is equal to the identity at the

identity of the group. Hence (4.46) is equal to (T;,T;)°, which proves (4.24).

We compute
Jr (Ti)(o)jR (1) € @CG};I(.,.H =TaoQ.

We have

JR(T1) ()R (Tj) = Jr (Ti) (o) (@0 Tq + (T5,Tu) @’* wu .

(4.48)

(4.49)
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We compute the first summand. Using (4.35), we have
Jr(Ti) ) (@7y) = (jr(T1) )@/ ) Tq = aP T, (/) Ty = [TR, 78] = [t ;1% 4.50)
by (4.14) and (4.17).
On the other hand,
jR(Ti)(O) {(Ts;Tu)oajswu}
= Tiio) {(T5, Tw) @ wu} = (75, 7)) T (@ ) (4.51)
= (T5,7) a1, (a’) wy, = (5, Tw) ci a®w,, by (4.17) and (4.14).
Adding up (4.50) and (4.51) we see that
Jr(Ti) (0)Jr (T5) = jr([Ti, T;]) (4.52)
which proves (4.25) and part (ii) of the theorem. O

PROOF OF COROLLARY 4.2. The first claim is a reformulation of (4.24) and (4.25).
The second claim is a trivial consequence of (4.23) and two Borcherds’ formulas

n
n
XY (-1)Z=Y-nXmz+ Z <J) XY n-1-p2 (n=0), (4.53)
j=0

(cf. [8, (0.5.12)]), and

(X)) mZ =2 X 1-HYmipZ+Yin-1-H Xz} (4.54)
=0

(ct. [8, (0.5.4)]). O

5. BRST

5.1. Recall the definition of the BRST reduction due to Feigin (see [4]); the definition
in the language of vertex algebras was given in [3, Section 4] see also [6, Appendix Al;
for a more modern treatment see [1, 3.7], [2, 7.13].

Let a be a finite-dimensional Lie algebra. Choose a base {a;} in a; denote the struc-
ture constants B

lai,a;] =cjap. (5.1)

Recall that the Killing form (-, -) k) :axa — C is given by
(ai,a;) g = clrela, (5.2)

Let ITa be the space a with the reversed parity; denote by {¢; = I1a;} the corresponding
base and by {d)}‘} the dual base of ITa* given by

<¢i,¢f> = 6ij. (5.3)
Let Carst(La) denote a graded vertex superalgebra generated by odd fields ¢;(z) of
conformal dimension 1 and odd fields ¢ (z) of conformal dimension 0 with OPE

Pi(2)¢5(w) ~ —— (5.4)
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We identify the spaces ITa and ITa* with their obvious images in Cgrst(La); and
Cerst(La)g, respectively.
We introduce an odd element Dy € Cgrst(La) of conformal dimension 1 by

D, lc;;qbqu ¥, (5.5)

Thus, we have the corresponding field Dq(z) = > Dz "1 and we set
dg := Dgyp. (5.6)

The pair (Cgrst(La),dq) may be regarded as a chiral analogue of the Chevalley cochain
complex C(a). However, in the chiral case the square d2 may be nonzero. It is easy to
compute it. Namely, we write down the OPE Dq(z) D (w) using Wick theorem. We have

(ai,aj) g ®i (2)b] (w)

Dq4(2)Da(w) ~ (z—w)?

(5.7)

Therefore,
42 = (aia;) ) | 5 (w) s ). (5.8
COROLLARY 5.1. If the Lie algebra a is nilpotent then d2 =
Indeed, the Killing form of a nilpotent Lie algebra is zero.

