COMPUTATIONS OF NAMBU-POISSON COHOMOLOGIES

PHILIPPE MONNIER

(Received 29 September 2000)

ABSTRACT. We want to associate to an *n*-vector on a manifold of dimension *n* a cohomology which generalizes the Poisson cohomology of a 2-dimensional Poisson manifold. Two possibilities are given here. One of them, the Nambu-Poisson cohomology, seems to be the most pertinent. We study these two cohomologies locally, in the case of germs of *n*-vectors on \mathbb{K}^n ($\mathbb{K} = \mathbb{R}$ or \mathbb{C}).

2000 Mathematics Subject Classification. 53D17.

1. Introduction. A way to study a geometrical object is to associate to it a cohomology. In this paper, we focus on the *n*-vectors on an *n*-dimensional manifold *M*.

If n = 2, the 2-vectors on M are the Poisson structures thus, we can consider the Poisson cohomology. In dimension 2, this cohomology has three spaces. The first one, H^0 , is the space of functions whose Hamiltonian vector field is zero (Casimir functions). The second one, H^1 , is the quotient of the space of infinitesimal automorphisms (or Poisson vector fields) by the subspace of Hamiltonian vector fields. The last one, H^2 , describes the deformations of the Poisson structure. In a previous paper (see [9]) we have computed the cohomology of germs at 0 of Poisson structures on \mathbb{K}^2 ($\mathbb{K} = \mathbb{R}$ or \mathbb{C}).

In order to generalize this cohomology to the *n*-dimensional case $(n \ge 3)$, we can follow the same reasoning. These spaces are not necessarily of finite dimension and it is not always easy to describe them precisely.

Recently, a team of Spanish researchers has defined a cohomology, called Nambu-Poisson cohomology, for the Nambu-Poisson structures (see [6]). In this paper, we adapt their construction to our particular case. We will see that this cohomology generalizes in a certain sense the Poisson cohomology in dimension 2. Then we compute locally this cohomology for germs at 0 of *n*-vectors $\Lambda = f(\partial/\partial x_1) \wedge \cdots \wedge \partial/\partial x_n$ on \mathbb{K}^n ($\mathbb{K} = \mathbb{R}$ or \mathbb{C}), with the assumption that *f* is a quasihomogeneous polynomial of finite codimension ("most of" the germs of *n*-vectors have this form). This computation is based on a preliminary result that we have shown, in the formal case and in the analytical case (so, the \mathscr{C}^{∞} case is not entirely solved). The techniques we use in this paper are quite the same as in [9].

2. Nambu-Poisson cohomology. Let *M* be a differentiable manifold of dimension *n* $(n \ge 3)$, admitting a volume form ω . We denote by $\mathscr{C}^{\infty}(M)$ the space of \mathscr{C}^{∞} functions on *M*, by $\Omega^k(M)$ (k = 0, ..., n) the $\mathscr{C}^{\infty}(M)$ -module of *k*-forms on *M*, and by $\chi^k(M)$ (k = 0, ..., n) the $\mathscr{C}^{\infty}(M)$ -module of *k*-vectors on *M*.

We consider an *n*-vector Λ on *M*. Note that Λ is a Nambu-Poisson structure on *M*. Recall that a Nambu-Poisson structure on *M* of order *r* is a skew-symmetric *r*-linear map {,...,}

$$\mathscr{C}^{\infty}(M) \times \cdots \times \mathscr{C}^{\infty}(M) \longrightarrow \mathscr{C}^{\infty}(M), \qquad (f_1, \dots, f_r) \longmapsto \{f_1, \dots, f_r\},$$
 (2.1)

which satisfies

$$\{f_1, \dots, f_{r-1}, gh\} = \{f_1, \dots, f_{r-1}, g\}h + g\{f_1, \dots, f_{r-1}, h\},\$$

$$\{f_1, \dots, f_{r-1}, \{g_1, \dots, g_r\}\} = \sum_{i=1}^r \{g_1, \dots, g_{i-1}, \{f_1, \dots, f_{r-1}, g_i\}, g_{i+1}, \dots, g_r\},$$

(2.2)

for any $f_1, \ldots, f_{r-1}, g, h, g_1, \ldots, g_r$ in $\mathscr{C}^{\infty}(M)$. It is clear that we can associate to such a bracket an r-vector on M. If r = 2, we rediscover Poisson structures. Thus, Nambu-Poisson structures can be seen as a kind of generalization of Poisson structures. The notion of Nambu-Poisson structures was introduced in [14] by Takhtajan in order to give a formalism to an idea of Y. Nambu (see [12]).

Here, we suppose that the set $\{x \in M; \Lambda_x \neq 0\}$ is dense in *M*. We are going to associate a cohomology to (M, Λ) .

2.1. The choice of the cohomology. If *M* is a differentiable manifold of dimension 2, then the Poisson structures on *M* are the 2-vectors on *M*. If Π is a Poisson structure on *M*, then we can associate to (*M*, Π) the complex

$$0 \longrightarrow \mathscr{C}^{\infty}(M) \xrightarrow{\partial} \chi^{1}(M) \xrightarrow{\partial} \chi^{2}(M) \longrightarrow 0$$
(2.3)

with $\partial(g) = [g,\Pi] = X_g$ (Hamiltonian of g) if $g \in \mathscr{C}^{\infty}(M)$ and $\partial(X) = [X,\Pi]$ ([,] indicates Schouten's bracket) if $X \in \chi^1(M)$. The cohomology of this complex is called the Poisson cohomology of (M,Π) . This cohomology has been studied for instance in [9, 10, 15].

Now if *M* is of dimension *n* with $n \ge 3$, we want to generalize this cohomology. Our first approach was to consider the complex

$$0 \longrightarrow \left(\mathscr{C}^{\infty}(M)\right)^{n-1} \xrightarrow{\partial} \chi^{1}(M) \xrightarrow{\partial} \chi^{n}(M) \longrightarrow 0$$
(2.4)

with $\partial(X) = [X, \Lambda]$ and $\partial(g_1, \dots, g_{n-1}) = i_{dg_1 \wedge \dots \wedge dg_{n-1}}\Lambda = X_{g_1, \dots, g_{n-1}}$ (Hamiltonian vector field) where we adopt the convention $i_{dg_1 \wedge \dots \wedge dg_{n-1}}\Lambda = \Lambda(dg_1, \dots, dg_{n-1}, \bullet)$. We denote by $H^0_{\Lambda}(M)$, $H^1_{\Lambda}(M)$, and $H^2_{\Lambda}(M)$ the three spaces of cohomology of this complex. With this cohomology, we rediscover the interpretation of the first spaces of the Poisson cohomology, that is, $H^2_{\Lambda}(M)$ describes the infinitesimal deformations of Λ and $H^1_{\Lambda}(M)$ is the quotient of the algebra of vector fields which preserve Λ by the ideal of Hamiltonian vector fields.

In [6], the authors associate to any Nambu-Poisson structure on M a cohomology. The second idea is then to adapt their construction to our particular case.

Let $\#_{\Lambda}$ be the morphism of $\mathscr{C}^{\infty}(M)$ -modules $\Omega^{n-1}(M) \to \chi^{1}(M) : \alpha \mapsto i_{\alpha}\Lambda$. Note that ker $\#_{\Lambda} = \{0\}$ (because the set of regular points of Λ is dense). We can define (see [7]) an \mathbb{R} -bilinear operator [[,]]: $\Omega^{n-1}(M) \times \Omega^{n-1}(M) \to \Omega^{n-1}(M)$ by

$$[[\alpha,\beta]] = \mathcal{L}_{\#_{\Lambda}\alpha}\beta + (-1)^{n}(i_{d\alpha}\Lambda)\beta.$$
(2.5)

66

The vector space $\Omega^{n-1}(M)$ equipped with [[,]] is a Lie algebra (for any Nambu-Poisson structure, it is a Leibniz algebra). Moreover, this bracket verifies that $\#_{\Lambda}[[\alpha,\beta]] = [\#_{\Lambda}\alpha,\#_{\Lambda}\beta]$ for any α,β in $\Omega^{n-1}(M)$. The triple $(\Lambda^{n-1}(T^*(M)),[[,]],\#_{\Lambda})$ is then a Lie algebroid and the Nambu-Poisson cohomology of (M,Λ) is the Lie algebroid cohomology of $\Lambda^{n-1}(T^*(M))$ (for any Nambu-Poisson structure, it is more elaborate see [6]). More precisely, for every $k \in \{0, ..., n\}$, we consider the vector space $C^k(\Omega^{n-1}(M); \mathcal{C}^{\infty}(M))$ of the skew-symmetric and $\mathcal{C}^{\infty}(M)$ -k-multilinear maps $\Omega^{n-1}(M) \times \cdots \times \Omega^{n-1}(M)$; $\mathcal{C}^{\infty}(M)$. The cohomology operator $\partial : C^k(\Omega^{n-1}(M); \mathcal{C}^{\infty}(M)) \to C^{k+1}(\Omega^{n-1}(M); \mathcal{C}^{\infty}(M))$ is defined by

$$\partial c(\alpha_0, \dots, \alpha_k) = \sum_{i=0}^k (-1)^i (\#_\Lambda \alpha_i) \cdot c(\alpha_0, \dots, \hat{\alpha}_i, \dots, \alpha_k) + \sum_{0 \le i < j \le k} (-1)^{i+j} c([[\alpha_i, \alpha_j]], \alpha_0, \dots, \hat{\alpha}_i, \dots, \hat{\alpha}_j, \dots, \alpha_k)$$
(2.6)

for all $c \in C^k(\Omega^{n-1}(M); \mathscr{C}^{\infty}(M))$ and $\alpha_0, \dots, \alpha_k$ in $\Omega^{n-1}(M)$.

The Nambu-Poisson cohomology of (M, Λ) , denoted by $H^{\bullet}_{NP}(M, \Lambda)$, is the cohomology of this complex.

