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COMPUTATIONS OF NAMBU-POISSON COHOMOLOGIES

PHILIPPE MONNIER

(Received 29 September 2000)

Abstract. We want to associate to an n-vector on a manifold of dimension n a cohomol-
ogy which generalizes the Poisson cohomology of a 2-dimensional Poisson manifold. Two
possibilities are given here. One of them, the Nambu-Poisson cohomology, seems to be the
most pertinent. We study these two cohomologies locally, in the case of germs of n-vectors
on Kn (K=R or C).

2000 Mathematics Subject Classification. 53D17.

1. Introduction. A way to study a geometrical object is to associate to it a coho-

mology. In this paper, we focus on the n-vectors on an n-dimensional manifold M .
If n = 2, the 2-vectors on M are the Poisson structures thus, we can consider the

Poisson cohomology. In dimension 2, this cohomology has three spaces. The first

one, H0, is the space of functions whose Hamiltonian vector field is zero (Casimir
functions). The second one, H1, is the quotient of the space of infinitesimal automor-
phisms (or Poisson vector fields) by the subspace of Hamiltonian vector fields. The

last one, H2, describes the deformations of the Poisson structure. In a previous paper
(see [9]) we have computed the cohomology of germs at 0 of Poisson structures on K2

(K=R or C).
In order to generalize this cohomology to the n-dimensional case (n ≥ 3), we can

follow the same reasoning. These spaces are not necessarily of finite dimension and

it is not always easy to describe them precisely.

Recently, a team of Spanish researchers has defined a cohomology, called Nambu-

Poisson cohomology, for the Nambu-Poisson structures (see [6]). In this paper, we

adapt their construction to our particular case. We will see that this cohomology gen-

eralizes in a certain sense the Poisson cohomology in dimension 2. Then we compute

locally this cohomology for germs at 0 of n-vectors Λ = f(∂/∂x1)∧···∧ ∂/∂xn on
Kn (K = R or C), with the assumption that f is a quasihomogeneous polynomial of
finite codimension (“most of” the germs of n-vectors have this form). This computa-
tion is based on a preliminary result that we have shown, in the formal case and in

the analytical case (so, the �∞ case is not entirely solved). The techniques we use in
this paper are quite the same as in [9].

2. Nambu-Poisson cohomology. LetM be a differentiablemanifold of dimensionn
(n≥ 3), admitting a volume formω. We denote by �∞(M) the space of �∞ functions
on M , by Ωk(M) (k = 0, . . . ,n) the �∞(M)-module of k-forms on M , and by χk(M)
(k= 0, . . . ,n) the �∞(M)-module of k-vectors on M .
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We consider an n-vector Λ on M . Note that Λ is a Nambu-Poisson structure on M .
Recall that a Nambu-Poisson structure onM of order r is a skew-symmetric r -linear

map {, . . . ,}
�∞(M)×···×�∞(M) �→�∞(M),

(
f1, . . . ,fr

) 
 �→ {f1, . . . ,fr}, (2.1)

which satisfies{
f1, . . . ,fr−1,gh

}= {f1, . . . ,fr−1,g}h+g{f1, . . . ,fr−1,h},
{
f1, . . . ,fr−1,

{
g1, . . . ,gr

}}=
r∑
i=1

{
g1, . . . ,gi−1,

{
f1, . . . ,fr−1,gi

}
,gi+1, . . . ,gr

}
,

(2.2)

for any f1, . . . ,fr−1,g,h,g1, . . . ,gr in �∞(M). It is clear that we can associate to such
a bracket an r -vector on M . If r = 2, we rediscover Poisson structures. Thus, Nambu-
Poisson structures can be seen as a kind of generalization of Poisson structures. The

notion of Nambu-Poisson structures was introduced in [14] by Takhtajan in order to

give a formalism to an idea of Y. Nambu (see [12]).

Here, we suppose that the set {x ∈ M ; Λx ≠ 0} is dense in M . We are going to
associate a cohomology to (M,Λ).