5.2. Let (-,-):axa — C be an arbitrary symmetric invariant bilinear form (“level”).
Recall that the vertex algebra ..., is generated by even fields a;(z) of conformal
weight 1, subject to OPE

(ai,a;) [aisaj](w).

ai(z)a;(w) ~ Z—w)? —w (5.9)
LEMMA 5.2. The rule
._.cqu)qup (5.10)
defines an embedding of vertex algebras
Ve ww — Corst(La). (5.11)
5.3. Let /M be a vertex module over Vg,_(. ). ,- We introduce a space
CBRST (La;Jl/t) = CBRST (LC() ® JL. (5.12)

According to Lemma 5.2, this space is canonically a graded (by conformal weight)
Va:0-supermodule. This space is also graded by “fermionic charge”

Carst (La; M) = Opez CﬁﬂRST(La;M), (5.13)

where we assign to ¢; (respectively, ¢, m € L) the charge —1 (respectively, 1,0).
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Introduce an odd element Dg. € Cprst(La;.Al) of conformal weight 1 and fermionic
charge 1 by

Do =¢f®a;+Dy®1. (5.14)
It follows from (5.7) that
Dy (2)Day (w) ~ 0. (5.15)
Therefore, setting
da.u = JDa;./M,(Z); (5.16)
we get a differential
dz., =0. (5.17)

By definition d increases the fermionic charge by 1.
The pair (Cgrst(La;),dg. ) is called the BRST complex of La with coefficients in
AL, and its cohomology Hyyrer (La; ) is called the BRST cohomology.

EXAMPLE 5.3. Let N be a unipotent algebraic group with the Lie algebra n. Consider
a Vyo-module QZJ]C\?;O (note that according to Subsection 3.5 this algebra represents a
unique isomorphism class of cdo’s over N). Inside the loop algebra Ln = n[T,T~'],
consider two Lie subalgebras: n_ and n,, generated by all elements TT" (T € n) with
n <0 and n = 0, respectively. Then 92)5{}1;0 is a free n_-module and a cofree (i.e., the dual
module is free) n,-module.

It follows that

Hipsr (Lm @) =0 (1#0);  Hr (Lnia5) = C, (5.18)
(cf. [6, page 178]).

6. Homogeneous spaces

6.1. Let X be a smooth variety. We have an exact triangle

ol — ol — ¢, (6.1)
where
o0 —0F —}—--- (6.2)
(Q% sitting in degree 0) and
94
C:0— X Q3 — - 6.3
aqs X ©63)

(Q%/dQ3 sitting in degree 2). The following remark follows.

REMARK 6.1 (due to H. Esnault). The canonical map
H'(X;:0Y) — H(x;0F) (6.4)

is injective for i = 2 and bijective for i = 0, 1.
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6.2. Let G be a simple algebraic group. In this section, we discuss the chiral differ-
ential operators on homogeneous spaces, G/G" where G’ = N—a unipotent subgroup,
G’ = P—a parabolic but not minimal parabolic, or G’ = B—a Borel subgroup.

THE CASE G/N

6.3. Consider the projection 17 : G — X := G/N. The variety X is quasiaffine, there-
fore we have
H(X;0F) =HT(X:0F) = Hi2(X) (i=1). (6.5)

On the other hand,
Hpp(X) = H*(X;0) (6.6)

by Grothendieck’s theorem, (cf. [9, Theorem 1’]).
The projection 1t is an affine morphism which is a Zariski locally trivial bundle with
fiber N isomorphic to an affine space, so w* : H* (X;C) — H*(G;C). It follows that

m H (x;0F) = Hi(GQf) (i=1). 6.7)
We have a short exact sequence
0 — Og/x — O — T*Ox — 0, (6.8)

and the vector bundles O¢,0¢,x are trivial (a base of global sections of O, x is given
by left invariant vector fields coming from the Lie algebra n := Lie(N)).
Therefore, we have

¢ (@iff§ ) = 1% chy (Ox) = chy (0¢) =0, (6.9)

hence
c(iffs) =0 (6.10)

by Remark 6.1.
Therefore, we have the following corollary.

COROLLARY 6.2. The groupoid T'(X ;Qbiffg(h) is nonempty. The set of isomorphism
classes 1o (T (X, DiffSh)) is a torseur under Hiy (X) = Hig (G).

6.4. Let D¢ be the sheaf of chiral differential operators on G of level (-, -), where

(+,)igxg—C (6.11)

is a fixed symmetric invariant bilinear form on g = Lie(G), see Subsection 3.6. The
form (6.11) is a scalar multiple of the Killing form

() =cl)gm, ceC (6.12)

The Killing form on g restricts to zero on n (since the trace of a nilpotent endomor-
phism is zero). Therefore, we have the canonical embedding of vertex algebras

Vw0 —— VG-, —— @E;};l(.,.), (6.13)

so that the sheaf ng}(_’_) becomes a sheaf of V'.o-modules.