2.2. An equivalent cohomology. So defined, the Nambu-Poisson cohomology is quite difficult to manipulate. We are going to give an equivalent cohomology which is more accessible.

Recall that we assume that *M* admits a volume form ω . Let $f \in \mathscr{C}^{\infty}(M)$, we define the operator

$$d_f: \Omega^k(M) \longrightarrow \Omega^{k+1}(M), \qquad \alpha \longmapsto f \, d\alpha - k \, df \wedge \alpha. \tag{2.7}$$

It is easy to prove that $d_f \circ d_f = 0$. We denote by $H_f^{\bullet}(M)$ the cohomology of this complex. Let \flat be the isomorphism $\chi^1(M) \to \Omega^{n-1}(M), X \mapsto i_X \omega$.

LEMMA 2.1. (1) If $X \in \chi^1(M)$, then $\#_{\Lambda}(\flat(X)) = (-1)^{n-1} f X$, where $f = i_{\Lambda} \omega$. (2) If X and Y are in $\chi^1(M)$, then

$$(-1)^{n-1}[[b(X), b(Y)]] = fb([X, Y]) + (X \cdot f)b(Y) - (Y \cdot f)b(X).$$
(2.8)

PROOF. (1) Obvious.

(2) We have $\#_{\Lambda}([[\flat(X), \flat(Y)]]) = [\#_{\Lambda}(\flat(X)), \#_{\Lambda}(\flat(Y))]$ (property of the Lie algebroid), which implies that

$$\#_{\Lambda}([[\flat(X),\flat(Y)]]) = f(X \cdot f)Y - f(Y \cdot f)X + f^{2}[X,Y] = (-1)^{n-1} \#_{\Lambda}((X \cdot f)\flat(Y) - (Y \cdot f)\flat(X) + f\flat([X,Y])).$$
(2.9)

The result follows via the injectivity of $\#_{\Lambda}$.

PROPOSITION 2.2. If We put $f = i_{\Lambda}\omega$, then $H_{NP}^{\bullet}(M, \Lambda)$ is isomorphic to $H_{f}^{\bullet}(M)$.

PROOF. For every k, we consider the application $\varphi : C^k(\Omega^{n-1}(M); \mathscr{C}^{\infty}(M)) \to \Omega^k(M)$ defined by

$$\varphi(c)(X_1,\ldots,X_k) = c((-1)^{n-1}\flat(X_1),\ldots,(-1)^{n-1}\flat(X_k)), \qquad (2.10)$$

where $c \in C^k(\Omega^{n-1}(M); \mathscr{C}^{\infty}(M))$ and $X_1, \ldots, X_k \in \chi^1(M)$. It is easy to see that φ is an isomorphism of vector spaces. We show that it is an isomorphism of complexes.

Let $c \in C^k(\Omega^{n-1}(M); \mathscr{C}^{\infty}(M))$. We put $\alpha = \varphi(c)$. If X_0, \dots, X_k are in $\chi^1(M)$, then $\varphi(\partial c)(X_0, \dots, X_k) = (-1)^{(n-1)(k+1)} \partial c(\flat(X_0), \dots, \flat(X_k)) = A + B$, where

$$A = (-1)^{(n-1)(k+1)} \sum_{i=0}^{k} (-1)^{i} \#_{\Lambda}(\flat(X_{i})) \cdot c(\flat(X_{0}), \dots, \widehat{\flat(X_{i})}, \dots, \flat(X_{k})),$$

$$B = (-1)^{(n-1)(k+1)} \sum_{0 \le i < j \le k} (-1)^{i+j} c([[\flat(X_{i}), \flat(X_{j})]], \flat(X_{0}), \dots, \widehat{\flat(X_{i})}, \dots, \widehat{\flat(X_{j})}, \dots, \flat(X_{k})).$$
(2.11)

We have $A = f \sum_{i=0}^{k} (-1)^{i} X_{i} \cdot \alpha(X_{0}, ..., \hat{X}_{i}, ..., X_{k})$ and $B = f \sum_{0 \le i < j \le k} (-1)^{i+j} \alpha([X_{i}, X_{j}], X_{0}, ..., \hat{X}_{i}, ..., \hat{X}_{j}, ..., X_{k})$ $+ \sum_{0 \le i < j \le k} (-1)^{i+j} (X_{i} \cdot f) \alpha(X_{j}, X_{0}, ..., \hat{X}_{i}, ..., \hat{X}_{j}, ..., X_{k})$ $- \sum_{0 \le i < j \le k} (-1)^{i+j} (X_{j} \cdot f) \alpha(X_{i}, X_{0}, ..., \hat{X}_{i}, ..., \hat{X}_{j}, ..., X_{k})$ $= f \sum_{0 \le i < j \le k} (-1)^{i+j} \alpha([X_{i}, X_{j}], X_{0}, ..., \hat{X}_{i}, ..., \hat{X}_{j}, ..., X_{k})$ $- k \sum_{i=0}^{k} (-1)^{i} (X_{i} \cdot f) \alpha(X_{0}, ..., \hat{X}_{i}, ..., X_{k}).$ (2.12)

Consequently, $\varphi(\partial c) = d_f \alpha = d_f(\varphi(c))$.

REMARK 2.3. We claim that this cohomology is a "good" generalization of the Poisson cohomology of a 2-dimensional Poisson manifold. Indeed, if (M,Π) is an orientable Poisson manifold of dimension 2, we consider the volume form ω on M and we put

$$\phi^2 : \chi^2(M) \longrightarrow \Omega^2(M), \qquad \phi^1 : \chi^1(M) \longrightarrow \Omega^1(M), \tag{2.13}$$

defined by

$$\phi^2(\Gamma) = (i_{\Gamma}\omega)\omega, \qquad \phi^1(X) = -i_X\omega, \tag{2.14}$$

for every 2-vector Γ and vector field *X*.

We also put $\phi^0 = id : \mathscr{C}^{\infty}(M) \to \mathscr{C}^{\infty}(M)$.

If we denote by ∂ the operator of the Poisson cohomology, and $f = i_{\Pi}\omega$, it is quite easy to see that

$$\phi: (\chi^{\bullet}(M), \partial) \longrightarrow (\Omega^{\bullet}(M), d_f)$$
(2.15)

is an isomorphism of complexes.

REMARK 2.4. (1) The definitions we have given make sense if we work in the holomorphic case or in the formal case.

(2) Important: if *h* is a function on *M* which does not vanish on *M*, then the cohomologies $H_{f}^{\bullet}(M)$ and $H_{fh}^{\bullet}(M)$ are isomorphic.

Indeed, the applications $(\Omega^k(M), d_{fh}) \to (\Omega^k(M), d_f)$, $\alpha \mapsto \alpha/h^k$ give an isomorphism of complexes.

In particular, if *f* does not vanish on *M* then $H_f^{\bullet}(M)$ is isomorphic to the de Rham's cohomology.

2.3. Other cohomologies. We can construct other complexes which look like $(\Omega^{\bullet}(M), d_f)$. More precisely we denote, for $p \in \mathbb{Z}$,

$$d_f^{(p)}: \Omega^k(M) \longrightarrow \Omega^{k+1}(M), \qquad \alpha \longmapsto f \, d\alpha - (k-p) \, df \wedge \alpha. \tag{2.16}$$

We denote by $H_{f,p}^{\bullet}(M)$ the cohomology of these complexes. We will see in Section 3 some relations between these different cohomologies.

Using the contraction $i_{\bullet}\omega$, it is quite easy to prove the following proposition.

PROPOSITION 2.5. The spaces $H^1_{\Lambda}(M)$ and $H^2_{\Lambda}(M)$ are isomorphic to $H^{n-1}_{f,n-2}(M)$ and $H^n_{f,n-2}(M)$.

REMARK 2.6. The two properties of Remark 2.4 are valid for $H_{f,p}^{\bullet}(M)$ with $p \in \mathbb{Z}$.

3. Computation. Henceforth, we will work locally. Let Λ be a germ of *n*-vectors on \mathbb{K}^n (\mathbb{K} indicates \mathbb{R} or \mathbb{C}) with $n \ge 3$. We denote by $\mathcal{F}(\mathbb{K}^n)$ ($\Omega^k(\mathbb{K}^n), \chi(\mathbb{K}^n)$) the space of germs at 0 of (holomorphic, analytic, \mathscr{C}^{∞} , formal) functions (*k*-forms, vector fields). We can write Λ (with coordinates (x_1, \ldots, x_n)) $\Lambda = f(\partial/\partial x_1) \wedge \cdots \wedge \partial/\partial x_n$, where $f \in \mathcal{F}(\mathbb{K}^n)$. We assume that the volume form ω is $dx_1 \wedge \cdots \wedge dx_n$.

We suppose that f(0) = 0 (see Remark 2.4) and that f is of finite codimension, which means that $Q_f = \mathcal{F}(\mathbb{K}^n)/I_f$ (I_f is the ideal spanned by $\partial f/\partial x_1, \dots, \partial f/\partial x_n$) is a finite-dimensional vector space.

REMARK 3.1. It is important to note that, according to Tougeron's theorem (cf. [3]), if f is of finite codimension, then the set $f^{-1}(\{0\})$ is, from the topological point of view, the same as the set of the zeros of a polynomial.

Therefore, if *g* is a germ at 0 of functions which satisfies fg = 0, then g = 0.

Moreover, we suppose that f is a quasihomogeneous polynomial of degree N (for a justification of this additional assumption, see Section 4). We are going to recall the definition of the quasihomogeneity.