2.1. The choice of the cohomology. If M is a differentiable manifold of dimen-

sion 2, then the Poisson structures on M are the 2-vectors on M . If Π is a Poisson
structure on M , then we can associate to (M,Π) the complex

0 �→�∞(M) ∂
������������������������������������→ χ1(M) ∂

������������������������������������→ χ2(M) �→ 0 (2.3)

with ∂(g) = [g,Π] = Xg (Hamiltonian of g) if g ∈ �∞(M) and ∂(X) = [X,Π] ([, ] in-
dicates Schouten’s bracket) if X ∈ χ1(M). The cohomology of this complex is called
the Poisson cohomology of (M,Π). This cohomology has been studied for instance in
[9, 10, 15].

Now ifM is of dimension n with n≥ 3, we want to generalize this cohomology. Our
first approach was to consider the complex

0 �→ (�∞(M)
)n−1 ∂

������������������������������������→ χ1(M) ∂
������������������������������������→ χn(M) �→ 0 (2.4)

with ∂(X)= [X,Λ] and ∂(g1, . . . ,gn−1)= idg1∧···∧dgn−1Λ=Xg1,...,gn−1 (Hamiltonian vec-

tor field) where we adopt the convention idg1∧···∧dgn−1Λ = Λ(dg1, . . . ,dgn−1,•). We
denote by H0Λ(M), H1Λ(M), and H2Λ(M) the three spaces of cohomology of this com-
plex. With this cohomology, we rediscover the interpretation of the first spaces of the

Poisson cohomology, that is,H2Λ(M) describes the infinitesimal deformations ofΛ and
H1Λ(M) is the quotient of the algebra of vector fields which preserve Λ by the ideal of
Hamiltonian vector fields.

In [6], the authors associate to any Nambu-Poisson structure on M a cohomology.

The second idea is then to adapt their construction to our particular case.

Let #Λ be the morphism of �∞(M)-modules Ωn−1(M)→ χ1(M) :α� iαΛ. Note that
ker#Λ = {0} (because the set of regular points of Λ is dense). We can define (see [7])
an R-bilinear operator [[, ]] :Ωn−1(M)×Ωn−1(M)→Ωn−1(M) by

[[α,β]]=�#Λαβ+(−1)n
(
idαΛ

)
β. (2.5)
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The vector spaceΩn−1(M) equipped with [[, ]] is a Lie algebra (for any Nambu-Poisson
structure, it is a Leibniz algebra). Moreover, this bracket verifies that #Λ[[α,β]] =
[#Λα,#Λβ] for any α,β inΩn−1(M). The triple (Λn−1(T∗(M)),[[ , ]],#Λ) is then a Lie al-
gebroid and the Nambu-Poisson cohomology of (M,Λ) is the Lie algebroid cohomology
of Λn−1(T∗(M)) (for any Nambu-Poisson structure, it is more elaborate see [6]). More
precisely, for every k∈ {0, . . . ,n}, we consider the vector space Ck(Ωn−1(M);�∞(M))
of the skew-symmetric and �∞(M)-k-multilinear maps Ωn−1(M) × ··· × Ωn−1(M)
→ �∞(M). The cohomology operator ∂ : Ck(Ωn−1(M);�∞(M)) → Ck+1(Ωn−1(M);
�∞(M)) is defined by

∂c
(
α0, . . . ,αk

)=
k∑
i=0

(−1)i(#Λαi
)·c(α0, . . . , α̂i, . . . ,αk

)

+
∑

0≤i<j≤k
(−1)i+jc([[αi,αj

]]
,α0, . . . , α̂i, . . . , α̂j , . . . ,αk

) (2.6)

for all c ∈ Ck(Ωn−1(M);�∞(M)) and α0, . . . ,αk in Ωn−1(M).
The Nambu-Poisson cohomology of (M,Λ), denoted by H•

NP(M,Λ), is the cohomol-
ogy of this complex.

2.2. An equivalent cohomology. So defined, the Nambu-Poisson cohomology is

quite difficult to manipulate. We are going to give an equivalent cohomology which is

more accessible.

Recall that we assume that M admits a volume form ω.
Let f ∈�∞(M), we define the operator

df :Ωk(M) �→Ωk+1(M), α 
 �→ f dα−kdf ∧α. (2.7)

It is easy to prove that df ◦df = 0. We denote by H•
f (M) the cohomology of this

complex. Let  be the isomorphism χ1(M)→Ωn−1(M), X � iXω.