102 VASSILY GORBOUNOV ET AL.

Applying the BRST construction, see Subsection 5.3, to Jl = n*@g;‘(_y_) and a = n,
we get a sheaf of BRST complexes Cgrst(L1; rr*ébgl?(_‘_)) and BRST cohomology sheaves
Hpper (Ln; Tr*@g}(_‘_)) over X. They are sheaves of 7.(-graded vertex superalgebras.

THEOREM 6.3. We have
Higsr (L .98 )) =0 (i 0). (6.14)

The sheaf Hzsr (L1; 17*9252;1}<,’_)) is an algebra of chiral differential operators over X.
The correspondence
Gy — Hisr (L 2% ) (6.15)

induces a bijection of the sets of isomorphism classes
1o (1 (G; @it ) ) — 1o (T (X; it ) ). (6.16)

We use the notation @, ., for the cdo Hgper (Ln; T D ).

Note that higher direct images Rin*@g}(_,_) are trivial for i > O since the morphism
7 is affine and the sheaves @g;(_,_) admit a filtration whose quotients are coherent (in
fact, locally free) Og-modules.

PROOF (SKETCH). Locally on X the projection 7t : G — X is isomorphic to the direct
product U XN — U. If & is an algebra of chiral differential operators on U x N then
P — By RDy, where Jy (respectively, By) is an algebra of differential operators on
U (respectively, N). Now the first claim of the theorem follows from (5.18).

The second claim is Corollary 6.2. O

COROLLARY 6.4. The dual embedding
jR !QVG;(.‘.)G —*@CG};I(_‘_) (617)
defined in Corollary 4.2 induces a canonical morphism of vertex algebras
i0 Ve — DR (6.18)

Indeed, we know that (6.17) commutes with the left action of § hence with the BRST
differential.

In particular, the Kac-Moody algebra § at level (-, -)° acts canonically on Wakimoto
modules which may be defined as the spaces of sections I'(U ;ng(h'(_,_)), where U is a
big cell. This is a result due to Feigin-Frenkel obtained in [5, 6, 7] in a different way.

THE CASE G/B

6.5. Let B C G be aBorel subgroup, m: G — X := G/B. Then X is a smooth projective
variety and we have

HP (X;Q%) =0 (p=aq), (6.19)
HY(X;Q%) = H*'(X;C). (6.20)
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It follows that H2(X;Q[?) = H*(X;C), and Theorem 7.5 in [8] says that the image of
c(@iffSh) in H*(X;C) is equal to

2¢hy (Ox) := ¢ (Ox) —c2(0x), (6.21)

where ¢;(0x) € H¥(X;C) are the Chern classes of the tangent bundle Oy.

LEMMA 6.5. We have
chy (Bx) = 0. (6.22)

PROOF. The space H?(X;C) may be identified with the complexification of the
root lattice of G. The classical theorem by J. Leray says that the cohomology alge-
bra H* (X;C) is equal to the quotient of the symmetric algebra of the space H?(X;C)
modulo the ideal generated by the subspace of invariants of the Weyl group W having
positive degree (cf. [10, Théoreme 2.1b]).

The class [@x] in the Grothendieck group of vector bundles is equal to the sum
> [¥%«], where « runs through all negative roots, and ¥, is the line bundle with
c1(%«) = . Hence chy(@y) = > o%; this element is invariant under the action of W,
therefore its image in H*(X;C) is zero. O

This lemma implies that
c(iff§) =0 (6.23)

by Remark 6.1. On the other hand, it follows from Remark 6.1 and (6.19) that
H(Xx;:08Y) =0 (i=0,1). (6.24)

Thus, by [8], we get the following theorem.

THEOREM 6.6. The groupoid T'(X ;@1&5?) is nonempty and trivial. In other words,
there exists a unique, up to a unique isomorphism, algebra of chiral differential oper-
ators B! over X.

6.6. We construct the algebra QDS}“ using the BRST reduction. Consider the sheaf
@g}(_y_) as in Subsection 6.4. Let (-, -); denote the restriction of (-,-) to b:= Lie(B).