3.1. Quasihomogeneity. Let $(w_1, ..., w_n) \in (\mathbb{N}^*)^n$. We denote by W the vector field $w_1x_1(\partial/\partial x_1) + \cdots + w_nx_n(\partial/\partial x_n)$ on \mathbb{K}^n . We say that a nonzero tensor T is quasihomogeneous with weights $w_1, ..., w_n$ and of (quasi)degree $N \in \mathbb{Z}$ if $\mathcal{L}_W T = NT$ (\mathcal{L} indicates the Lie derivative operator). Note that T is then polynomial.

If *f* is a quasihomogeneous polynomial of degree *N*, then $N = k_1w_1 + \cdots + k_nw_n$ with $k_1, \ldots, k_n \in \mathbb{N}$; so, an integer is not necessarily the quasidegree of a polynomial. If $f \in \mathbb{K}[[x_1, \ldots, x_n]]$, we can write $f = \sum_{i=0}^{\infty} f_i$ with f_i quasihomogeneous of degree *i* (we adopt the convention that $f_i = 0$ if *i* is not a quasidegree); *f* is said to be of order *d* (ord(*f*) = *d*) if all of its monomials have a degree *d* or higher. For more details, see [3].

Since \mathscr{L}_W and the exterior differentiation d commute, if α is a quasihomogeneous k-form, then $d\alpha$ is a quasihomogeneous (k + 1)-form of degree deg α . In particular, it is important to notice that dx_i is a quasihomogeneous 1-form of degree w_i (note that $\partial/\partial x_i$ is a quasihomogeneous vector field of degree $-w_i$). Thus, the volume form

 $\omega = dx_1 \wedge \cdots \wedge dx_n$ is quasihomogeneous of degree $w_1 + \cdots + w_n$. Note that a quasihomogeneous nonzero *k*-form ($k \ge 1$) has a degree strictly positive.

Note that if *f* is a quasihomogeneous polynomial of degree *N*, then the *n*-vector $\Lambda = f(\partial/\partial x_1) \wedge \cdots \wedge \partial/\partial x_n$ is quasihomogeneous of degree $N - \sum_i w_i$.

In what follows, the degrees will be quasidegrees with respect to $W = w_1 x_1 (\partial / \partial x_1) + \cdots + w_n x_n (\partial / \partial x_n)$.

We will need the following result.

LEMMA 3.2. Let $k_1, ..., k_n \in \mathbb{N}$ and put $p = \sum k_i w_i$. Assume that $g \in \mathcal{F}(\mathbb{K}^n)$ and $\alpha \in \Omega^i(\mathbb{K}^n)$ verify $\operatorname{ord}(j_0^{\infty}(g)) > p$ and $\operatorname{ord}(j_0^{\infty}(\alpha)) > p$ (j_0^{∞} indicates the ∞ -jet at 0). Then

(1) there exists $h \in \mathcal{F}(\mathbb{K}^n)$ such that $W \cdot h - ph = g$,

(2) there exists $\beta \in \Omega^i(\mathbb{K}^n)$ such that $\mathscr{L}_W\beta - p\beta = \alpha$.

PROOF. The first claim is only a generalization of Lemma 3.5 in [9] (it also appears in Lemma 2 in [2]) and it can be proved in the same way. The second claim is a consequence of the first.

Now, we compute the spaces $H_f^k(\mathbb{K}^n)$ (i.e., $H_{NP}^k(\mathbb{K}^n, \Lambda)$) for k = 0, ..., n. We denote by $Z_f^k(\mathbb{K}^n)$ and $B_f^k(\mathbb{K}^n)$ the spaces of *k*-cocycles and *k*-cobords. We also compute some spaces $H_{f,p}^k(\mathbb{K}^n)$ with particular interest in the spaces $H_{f,n-2}^n(\mathbb{K}^n)$ (i.e., $H_{\Lambda}^2(\mathbb{K}^n)$) and $H_{f,n-2}^{n-1}(\mathbb{K}^n)$ (i.e., $H_{\Lambda}^1(\mathbb{K}^n)$). We denote by $Z_{f,p}^k(\mathbb{K}^n)$ ($B_{f,p}^k(\mathbb{K}^n)$) the spaces of *k*-cocycles (*k*-cobords) for the operator $d_f^{(p)}$.

3.2. Two useful preliminary results. In the computation of these spaces of cohomology, we need the two following propositions. The first is only a corollary of the de Rham's division lemma (see [4]).

PROPOSITION 3.3. Let $f \in \mathcal{F}(\mathbb{K}^n)$ of finite codimension. If $\alpha \in \Omega^k(\mathbb{K}^n)$ $(1 \le k \le n-1)$ verifies $df \land \alpha = 0$, then there exists $\beta \in \Omega^{k-1}(\mathbb{K}^n)$ such that $\alpha = df \land \beta$.

PROPOSITION 3.4. Let $f \in \mathcal{F}(\mathbb{K}^n)$ of finite codimension. Let α be a k-form $(2 \le k \le n-1)$ which verifies $d\alpha = 0$ and $df \land \alpha = 0$, then there exists $\gamma \in \Omega^{k-2}(\mathbb{K}^n)$ such that $\alpha = df \land d\gamma$.

PROOF. We prove this result in the formal case and in the analytical case.

Formal case: let α be a quasihomogeneous k-form of degree p which verifies the hypotheses. Since $df \wedge \alpha = 0$, we have $\alpha = df \wedge \beta_1$, where β_1 is a quasihomogeneous (k-1)-form of degree p - N. Now, since $d\alpha = 0$, we have $df \wedge d\beta_1 = 0$ and so $d\beta_1 = df \wedge \beta_2$, where β_2 is a quasihomogeneous (k-1)-form of degree p - 2N. This way, we can construct a sequence (β_i) of quasihomogeneous (k-1)-forms with deg $\beta_i = p - iN$ which verifies that $d\beta_i = df \wedge \beta_{i+1}$. Let $q \in \mathbb{N}$ such that $p - qN \leq 0$. Thus, we have $\beta_q = 0$ and so $d\beta_{q-1} = 0$, that is, $\beta_{q-1} = d\gamma_{q-1}$, where γ_{q-1} is a (k-2)-form. Consequently, $d\beta_{q-2} = df \wedge d\gamma_{q-1}$ which implies that $\beta_{q-2} = -df \wedge \gamma_{q-1} + d\gamma_{q-2}$, where γ_{q-2} is a (k-2)-form. In the same way, $d\beta_{q-3} = df \wedge d\gamma_{q-2}$ so $\beta_{q-3} = -df \wedge \gamma_{q-2} + d\gamma_{q-3}$, where γ_{q-3} is a (k-2)-form. This way, we can show that $\beta_1 = -df \wedge \gamma_2 + d\gamma_1$, where γ_1 and γ_2 are (k-2)-forms. Therefore, $\alpha = df \wedge d\gamma_1$.

Analytical case: in [8], Malgrange gave a result on the relative cohomology of a germ of an analytical function. In particular, he showed that in our case, if β is a germ at

0 of analytical *r*-forms (r < n-1) which verifies $d\beta = df \wedge \mu$ (μ is an *r*-form) then there exist two germs of analytical (r-1)-forms γ and ν such that $\beta = d\gamma + df \wedge \nu$.

Now, we prove our proposition. Let α be a germ of analytical k-forms $(2 \le k \le n-1)$ which verifies the hypotheses of the proposition. Then there exists a (k-1)-form β such that $\alpha = df \land \beta$ (Proposition 3.3). But since $0 = d\alpha = -df \land d\beta$, we have $d\beta = df \land \mu$ and so (see [8]) $\beta = d\gamma + df \land \nu$, where γ and ν are analytical (k-2)-forms. We deduce that $\alpha = df \land d\gamma$, where γ is analytic.

REMARK 3.5. Important: in fact, some results which appear in [13] lead us to think that this proposition is not true in the real \mathscr{C}^{∞} case.

The computation of the spaces $H_{f,p}^{n}(\mathbb{K}^{n})$, $H_{f,p}^{n-1}(\mathbb{K}^{n})$ $(p \neq n-2)$, and $H_{f,p}^{0}(\mathbb{K}^{n})$ does not use this proposition, so it still holds in the \mathscr{C}^{∞} case.

The results we find on the other spaces should be the same in the \mathscr{C}^{∞} case as in the analytical case but another proof need to be found.

3.3. Computation of $H^0_{f,p}(\mathbb{K}^n)$. We consider the application $d_f^{(p)}: \Omega^0(\mathbb{K}^n) \to \Omega^1(\mathbb{K}^n)$, $g \mapsto f \, dg + p \, df \wedge g$.

THEOREM 3.6. (1) If p > 0 then $H^0_{f,p}(\mathbb{K}^n) = \{0\}$. (2) If $p \le 0$ then $H^0_{f,p}(\mathbb{K}^n) = \mathbb{K} \cdot f^{-p}$.

PROOF. (1) If $g \in \mathcal{F}(\mathbb{K}^n)$ verifies $d_f^{(p)}g = 0$, then $d(f^pg) = 0$, and so f^pg is constant. But as f(0) = 0, f^pg must be 0, that is, g = 0 (because f is of finite codimension; see Remark 3.1).

(2) We use an induction to show that for any $k \ge 0$, if g satisfies f dg = kg df then $g = \lambda f^k$, where $\lambda \in \mathbb{K}$.

For k = 0 it is obvious.

Now we suppose that the property is true for $k \ge 0$. We show that it is still valid for k+1. Let $g \in \mathcal{F}(\mathbb{K}^n)$ be such that

$$f dg = (k+1)g df. \tag{3.1}$$

Then $df \wedge dg = 0$ and so there exists $h \in \mathcal{F}(\mathbb{K}^n)$ such that dg = h df (Proposition 3.3). Replacing dg by h df in (3.1), we get fh df = (k+1)g df, that is, g = (1/(k+1))fh. Now, this former relation gives, on one hand, $f dg = (1/(k+1))(f^2 dh + fh df)$ and on the other hand, using (3.1), f dg = fh df. Consequently, f dh = kh df and so $h = \lambda f^k$ with $\lambda \in \mathbb{K}$.