Lemma 2.1. (1) If X ∈ χ1(M), then #Λ( (X))= (−1)n−1fX, where f = iΛω.

(2) If X and Y are in χ1(M), then

(−1)n−1[[ (X), (Y)]]= f 
(
[X,Y]

)+(X ·f) (Y)−(Y ·f) (X). (2.8)

Proof. (1) Obvious.

(2) We have #Λ([[ (X), (Y)]]) = [#Λ( (X)),#Λ( (Y))] (property of the Lie alge-
broid), which implies that

#Λ
([[

 (X), (Y)
]])= f(X ·f)Y −f(Y ·f)X+f 2[X,Y]

= (−1)n−1#Λ
(
(X ·f) (Y)−(Y ·f) (X)+f ([X,Y])). (2.9)

The result follows via the injectivity of #Λ.

Proposition 2.2. If We put f = iΛω, then H•
NP(M,Λ) is isomorphic to H•

f (M).

Proof. For every k, we consider the applicationϕ : Ck(Ωn−1(M);�∞(M))→Ωk(M)
defined by

ϕ(c)
(
X1, . . . ,Xk

)= c
(
(−1)n−1 (X1), . . . ,(−1)n−1 (Xk

))
, (2.10)
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where c ∈ Ck(Ωn−1(M);�∞(M)) and X1, . . . ,Xk ∈ χ1(M). It is easy to see that ϕ is an

isomorphism of vector spaces. We show that it is an isomorphism of complexes.

Let c ∈ Ck(Ωn−1(M);�∞(M)). We put α = ϕ(c). If X0, . . . ,Xk are in χ1(M), then
ϕ(∂c)(X0, . . . ,Xk)= (−1)(n−1)(k+1)∂c( (X0), . . . , (Xk))=A+B, where

A= (−1)(n−1)(k+1)
k∑
i=0

(−1)i#Λ
(
 
(
Xi
))·c( (X0), . . . ,  ̂(Xi

)
, . . . , 

(
Xk
))
,

B = (−1)(n−1)(k+1)
∑

0≤i<j≤k
(−1)i+jc

([[
 
(
Xi
)
, 
(
Xj
)]]
, 
(
X0
)
, . . . ,  ̂

(
Xi
)
, . . . ,  ̂

(
Xj
)
, . . . , 

(
Xk
))
.

(2.11)

We have A= f
∑k

i=0(−1)iXi ·α(X0, . . . , X̂i, . . . ,Xk) and

B = f
∑

0≤i<j≤k
(−1)i+jα([Xi,Xj

]
,X0, . . . , X̂i, . . . , X̂j , . . . ,Xk

)

+
∑

0≤i<j≤k
(−1)i+j(Xi ·f

)
α
(
Xj,X0, . . . , X̂i, . . . , X̂j , . . . ,Xk

)

−
∑

0≤i<j≤k
(−1)i+j(Xj ·f

)
α
(
Xi,X0, . . . , X̂i, . . . , X̂j , . . . ,Xk

)

= f
∑

0≤i<j≤k
(−1)i+jα([Xi,Xj

]
,X0, . . . , X̂i, . . . , X̂j , . . . ,Xk

)

−k
k∑
i=0

(−1)i(Xi ·f
)
α
(
X0, . . . , X̂i, . . . ,Xk

)
.

(2.12)

Consequently, ϕ(∂c)= dfα= df (ϕ(c)).

Remark 2.3. We claim that this cohomology is a “good” generalization of the

Poisson cohomology of a 2-dimensional Poisson manifold. Indeed, if (M,Π) is an ori-
entable Poisson manifold of dimension 2, we consider the volume form ω on M and

we put

φ2 : χ2(M) �→Ω2(M), φ1 : χ1(M) �→Ω1(M), (2.13)

defined by

φ2(Γ)= (iΓω)ω, φ1(X)=−iXω, (2.14)

for every 2-vector Γ and vector field X.
We also put φ0 = id :�∞(M)→�∞(M).
If we denote by ∂ the operator of the Poisson cohomology, and f = iΠω, it is quite

easy to see that

φ :
(
χ•(M),∂

)
�→ (Ω•(M),df

)
(2.15)

is an isomorphism of complexes.