We have a canonical embedding of vertex algebras
V0 — DI )amloxs = 20+, k) (6.25)

Therefore, to get the minus Killing on b we have to start from —(-,-)q )/2, that is,
from the critical level on g. Thus, by construction 5.3, we have the following.

6.6.1. The BRST complex Cgrst(LB; W*QD%}?(_‘_)) is defined if and only if (-, ) = (-, *) g:crit,
that is, on the critical level, see (4.5).
We denote the algebra B¢ by D

() g;crit
6.7. Let Vi denote the vacuum module on the critical level °V5;(.,.>B;Cm. Let M be a
vertex algebra equipped with a morphism of vertex algebras ¥Vg.cpjy — JM.
We have a decomposition
b=hen, (6.26)
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where n C b (respectively, ) C b) is the maximal nilpotent (respectively, the Cartan)
subalgebra; n is spanned by elements e,, & being a positive root. We define a vertex
subalgebra

Carst (LD, B; M) C Corst (LB; ). (6.27)

The vector space Cgrst(LD;.M) is spanned by all the monomials

hl;il ..... hik;j] ..... Coqky e*,l_ ceee®my, (628)

where the indices i, j,,kp,l, denote the conformal weight, i,,k, = 1; j,,l, = O,
my € M is a vector of weight y € h*.

By definition, the subspace Cgrst (LD, h;.t) is spanned by all monomials (6.28) such
that

(a) all j, = 1;

(b) YXop =X o +u=0.

It is a vertex subalgebra. One checks that the BRST differential d in Cgrst(Lb;.l)
preserves Cgrst (LD, ;L).

We define the relative BRST cohomology Hpgrsr (LD, h;M) as the cohomology of
Cprst (LB, h; M) with respect to this differential. It is canonically a vertex algebra.

6.8. Applying the previous definition to M = Tr*ébg;lcm, we get the BRST cohomology
sheaves Hir (LB, 6; . I ;) on X.

THEOREM 6.7. We have

Hisr (LB, B m @) =0 (i +0), (6.29)

and the sheaf of vertex algebras Hiys (LB, 6; 1, D3 ) is canonically isomorphic to 3.
The proof is the same as that of Theorem 6.3.

COROLLARY 6.8. We have a canonical isomorphism of vertex algebras
H*(X;9) = Hisr (L6, 6:T (G: 9%y ) )- (6.30)

Indeed, as we have already remarked, sheaves of cdo Qbf;h on G have a filtration
whose graded quotients are vector bundles; but the variety G and the morphism 7t
are affine, hence H:(G;9%") = Rit, 9% = 0 for i > 0.

COROLLARY 6.9. The dual embedding
IRV Grerie — Drie 6.31)
defined in Corollary 4.2 induces a canonical morphism of vertex algebras
icrit : Veierit — DY (6.32)

Indeed, we know that (6.31) commutes with the left action of § hence with the BRST
differential.
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In particular, the Kac-Moody algebra § on the critical level acts canonically on
Wakimoto modules which may be defined as the spaces of sections I'(U; @), where
U is a big cell. This is a result of Feigin-Frenkel proved in [5, 6, 7] in a different way.

THE CASE G/P

6.9. Let P C G be a parabolic but not Borel, p = Lie(P), T : G — X := G/P. The
discussion in Subsection 6.5 applies as it is, except for Lemma 6.5, which is replaced
by the following lemma.

LEMMA 6.10. We have
Chz (®X) *0. (6.33)

Hence c(Qbiffg(h) + 0, and we get the following theorem.

THEOREM 6.11. The groupoid I'(X ;QDiffg(h) is empty. In other words, there is no cdo
over X.

6.10. We see how this factis reflected in the BRST world. We would like to get a sheaf
of cdo over X as the BRST cohomology of Lp with coefficients in some sheaf n*QDCGI}(_,_).
However, no form (-, -) on G restricts to the Killing form on p, which implies that the
square of the BRST differential in CBRST(Lp;n*EbCGI?((H) is always nonzero. Thus, the
BRST cohomology is not defined, which is compatible with Theorem 6.11.
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