3.4. Computation of $H_f^k(\mathbb{K}^n)$ $1 \le k \le n-2$

LEMMA 3.7. Let $\alpha \in Z_{f,p}^k(\mathbb{K}^n)$ with $1 \le k \le n-2$. Then α is cohomologous to a closed *k*-form.

PROOF. We have $f d\alpha - (k-p) df \wedge \alpha = 0$. If k = p then α is closed. Now we suppose that $k \neq p$. We put $\beta = d\alpha \in \Omega^{k+1}(\mathbb{K}^n)$. We have

$$0 = df \wedge (f \, d\alpha - (k - p) \, df \wedge \alpha) = f \, df \wedge \alpha, \tag{3.2}$$

so $df \wedge \alpha = 0$.

Now, since $d\beta = 0$ and $df \wedge \beta = 0$, Proposition 3.4 gives $\beta = df \wedge dy$ with $\gamma \in \Omega^{k-1}(\mathbb{K}^n)$. Then, if we consider $\alpha' = \alpha - (1/(k-p))(f \, dy - (k-p-1) \, df \wedge \gamma)$, we have $d\alpha' = 0$ and $f \, dy - (k-p-1) \, df \wedge \gamma \in B^k_{f,p}(\mathbb{K}^n)$.

THEOREM 3.8. If $k \in \{2, ..., n-2\}$ then $H_f^k(\mathbb{K}^n) = \{0\}$.

PROOF. Let $\alpha \in Z_f^k(\mathbb{K}^n)$. Then $\alpha \in \Omega^k(\mathbb{K}^n)$ and verifies $f \, d\alpha - k \, df \wedge \alpha = 0$.

According to Lemma 3.7 we can assume that α is closed. Now we show that $\alpha \in B_f^k(\mathbb{K}^n)$. Since $d\alpha = 0$ and $df \wedge \alpha = 0$, there exists $\beta \in \Omega^{k-2}(\mathbb{K}^n)$ such that $\alpha = df \wedge d\beta$ (Proposition 3.4). Thus, $\alpha = d_f((-1/(k-1))d\beta)$.

REMARK 3.9. It is possible to adapt this proof to show that $H_{f,p}^k(\mathbb{K}^n) = \{0\}$ if $k \in \{2, ..., n-2\}$ and $p \neq k, k-1$.

LEMMA 3.10. Let $\alpha \in Z_f^1(\mathbb{K}^n)$. If $\operatorname{ord}(j_0^{\infty}(\alpha)) > N$ then $\alpha \in B_f^1(\mathbb{K}^n)$.

PROOF. According to Lemma 3.7, we can assume that $d\alpha = 0$.

Since $df \wedge \alpha = 0$ we have $\alpha = g df$ (see Proposition 3.3), where g is in $\mathcal{F}(\mathbb{K}^n)$ and verifies $\operatorname{ord}(j_0^{\infty}(g)) > 0$. We show that f divides g.

Let $\bar{g} \in \mathcal{F}(\mathbb{K}^n)$ be such that $W \cdot \bar{g} = g$ (see Lemma 3.2); note that $\operatorname{ord}(j_0^{\infty}(\bar{g})) > 0$.

We have $\mathcal{L}_W(df \wedge d\bar{g}) = N df \wedge d\bar{g} + df \wedge dg$, and since $df \wedge dg = -d\alpha = 0$, $df \wedge d\bar{g}$ verifies

$$\mathscr{L}_W(df \wedge d\bar{g}) = N \, df \wedge d\bar{g},\tag{3.3}$$

which means that $df \wedge d\bar{g}$ is either 0 or quasihomogeneous of degree *N*.

But since $\operatorname{ord}(j_0^{\infty}(df \wedge d\bar{g})) > N$, $df \wedge d\bar{g}$ must be 0.

Consequently, there exists $v \in \mathcal{F}(\mathbb{K}^n)$ such that $\partial \bar{g} / \partial x_i = v(\partial f / \partial x_i)$ for any *i*. Thus, $W \cdot \bar{g} = vW \cdot f$ and so g = vf.

We deduce that $\alpha = f\beta$ with $\beta \in \Omega^1(\mathbb{K}^n)$. Now, we have

$$0 = d\alpha = df \wedge \beta + f d\beta, \qquad 0 = df \wedge \alpha = f df \wedge \beta, \tag{3.4}$$

which implies that $d\beta = 0$.

Therefore, $\alpha = f dh = d_f(h)$ with $h \in \mathcal{F}(\mathbb{K}^n)$.

THEOREM 3.11. The space $H^1_f(\mathbb{K}^n)$ is of dimension 1 and spanned by df.

PROOF. Let $\alpha \in Z_f^1(\mathbb{K}^n)$. According to Lemma 3.10, we only have to study the case where α is quasihomogeneous with deg $(\alpha) \leq N$. We have $f d\alpha - df \wedge \alpha = 0$, so $df \wedge d\alpha = 0$. We deduce that $d\alpha = df \wedge \beta$, where β is a quasihomogeneous 1-form of degree deg $(\alpha) - N \leq 0$. But since dx_i is quasihomogeneous of degree $w_i > 0$ for any i, every quasihomogeneous nonzero 1-form has a strictly positive degree. We deduce that $\beta = 0$ and so $d\alpha = 0$. Therefore, $df \wedge \alpha = 0$ which implies that $\alpha = g df$, where g is a quasihomogeneous function of degree deg $(\alpha) - N \leq 0$. Consequently, if deg $(\alpha) < N$ then g = 0; otherwise g is constant. To conclude, note that df is not a cobord because f does not divide df.

3.5. Computation of $H^n_{f,p}(\mathbb{K}^n)$. We compute the spaces $H^n_{f,p}(\mathbb{K}^n)$ for $p \neq n-1$. We consider the application

$$d_f^{(n-q)}:\Omega^{n-1}(\mathbb{K}^n)\longrightarrow\Omega^n(\mathbb{K}^n),\qquad \alpha\longmapsto f\,d\alpha-(q-1)\,df\wedge\alpha,\tag{3.5}$$

with $q \neq 1$ (note that if q = n then we obtain the space $H_{NP}^n(M, \Lambda)$ and if q = 2 then we have $H_{\Lambda}^2(\mathbb{K}^n)$).

We denote $\mathcal{I}^n = \{ df \land \alpha; \ \alpha \in \Omega^{n-1}(\mathbb{K}^n) \}$. It is clear that $\mathcal{I}^n \simeq I_f$ (recall that I_f is the ideal of $\mathcal{F}(\mathbb{K}^n)$ spanned by $\partial f / \partial x_1, \ldots, \partial f / \partial x_n$) and that $\Omega^n(\mathbb{K}^n) / \mathcal{I}^n \simeq Q_f = \mathcal{F}(\mathbb{K}^n) / I_f$.

We put $\sigma = i_W \omega$ (recall that $W = w_1 x_1 (\partial / \partial x_1) + \cdots + w_n x_n (\partial / \partial x_n)$ and that ω is the standard volume form on \mathbb{K}^n). Note that σ is a quasihomogeneous (n-1)-form of degree $\sum_i w_i$ and that $dg \wedge \sigma = (W \cdot g) \omega$ if $g \in \mathcal{F}(\mathbb{K}^n)$.

If $\alpha \in \Omega^{n-1}(\mathbb{K}^n)$, we use the notation $\operatorname{div}(\alpha)$ for $d\alpha = \operatorname{div}(\alpha)\omega$; for example, $\operatorname{div}(\sigma) = \sum_i w_i$. Note that if α is quasihomogeneous, then $\operatorname{div}(\alpha)$ is quasihomogeneous of degree $\operatorname{deg} \alpha - \sum_i w_i$.

LEMMA 3.12. (1) If the ∞ -jet at 0 of γ does not contain a component of degree qN (in particular if $q \leq 0$) then $\gamma \in B^n_{f,n-q}(\mathbb{K}^n) \Leftrightarrow \gamma \in \mathcal{I}^n$.

(2) If γ is a quasihomogeneous *n*-form of degree qN, then $\gamma \in B^n_{f,n-q}(\mathbb{K}^n) \Rightarrow \gamma \in \mathcal{F}^n$.

PROOF. If $\gamma = f d\alpha - (q-1) df \wedge \alpha \in B^n(d_f^{(n-q)})$, where $\alpha \in \Omega^{n-1}$ then $\gamma = df \wedge \beta$ with $\beta = -(q-1)\alpha + (\operatorname{div}(\alpha)/N)\sigma$. This shows the second claim and the first part of the first one.

Now we prove the reverse of the first claim.

Formal case: let $\gamma = \sum_{i>0} \gamma^{(i)}$ and $\beta = \sum \beta^{(i-N)}$ (with $\gamma^{(i)}$ of degree i, $\gamma^{(qN)} = 0$ and $\beta^{(i-N)}$ of degree i - N) such that $\gamma = df \wedge \beta$. If we put $\alpha = (-1/(q-1))\beta + \sum_i (\operatorname{div}(\beta^{(i-N)})/(q-1)(i-qN))\sigma$, we have $d_f^{(n-q)}(\alpha) = \gamma$.

Analytical case: if β is analytic at 0, the function div(β) is analytic too, and since $\lim_{i \to +\infty} (1/(i - qN)) = 0$, the (n - 1)-form defined above is also analytic at 0.

 \mathscr{C}^{∞} case: we suppose that $\gamma = df \wedge \beta$. If we denote $\tilde{\gamma} = j_0^{\infty}(\gamma)$, then there exists a formal (n-1)-form $\tilde{\alpha}$ such that $\tilde{\gamma} = f d\tilde{\alpha} - (q-1) df \wedge \tilde{\alpha}$. Let α be a $\mathscr{C}^{\infty} - (n-1)$ -form such that $\tilde{\alpha} = j_0^{\infty}(\alpha)$. This form verifies $f d\alpha - (q-1) df \wedge \alpha = \gamma + \epsilon$, where ϵ is flat at 0. Since $B_{f,n-q}^n(\mathbb{K}^n) \subset \mathscr{I}^n$, $\epsilon \in \mathscr{I}^n$ so that $\epsilon = df \wedge \mu$, where μ is flat at 0. Let $g \in \mathscr{F}(\mathbb{K}^n)$ be such that $W \cdot g - ((q-1)N - \sum w_i)g = \operatorname{div}(\mu)/(q-1)$ (Lemma 3.2). Then the form $\theta = (-1/(q-1))\mu + g\sigma$ verifies $d_f^{(n-q)}(\theta) = \epsilon$.

REMARK 3.13. (1) Lemma 3.12 gives $B_{f,n-q}^n(\mathbb{K}^n) \subset \mathcal{I}^n$. Thus, there is a surjection from $H_{f,n-q}^n(\mathbb{K}^n)$ onto Q_f . Therefore, if f is not of finite codimension, then $H_{f,n-q}^n(\mathbb{K}^n)$ is an infinite-dimensional vector space.

(2) According to this lemma, if γ is in \mathcal{I}^n then there exits a quasihomogeneous n-form θ , of degree qN, such that $\gamma + \theta \in B^n_{f,n-q}(\mathbb{K}^n)$. Note that θ is in \mathcal{I}^n .

The first claim of this lemma allows us to state the following theorem.

THEOREM 3.14. If $q \leq 0$ then $H^n_{f,n-q}(\mathbb{K}^n) \simeq Q_f$.

Now we suppose that q > 1.

LEMMA 3.15. Let $\alpha \in \Omega^k(\mathbb{K}^n)$ and $p \in \mathbb{Z}$. Then $f d_f^{(p)}(\alpha) = d_f^{(p-1)}(f\alpha)$.

PROOF. The proof is obvious.

LEMMA 3.16. (1) Let q > 2. If $\alpha \in \Omega^n(\mathbb{K}^n)$ is quasihomogeneous of degree (q-1)N and verifies $f \alpha \in B^n_{f,n-q}(\mathbb{K}^n)$, then $\alpha \in B^n_{f,n-q+1}(\mathbb{K}^n)$.

(2) If α is quasihomogeneous of degree N with $f \alpha \in B^n_{f,n-2}(\mathbb{K}^n)$, then $\alpha = 0$.

PROOF. (1) We suppose that $\alpha = g\omega$ with $g \in \mathcal{F}(\mathbb{K}^n)$ quasihomogeneous of degree $(q-1)N - \sum w_i$. We have $fg\omega = f d\beta - (q-1) df \wedge \beta$, where β is a quasihomogeneous (n-1)-form of degree (q-1)N.

If we put $\theta = -(q-1)\beta + ((\operatorname{div}(\beta) - g)/N)\sigma$, then $df \wedge \theta = 0$, and so $\theta = df \wedge \gamma$, where γ is a quasihomogeneous (n-2)-form of degree (q-2)N. Consequently, $\beta = (-1/(q-1)) df \wedge \gamma + ((\operatorname{div}(\beta) - g)/(q-1)N)\sigma$. Now, a computation shows that $f d\beta - (q-1) df \wedge \beta = (1/(q-1)) f df \wedge d\gamma$, that is, $f\alpha = (1/(q-1)) f df \wedge d\gamma$. Therefore, $\alpha = (1/(q-1)) df \wedge d\gamma = (1/(q-1)) df^{(n-q+1)} ((-1/(q-2)) d\gamma)$.

(2) As in (1) (with q = 2), we have $f \alpha = fg\omega = d_f^{(n-2)}(\beta)$ with deg g = N and deg $\beta = N$. We put $\theta = -\beta + ((\operatorname{div}(\beta) - g)/N)\sigma$.

If $\theta \neq 0$ then $\theta = df \wedge \gamma$, where γ is a quasihomogeneous (n - 2)-form of degree 0 which is not possible. So $\theta = 0$, that is, $\beta = ((\operatorname{div}(\beta) - g)/N)\sigma$.

We deduce that $f d\beta - df \wedge \beta = 0$, that is, $\alpha = 0$.

Let \mathfrak{B} be a monomial basis of Q_f (for the existence of such a basis, see [3]). We denote by r_j (j = 2, ..., q - 1) the number of monomials of \mathfrak{B} whose degree is $jN - \sum w_i$ (this number does not depend on the choice of \mathfrak{B}). We also denote by s the dimension of the space of quasihomogeneous polynomials of degree $N - \sum w_i$ and c the codimension of f.

THEOREM 3.17. Let $\alpha \in \Omega^n(\mathbb{K}^n)$. Then there exist unique polynomials h_1, \ldots, h_q (possibly zero) such that

(a) h_1 is quasihomogeneous of degree $N - \sum w_i$,

(b) h_j ($2 \le j \le q-1$) is a linear combination of monomials of \mathfrak{B} of degree $jN - \sum w_i$,

(c) h_q is a linear combination of monomials of \mathfrak{B} , and

$$\alpha = (h_q + f h_{q-1} + \dots + f^{q-1} h_1) \omega \mod B^n_{f,n-q}(\mathbb{K}^n).$$
(3.6)

In particular, the dimension of $H^n_{f,n-a}(\mathbb{K}^n)$ is $c + r_{q-1} + \cdots + r_2 + s$.

Proof

EXISTENCE. We suppose that $\alpha = g\omega$ with $g \in \mathcal{F}(\mathbb{K}^n)$. There exists h_q , a linear combination of the monomials of \mathcal{B} , such that $g = h_q \mod I_f$. So, according to Lemma 3.12 (see Remark 3.13), $g\omega = h_q\omega + df \wedge \beta \mod B^n_{f,n-q}(\mathbb{K}^n)$, where β is a quasihomogeneous (n-1)-form of degree (q-1)N.

Consequently, $g\omega = h_q \omega + (1/(q-1))f d\beta - (1/(q-1))[f d\beta - (q-1) df \wedge \beta] \mod B^n_{f,n-q}(\mathbb{K}^n)$, so we can write

$$g\omega = h_q \omega + f g_{q-1} \omega \mod B^n_{f,n-q}(\mathbb{K}^n), \tag{3.7}$$

where g_{q-1} is quasihomogeneous of degree $(q-1)N - \sum w_i$.

74

In the same way,

$$g_{q-1}\omega = h_{q-1}\omega + fg_{q-2}\omega \mod B^n_{f,n-q+1}(\mathbb{K}^n), \tag{3.8}$$

where h_{q-1} is a linear combination of the monomials of \mathfrak{B} of degree $(q-1)N - \sum w_i$ and g_{q-2} is quasihomogeneous of degree $(q-2)N - \sum w_i, \dots,$

$$g_2\omega = h_2\omega + fh_1\omega \mod B^n_{fn-2}(\mathbb{K}^n), \tag{3.9}$$

where h_2 is a linear combination of the monomials of \mathcal{B} of degree $2N - \sum w_i$ and h_1 is quasihomogeneous of degree $N - \sum w_i$.

Using Lemma 3.15, we get

$$\alpha = g\omega = (h_q + h_{q-1} + f^2 h_{q-2} + \dots + f^{q-1} h_1)\omega \mod B^n \left(d_f^{(n-q)} \right).$$
(3.10)

UNICITY. Let $g = h_q + f h_{q-1} + \cdots + f^{q-1} h_1$ with h_1, \ldots, h_q as in the statement of the theorem. We suppose that $g\omega \in B^n_{f,n-q}(\mathbb{K}^n)$. Then $g\omega \in \mathcal{I}^n$, that is, $g \in I_f$. But since $f h_{q-1} + \cdots + f^{q-1} h_1 \in I_f$ (because $f \in I_f$) we have $h_q \in I_f$ and so $h_q = 0$.

Now, according to Lemma 3.16, $(h_{q-1} + fh_{q-2} + \cdots + f^{q-2}h_1)\omega$ is in $B^n_{f,n-q+1}(\mathbb{K}^n)$ and so, in the same way, $h_{q-1} = 0$.

This way, we get $h_q = h_{q-1} = \cdots = h_2 = 0$ and $fh_1\omega \in B^n_{f,n-2}(\mathbb{K}^n)$. Lemma 3.16 gives $h_1 = 0$.

This theorem allows us to give the dimension of the spaces $H^n_{NP}(\mathbb{K}^n, \Lambda)$ and $H^2_{\Lambda}(\mathbb{K}^n)$.

COROLLARY 3.18. Let $\alpha \in \Omega^n(\mathbb{K}^n)$. Then there exist unique polynomials h_1, \ldots, h_n (Possibly zero) such that

(a) h_1 is quasihomogeneous of degree $N - \sum w_i$,

(b) h_j $(2 \le j \le n-1)$ is a linear combination of monomials of \mathfrak{B} of degree $jN - \sum w_i$, (c) h_n is a linear combination of monomials of \mathfrak{B} , and

$$\alpha = (h_n + f h_{n-1} + \dots + f^{n-1} h_1) \omega \mod B_f^n(\mathbb{K}^n).$$
(3.11)

In particular, the dimension of $H_{NP}^n(\mathbb{K}^n,\Lambda)$ is $c + r_{n-1} + \cdots + r_2 + s$.

COROLLARY 3.19. Let $\alpha \in \Omega^n(\mathbb{K}^n)$. Then there exist unique polynomials h_1, h_2 (possibly zero) such that

(a) h_1 is quasihomogeneous of degree $N - \sum w_i$,

(b) h_2 is a linear combination of monomials of \mathfrak{B} , and

$$\alpha = (h_2 + fh_1)\omega \mod B^n_{f,n-2}(\mathbb{K}^n). \tag{3.12}$$

In particular, the dimension of $H^2_{\Lambda}(\mathbb{K}^n)$ is c + s.

REMARK 3.20. If q = 1, then the space $H_{f,n-1}^n(\mathbb{K}^n)$ is $\Omega^n(\mathbb{K}^n)/f\Omega^n(\mathbb{K}^n)$ which is of infinite dimension.

3.6. Computation of $H^{n-1}_{f,p}(\mathbb{K}^n)$. We compute the spaces $H^{n-1}_{f,p}(\mathbb{K}^n)$ with $p \neq n-1$. We consider the piece of complex

$$\Omega^{n-2}(\mathbb{K}^n) \to \Omega^{n-1}(\mathbb{K}^n) \to \Omega^n(\mathbb{K}^n), \tag{3.13}$$

$$d_{f}^{(n-q)}(\alpha) = f \, d\alpha - (q-2) \, df \wedge \alpha \quad \text{if } \alpha \in \Omega^{n-2}(\mathbb{K}^{n}),$$

$$d_{f}^{(n-q)}(\alpha) = f \, d\alpha - (q-1) \, df \wedge \alpha \quad \text{if } \alpha \in \Omega^{n-1}(\mathbb{K}^{n}),$$
(3.14)

with $q \neq 1$.

Remember that if q = n, we obtain $H_{NP}^{n-1}(K^n, \Lambda)$ and if q = 2 we have $H_{\Lambda}^1(\mathbb{K}^n)$.

LEMMA 3.21. If $\alpha \in Z^{n-1}_{f,n-q}(\mathbb{K}^n)$, then $\alpha = (\operatorname{div}(\alpha)/(q-1)N)\sigma + df \wedge \beta$ with $\beta \in \Omega^{n-2}(\mathbb{K}^n)$ and so, $d\alpha$ verifies $\mathcal{L}_W(d\alpha) - (q-1)N d\alpha = (q-1)N df \wedge d\beta$.

PROOF. It is sufficient to notice that $df \wedge (\alpha - (\operatorname{div}(\alpha) / (q-1)N)\sigma) = 0$ (see Proposition 3.3). For the second claim, we have $(q-1)N d\alpha = (W \cdot \operatorname{div}(\alpha) + (\sum w_i) \operatorname{div}(\alpha))\omega - (q-1)N df \wedge d\beta$ and the conclusion follows.

LEMMA 3.22. If $\alpha \in \mathbb{Z}_{f,n-q}^{n-1}(\mathbb{K}^n)$ with $\operatorname{ord}(j_0^{\infty}(\alpha)) > (q-1)N$, then α is cohomologous to a closed (n-1)-form. In particular, if $q \leq 0$ then every (n-1)-cocycle for $d_f^{(n-q)}$ is cohomologous to a closed (n-1)-form.

PROOF. We have $\alpha = (\operatorname{div}(\alpha)/(q-1)N)\sigma + df \wedge \beta$ (Lemma 3.21) with

$$\mathscr{L}_W(d\alpha) - (q-1)N\,d\alpha = (q-1)N\,df \wedge d\beta. \tag{3.15}$$

Now, let $\gamma \in \Omega^{n-2}(\mathbb{K}^n)$ such that $\mathcal{L}_W \gamma - (q-2)N\gamma = (q-1)N\beta$ (γ exists because ord $(j_0^{\infty}(\beta)) > (q-2)N$, see Lemma 3.2).

We have $\mathcal{L}_W dy - (q-2)Ndy = (q-1)Nd\beta$. Thus $df \wedge dy$ verifies

$$\mathscr{L}_W(df \wedge d\gamma) - (q-1)Ndf \wedge d\gamma = (q-1)Ndf \wedge d\beta.$$
(3.16)

From (3.15) and (3.16) we get $d\alpha = df \wedge d\gamma$.

Indeed, $\mathcal{L}_W(d\alpha - df \wedge d\gamma) = (q-1)N(d\alpha - df \wedge d\gamma)$ but $d\alpha - df \wedge d\gamma$ is not quasihomogeneous of degree (q-1)N.

Now, if we put $\theta = \alpha - (1/(q-1))(f d\gamma - (q-2) df \wedge \gamma)$, we have $d\theta = 0$ and $\theta = \alpha \mod B_{f,n-q}^{n-1}(\mathbb{K}^n)$.

Lemma 3.22 allows us to state the following theorem.

THEOREM 3.23. If we suppose that $q \leq 0$ then $H_{f,n-q}^{n-1}(\mathbb{K}^n) = \{0\}$.

PROOF. Let $\alpha \in Z_{f,n-q}^{n-1}(\mathbb{K}^n)$. We can suppose (according to Lemma 3.22) that $d\alpha = 0$. Thus we have $df \wedge \alpha = 0$. Proposition 3.4 gives then, $\alpha = df \wedge dy$ with $y \in \Omega^{n-3}(\mathbb{K}^n)$. Therefore, $\alpha = d_f^{(n-q)}(-(1/(q-2))dy)$.

Now, we assume that q > 1.

LEMMA 3.24. If $\alpha \in \mathbb{Z}_{f,n-q}^{n-1}(\mathbb{K}^n)$ is a quasihomogeneous (n-1)-form whose degree is strictly lower than (q-1)N, then α is cohomologous to a closed (n-1)-form.

PROOF. According to Lemma 3.21, we have $\alpha = (\operatorname{div}(\alpha)/(q-1)N)\sigma + df \wedge \beta$, and so

$$d\alpha = \frac{(q-1)N}{\deg(\alpha) - (q-1)N} df \wedge d\beta.$$
(3.17)

with

We deduce that, if we put $\theta = \alpha - d_f^{(n-q)}((N/(\deg(\alpha) - (q-1)N))d\beta)$, we have $d\theta = 0$.

REMARK 3.25. A consequence of Lemmas 3.22 and 3.24 is that, if q > 1, every cocycle $\alpha \in Z_{f,n-q}^{n-1}(\mathbb{K}^n)$ is cohomologous to a cocycle $\eta + \theta$, where η is in $Z_{f,n-q}^{n-1}(\mathbb{K}^n)$ and is closed, and θ is quasihomogeneous of degree (q-1)N.

LEMMA 3.26. Let $\alpha = g\sigma$, where g is a quasihomogeneous polynomial of degree $(q-1)N - \sum w_i$. Then

(1) if q > 2, then $\alpha \in B^{n-1}_{f,n-q}(\mathbb{K}^n) \Leftrightarrow g\omega \in B^n_{f,n-q+1}(\mathbb{K}^n)$, (2) if q = 2, $\alpha \in B^{n-1}_{f,n-2}(\mathbb{K}^n) \Leftrightarrow \alpha = 0$.

PROOF. (1) (a) We suppose that $\alpha \in B^{n-1}_{f,n-q}(\mathbb{K}^n)$, that is, $\alpha = f d\beta - (q-2) df \wedge \beta$ with $\beta \in \Omega^{n-2}(\mathbb{K}^n)$. Then $d\alpha = (q-1) df \wedge d\beta$.

On the other hand, $d\alpha = (q-1)Ng\omega$ so $g\omega = (1/N) df \wedge d\beta = d_f^{(n-q+1)} (-d\beta/(q-2)N)$.

(b) Now we suppose that $g\omega \in B^n_{f,n-q+1}(\mathbb{K}^n)$, that is, $g\omega = f d\beta - (q-2) df \wedge \beta$, where β is a quasihomogeneous (n-1)-form of degree (q-2)N. We put $\gamma = i_W \beta \in \Omega^{n-2}(\mathbb{K}^n)$. We have

$$d_{f}^{(n-q)}(y) = f \, dy - (q-2) \, df \wedge y = f \, d(i_{W}\beta) - (q-2) \, df \wedge (i_{W}\beta)$$

= $f (\mathscr{L}_{W}\beta - i_{W} \, d\beta) - (q-2) [-i_{W} (df \wedge \beta) + (i_{W} \, df) \wedge \beta]$
= $f (q-2)N\beta - i_{W} [f \, d\beta - (q-2) \, df \wedge \beta] - (q-2) (W \cdot f)\beta$
= $-i_{W} [f \, d\beta - (q-2) \, df \wedge \beta].$ (3.18)

Consequently, $d_f^{(n-q)}(\gamma) = i_W(g\omega) = -g\sigma$.

(2) If $\alpha = f d\beta$, where β is a quasihomogeneous (n-2)-form of degree deg $\alpha - N = 0$, then $\beta = 0$ and so $\alpha = 0$.

We recall that \mathcal{B} indicates a monomial basis of Q_f . We adopt the same notations as for Theorem 3.17.

THEOREM 3.27. We suppose that q > 2. Let $\alpha \in Z_{f,n-q}^{n-1}(\mathbb{K}^n)$. There exist unique polynomials h_1, \ldots, h_{q-1} (possibly zero) such that

(a) h_1 is quasihomogeneous of degree $N - \sum w_i$,

(b) h_k ($k \ge 2$) is a linear combination of monomials of \mathfrak{B} of degree $kN - \sum w_i$, and

$$\omega = (h_{q-1} + f h_{q-2} + \dots + f^{q-2} h_1) \sigma \mod B^{n-1}_{f,n-q}(\mathbb{K}^n).$$
(3.19)

In particular, the dimension of the space $H_{f,n-q}^{n-1}(\mathbb{K}^n)$ is $r_{q-1} + \cdots + r_2 + s$.

PROOF. If $\alpha \in Z_{f,n-q}^{n-1}(\mathbb{K}^n)$, then α is cohomologous to $\eta + \theta$, where η is in $Z_{f,n-q}^{n-1}(\mathbb{K}^n)$ and is closed, and θ is quasihomogeneous of degree (q-1)N (see Remark 3.25).

The same proof as of Theorem 3.23 shows that η is a cobord.

Now, we have to study θ . According to Lemma 3.21, we can write $\theta = (\operatorname{div}(\theta)/(q-1)N)\sigma + df \wedge \beta$ ($\beta \in \Omega^{n-2}(\mathbb{K}^n)$) with $\mathcal{L}_W(d\theta) - (q-1)Nd\theta = (q-1)Ndf \wedge d\beta$. Since θ is quasihomogeneous of degree (q-1)N, the former relation gives $df \wedge d\beta = 0$. Consequently, if we put $\gamma = df \wedge \beta$, Proposition 3.4 gives $\gamma = df \wedge d\xi$.

Therefore, $\gamma = d_f^{(n-q)}(-(1/(q-2)) d\xi)$ and so $\theta = (\operatorname{div}(\theta)/(q-1)N)\sigma \mod B_{f,n-q}^{n-1}(\mathbb{K}^n)$. The conclusion follows using Lemma 3.26 and Theorem 3.17. **COROLLARY 3.28.** We suppose that q = n. Let $\alpha \in Z_f^{n-1}(\mathbb{K}^n)$. There exist unique polynomials h_1, \ldots, h_{n-1} (possibly zero) such that

(a) h_1 is quasihomogeneous of degree $N - \sum w_i$,

(b) h_k ($k \ge 2$) is a linear combination of monomials of \mathfrak{B} of degree $kN - \sum w_i$, and

$$\omega = (h_{n-1} + f h_{n-2} + \dots + f^{n-2} h_1) \sigma \mod B_f^{n-1}(\mathbb{K}^n).$$
(3.20)

In particular, the dimension of the space $H_{NP}^{n-1}(\mathbb{K}^n, \Lambda)$ is $r_{n-1} + \cdots + r_2 + s$.

REMARK 3.29. If q = 2, the description of the space $H_{f,n-2}^{n-1}(\mathbb{K}^n)$ (and so $H_{\Lambda}^1(\mathbb{K}^n)$) is more difficult. It is possible to show that this space is not of finite dimension. Indeed, we consider the case n = 3 for simplicity (but it is valid for any $n \ge 3$). We put $\alpha = g((\partial f/\partial x) dx \wedge dz + (\partial f/\partial y) dy \wedge dz)$, where g is a function which depends only on z. We have $d\alpha = 0$ and $df \wedge \alpha = 0$, so $\alpha \in Z_{f,n-1}^{n-1}(\mathbb{K}^n)$ but $\alpha \notin B_{f,n-2}^n(\mathbb{K}^n)$ because f does not divide α .

We can yet give more precisions on the space $H_{f,n-2}^{n-1}(\mathbb{K}^n)$.

THEOREM 3.30. Let *E* be the space of (n-1)-forms $h\sigma$, where *h* is a quasihomogeneous polynomial of degree $N - \sum w_i$, and *F* the quotient of the vector space $\{df \wedge d\gamma; \gamma \in \Omega^{n-3}(\mathbb{K}^n)\}$ by the subspace $\{df \wedge d(f\beta); \beta \in \Omega^{n-3}(\mathbb{K}^n)\}$. Then $H^{n-1}_{f,n-2}(\mathbb{K}^n) = E \oplus F$.

J ;*n*-2

PROOF. Let α in $Z_{f,n-2}^{n-1}(\mathbb{K}^n)$.

According to Remark 3.25, there exist a closed (n-1)-form η with $\eta \in Z_{f,n-2}^{n-1}(\mathbb{K}^n)$ and a quasihomogeneous (n-1)-form θ of degree N, such that α is cohomologous to $\eta + \theta$.

We have (Lemma 3.21) $\theta = (\operatorname{div}(\theta)/N)\sigma + df \wedge \beta$ with β quasihomogeneous of degree 0 which is possible only if $\beta = 0$. So, $\theta = g\sigma$, where g is a quasihomogeneous polynomial of degree $N - \sum w_i$. Lemma 3.26 says that $\theta \in B_{f,n-2}^{n-1}(\mathbb{K}^n)$ if and only if $\theta = 0$.

Now we study η . Proposition 3.4 gives $\eta = df \wedge d\gamma$, where γ is an (n-3)-form. If we suppose that $\eta \in B^{n-1}_{f,n-2}(\mathbb{K}^n)$, then $df \wedge d\gamma = f d\xi$ with $\xi \in \Omega^{n-2}(K^n)$, and so $df \wedge d\xi = 0$. Now we apply Proposition 3.4 to $d\xi$ and we obtain $d\xi = df \wedge d\beta$ with $\beta \in \Omega^{n-3}(\mathbb{K}^n)$. Consequently, $df \wedge d\gamma = f df \wedge d\beta$ which implies that $d\gamma = f d\beta + df \wedge \mu$ with $\mu \in \Omega^{n-3}(\mathbb{K}^n)$, and so $d\gamma = d(f\beta) + df \wedge \nu$ with $\nu \in \Omega^{n-3}(\mathbb{K}^n)$.

Therefore, $\eta \in B^{n-1}_{f,n-2}(\mathbb{K}^n) \Leftrightarrow \eta = df \wedge d(f\beta)$.

3.7. Summary. It is time to sum up the results we have found.

The cohomology $H_{f}^{\bullet}(\mathbb{K}^{n})$ (and so the Nambu-Poisson cohomology $H_{NP}^{\bullet}(\mathbb{K}^{n},\Lambda)$) has been entirely computed (see Theorems 3.6, 3.8, 3.11, and Corollaries 3.18 and 3.28).

The spaces of this cohomology are of finite dimension and only the "extremal" ones (i.e., H^0, H^1, H^{n-1} , and H^n) are possibly different to {0}. The spaces $H^0_{NP}(\mathbb{K}^n, \Lambda)$ and $H^1_{NP}(\mathbb{K}^n, \Lambda)$ are always of dimension 1. The dimensions of the spaces $H^{n-1}_{NP}(\mathbb{K}^n, \Lambda)$ and $H^n_{NP}(\mathbb{K}^n, \Lambda)$ depend, on one hand, on the type of the singularity of Λ (via the role played by Q_f), and on the other hand, on the "polynomial nature" of Λ .

Concerning the cohomology $H_{f,n-2}^{\bullet}(\mathbb{K}^n)$, we have computed H^n , that is, $H_{\Lambda}^n(\mathbb{K}^n)$ (see Corollary 3.19) and we have given a sketch of description of H^{n-1} (see Theorem 3.30).

We have also computed the spaces $H_{f,n-2}^0(\mathbb{K}^n)$ (see Theorem 3.6) and $H_{f,n-2}^k(\mathbb{K}^n)$ (see Theorem 3.8) for $k \neq n-2, n-1$, but these spaces are not particularly interesting for our problem. The space $H^2_{\Lambda}(\mathbb{K}^n)$, which describes the infinitesimal deformations of Λ is of finite dimension and its dimension has the same property as the dimension of $H^n_{NP}(\mathbb{K}^n,\Lambda)$. On the other hand, the space $H^1_{\Lambda}(\mathbb{K}^n)$ which is the space of the vector fields preserving Λ modulo the Hamiltonian vector fields, is not of finite dimension.

It is interesting to compare the results we have found on these two cohomologies with the ones given in [9] on the computation of the Poisson cohomology in dimension 2.

Finally, if $p \neq 0, n-2, n-1$, we have computed the spaces $H_{f,p}^0(\mathbb{K}^n), H_{f,p}^{n-1}(\mathbb{K}^n), H_{f,p}^n(\mathbb{K}^n)$, and $H_{f,p}^k(\mathbb{K}^n)$ with $k \neq p, p+1$.

If p = n - 1, we have computed the spaces $H^0_{f,n-1}(\mathbb{K}^n)$ and $H^k_{f,n-1}(\mathbb{K}^n)$ for $2 \le k \le n-2$, $k \ne p, p+1$ (the space $H^n_{f,n-1}(\mathbb{K}^n)$ is of infinite dimension).

4. Examples. In this section, we explicit the cohomology of some particular germs of *n*-vectors.

4.1. Normal forms of *n*-vectors. Let $\Lambda = f(\partial/\partial x_1) \wedge \cdots \wedge \partial/\partial x_n$ be a germ at 0 of *n*-vectors on \mathbb{K}^n ($n \ge 3$) with f of finite codimension (see the beginning of Section 3) and f(0) = 0 (if $f(0) \ne 0$, then the local triviality theorem, see [1, 5] or [11], allows us to write, up to a change of coordinates, that $\Lambda = \partial/\partial x_1 \wedge \cdots \wedge \partial/\partial x_n$).

PROPOSITION 4.1. If 0 is not a critical point for f, then there exist local coordinates y_1, \ldots, y_n such that

$$\Lambda = \gamma_1 \frac{\partial}{\partial \gamma_1} \wedge \dots \wedge \frac{\partial}{\partial \gamma_n}.$$
(4.1)

PROOF. A similar proposition is shown for instance in [9] in dimension 2. The proof can be generalized to the *n*-dimensional ($n \ge 3$) case.

Now we suppose that 0 is a critical point of *f*. Moreover, we suppose that the germ *f* is simple, which means that a sufficiently small neighbourhood (with respect to Whitney's topology; see [3]) of *f* intersects only a finite number of *R*-orbits (two germs *g* and *h* are said to be *R*-equivalent if there exits φ , a local diffeomorphism at 0, such that $g = h \circ \varphi$). Simple germs are those who present a certain kind of stability under deformation.

The following theorem can be found in [2].

THEOREM 4.2. Let f be a simple germ at 0 of finite codimension. Suppose that f has at 0 a critical point with critical value 0. Then there exist local coordinates y_1, \ldots, y_n such that the germ $\Lambda = f(\partial/\partial x_1) \wedge \cdots \wedge \partial/\partial x_n$ can be written, up to a multiplicative constant, $g(\partial/\partial y_1) \wedge \cdots \wedge \partial/\partial y_n$, where g is in the following list:

$$A_{k}: y_{1}^{k+1} \pm y_{2}^{2} \pm \dots \pm y_{n}^{2}, \quad k \ge 1, \quad D_{k}: y_{1}^{2}y_{2} \pm y_{2}^{k-1} \pm y_{3}^{2} \pm \dots \pm y_{n}^{2}, \quad k \ge 4,$$

$$E_{6}: y_{1}^{3} + y_{2}^{4} \pm y_{3}^{2} \pm \dots \pm y_{n}^{2}, \quad E_{7}: y_{1}^{3} + y_{1}y_{2}^{3} \pm y_{3}^{2} \pm \dots \pm y_{n}^{2}, \quad (4.2)$$

$$E_{8}: y_{1}^{3} + y_{2}^{5} \pm y_{3}^{2} \pm \dots \pm y_{n}^{2}.$$

Proposition 4.1 and Theorem 4.2 describe most of the germs at 0 of *n*-vectors on \mathbb{K}^n vanishing at 0.

We can notice that the models given in the former list are all quasihomogeneous polynomials; which justifies the assumption we made in Section 3.

4.2. Some examples. (1) The regular case: $f(x_1, \ldots, x_n) = x_1$.

It is easy to see that $Q_f = \{0\}$ and that f is quasihomogeneous of degree N = 1, with respect to $w_1 = \cdots = w_n = 1$. We have $N - \sum w_i < 0$, so $H_f^0(\mathbb{K}^n) \simeq \mathbb{K}$, $H_f^1(\mathbb{K}^n) = \mathbb{K} \cdot dx_1$ and $H_f^k(\mathbb{K}^n) = \{0\}$ for any $k \ge 2$.

(2) Nondegenerate singularity: $f(x_1,...,X_n) = x_1^2 + \cdots + x_n^2$ with $n \ge 3$.

We have N = 2 and $w_1 = \cdots = w_n = 1$. The space Q_f is isomorphic to \mathbb{K} and is spanned by the constant germ 1, which is of degree 0.

We deduce that $H_f^0(\mathbb{K}^n) \simeq \mathbb{K}$, $H_f^1(\mathbb{K}^n) = \mathbb{K} \cdot (x_1 dx_1 + \cdots + x_n dx_n)$ and $H_f^k = \{0\}$ for $2 \le k \le n-2$.

In order to describe the spaces $H_f^{n-1}(\mathbb{K}^n)$ and $H_f^n(\mathbb{K}^n)$, we look for an integer $k \in \{1, ..., n-1\}$ such that $kN - \sum w_i = \deg 1$, that is, 2k - n = 0.

Therefore,

(a) if *n* is even, then $\{\omega, f^{n/2}\omega\}$ is a basis of $H_f^n(\mathbb{K}^n)$ and $H_f^{n-1}(\mathbb{K}^n)$ is spanned by $\{f^{n/2-1}\sigma\}$,

(b) if *n* is odd, then $H_f^{n-1}(\mathbb{K}^n) = \{0\}$ and the space $H_f^n(\mathbb{K}^n)$ is spanned by $\{\omega\}$. We recall that $\omega = dx_1 \wedge \cdots \wedge dx_n$ and

$$\sigma = i_W \omega = \sum_{i=1}^n (-1)^{i-1} x_i dx_i \wedge \dots \wedge \widehat{dx_i} \wedge \dots \wedge dx_n.$$
(4.3)

(3) The case A_2 with n = 3: $f(x_1, x_2, x_3) = x_1^3 + x_2^2 + x_3^2$.

Here, $w_1 = 2$, $w_2 = w_3 = 3$, and N = 6. Thus, $N - \sum w_i = -2$, $2N - \sum w_i = 4$, and $3N - \sum w_i = 10$.

Moreover, $\mathcal{B} = \{1, x_1\}$ is a monomial basis of Q_f . But as deg 1 = 0 and deg $x_1 = 3$, we have

$$H_{f}^{0}(\mathbb{K}^{3}) \simeq \mathbb{K}, \qquad H_{f}^{1}(\mathbb{K}^{3}) = \mathbb{K} \cdot (3x_{1} dx_{1} + 2x_{2} dx_{2} + 2x_{3} dx_{3}), H_{f}^{2}(\mathbb{K}^{3}) = H_{f}^{3}(\mathbb{K}^{3}) = \{0\}.$$

$$(4.4)$$

(4) The case D_5 with n = 4: $f(x_1, x_2, x_3, x_4) = x_1^2 x_2 + x_2^4 + x_3^2 + x_4^2$.

We have $w_1 = 3$, $w_2 = 2$, $w_3 = w_4 = 4$, and N = 8, then $N - \sum w_i = -5$, $2N - \sum w_i = 3$, $3N - \sum w_i = 11$, and $4N - \sum w_i = 19$.

Now, $\mathfrak{B} = \{1, x_1, x_2, x_2^2, x_2^3\}$ is a monomial basis of Q_f . Here, deg 1 = 0, deg $x_1 = 3$, deg $x_2 = 2$, deg $x_2^2 = 4$, and deg $x_2^3 = 6$. Thus, the only element of \mathfrak{B} whose degree is of type $kN - \sum w_i$ is x_1 .

Consequently,

$$H_{f}^{0}(\mathbb{K}^{4}) \simeq \mathbb{K}, \qquad H_{f}^{1}(\mathbb{K}^{4}) = \mathbb{K} \cdot (2x_{1}x_{2} dx_{1} + (x_{1}^{2} + 4x_{2}^{3}) dx_{2} + 2x_{3} dx_{3} + 2x_{4} dx_{4}), H_{f}^{2}(\mathbb{K}^{4}) = \{0\}, \qquad H_{f}^{3}(\mathbb{K}^{4}) = \mathbb{K} \cdot (x_{1}\sigma),$$

$$(4.5)$$

and $\{\omega, x_1\omega, x_2\omega, x_2^2\omega, x_2^3\omega, x_1f\omega\}$ is a basis of $H_f^4(\mathbb{K}^4)$.

Here, we have $W = 3x_1(\partial/\partial x_1) + 2x_2(\partial/\partial x_2) + 4x_3(\partial/\partial x_3) + 4x_4(\partial/\partial x_4)$ and

$$\sigma = 3x_1 dx_2 \wedge dx_3 \wedge dx_4 - 2x_2 dx_1 \wedge dx_3 \wedge dx_4 + 4x_3 dx_1 \wedge dx_2 \wedge dx_4 - 4x_4 dx_1 \wedge dx_2 \wedge dx_3.$$
(4.6)

References

- D. Alekseevsky and P. Guha, On decomposability of Nambu-Poisson tensor, Acta Math. Univ. Comenian. (N.S.) 65 (1996), no. 1, 1-9. MR 97j:58044. Zbl 864.70012.
- V. I. Arnol'd, *Poisson structures on the plane and on other powers of volume forms*, J. Soviet Math. 47 (1989), no. 3, 2509–2516. Zbl 694.58015.
- [3] V. I. Arnol'd, S. M. Guseĭn-Zade, and A. N. Varchenko, *Singularities of Differentiable Maps. Vol. I*, Monograph in Mathematics, vol. 82, Birkhäuser, Massachusetts, 1985, the classification of critical points, caustics, and wave fronts. MR 86f:58018. Zbl 554.58001.
- [4] G. de Rham, Sur la division de formes et de courants par une forme linéaire, Comment. Math. Helv. 28 (1954), 346-352 (French). MR 16,402d. Zbl 056.31601.
- P. Gautheron, *Some remarks concerning Nambu mechanics*, Lett. Math. Phys. 37 (1996), no. 1, 103-116. MR 97f:58055. Zbl 849.70014.
- [6] R. Ibáñez, M. de León, B. López, J. C. Marrero, and E. Padrón, *Duality and modular class of a Nambu-Poisson structure*, preprint, http://xxx.lanl.gov/abs/math.SG/0004065.
- [7] R. Ibáñez, M. de León, J. C. Marrero, and E. Padrón, *Leibniz algebroid associated with a Nambu-Poisson structure*, J. Phys. A 32 (1999), no. 46, 8129-8144. MR 2001b:53102. Zbl 991.23560.
- [8] B. Malgrange, *Frobenius avec singularités. I. Codimension un*, Inst. Hautes Études Sci. Publ. Math. (1976), no. 46, 163–173 (French). MR 58#22685a. Zbl 355.32013.
- P. Monnier, Poisson cohomology in dimension 2, preprint, http://xxx.lanl.gov/abs/ math.DG/0005261.
- [10] N. Nakanishi, Poisson cohomology of plane quadratic Poisson structures, Publ. Res. Inst. Math. Sci. 33 (1997), no. 1, 73–89. MR 98d:58063. Zbl 997.48807.
- [11] _____, On Nambu-Poisson manifolds, Rev. Math. Phys. 10 (1998), no. 4, 499–510.
 MR 99g:53036. Zbl 929.70015.
- Y. Nambu, Generalized Hamiltonian dynamics, Phys. Rev. D (3) 7 (1973), 2405-2412.
 MR 56#13847.
- [13] C. A. Roche, Cohomologie relative dans le domaine réel, Ph.D. thesis, University of Grenoble, 1973.
- [14] L. Takhtajan, On foundation of the generalized Nambu mechanics, Comm. Math. Phys. 160 (1994), no. 2, 295-315. MR 95b:58067. Zbl 808.70015.
- I. Vaisman, *Lectures on the Geometry of Poisson Manifolds*, Progress in Mathematics, vol. 118, Birkhäuser, Basel, 1994. MR 95h:58057. Zbl 810.53019.

PHILIPPE MONNIER: DÉPARTEMENT DE MATHÉMATIQUES, UNIVERSITÉ MONTPELLIER II, PLACE EUGÈNE BATAILLON 34095, MONTPELLIER CEDEX 5, FRANCE

E-mail address: monnier@math.univ-montp2.fr