Remark 2.4. (1) The definitions we have given make sense if we work in the holo-

morphic case or in the formal case.

(2) Important: if h is a function on M which does not vanish on M , then the coho-
mologies H•

f (M) and H•
fh(M) are isomorphic.

Indeed, the applications (Ωk(M),dfh) → (Ωk(M),df ), α � α/hk give an isomor-
phism of complexes.
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In particular, if f does not vanish onM then H•
f (M) is isomorphic to the de Rham’s

cohomology.

2.3. Other cohomologies. We can construct other complexes which look like

(Ω•(M),df ). More precisely we denote, for p ∈ Z,

d(p)f :Ωk(M) �→Ωk+1(M), α 
 �→ f dα−(k−p)df ∧α. (2.16)

We denote by H•
f ,p(M) the cohomology of these complexes. We will see in Section 3

some relations between these different cohomologies.

Using the contraction i•ω, it is quite easy to prove the following proposition.

Proposition 2.5. The spaces H1Λ(M) and H2Λ(M) are isomorphic to Hn−1
f ,n−2(M) and

Hn
f,n−2(M).

Remark 2.6. The two properties of Remark 2.4 are valid for H•
f ,p(M) with p ∈ Z.

3. Computation. Henceforth, we will work locally. Let Λ be a germ of n-vectors on
Kn (K indicates R or C) with n ≥ 3. We denote by �(Kn) (Ωk(Kn),χ(Kn)) the space
of germs at 0 of (holomorphic, analytic, �∞, formal) functions (k-forms, vector fields).
We can write Λ (with coordinates (x1, . . . ,xn)) Λ = f(∂/∂x1)∧ ··· ∧ ∂/∂xn, where
f ∈�(Kn). We assume that the volume form ω is dx1∧···∧dxn.
We suppose that f(0) = 0 (see Remark 2.4) and that f is of finite codimension,

which means that Qf =�(Kn)/If (If is the ideal spanned by ∂f/∂x1, . . . ,∂f/∂xn) is a
finite-dimensional vector space.

Remark 3.1. It is important to note that, according to Tougeron’s theorem (cf. [3]),

if f is of finite codimension, then the set f−1({0}) is, from the topological point of

view, the same as the set of the zeros of a polynomial.

Therefore, if g is a germ at 0 of functions which satisfies fg = 0, then g = 0.
Moreover, we suppose that f is a quasihomogeneous polynomial of degree N (for

a justification of this additional assumption, see Section 4). We are going to recall the

definition of the quasihomogeneity.

3.1. Quasihomogeneity. Let (w1, . . . ,wn)∈ (N∗)n. We denote byW the vector field

w1x1(∂/∂x1)+···+wnxn(∂/∂xn) on Kn. We say that a nonzero tensor T is quasi-
homogeneous with weights w1, . . . ,wn and of (quasi)degree N ∈ Z if �WT = NT (�
indicates the Lie derivative operator). Note that T is then polynomial.
If f is a quasihomogeneous polynomial of degree N , then N = k1w1+···+knwn

with k1, . . . ,kn ∈N; so, an integer is not necessarily the quasidegree of a polynomial.
If f ∈K[[x1, . . . ,xn]], we can write f =

∑∞
i=0fi with fi quasihomogeneous of degree i

(we adopt the convention that fi = 0 if i is not a quasidegree); f is said to be of order
d (ord(f ) = d) if all of its monomials have a degree d or higher. For more details,
see [3].

Since �W and the exterior differentiation d commute, if α is a quasihomogeneous
k-form, then dα is a quasihomogeneous (k+1)-form of degree degα. In particular,
it is important to notice that dxi is a quasihomogeneous 1-form of degree wi (note

that ∂/∂xi is a quasihomogeneous vector field of degree −wi). Thus, the volume form
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ω= dx1∧···∧dxn is quasihomogeneous of degree w1+···+wn. Note that a quasi-

homogeneous nonzero k-form (k≥ 1) has a degree strictly positive.
Note that if f is a quasihomogeneous polynomial of degree N , then the n-vector

Λ= f(∂/∂x1)∧···∧∂/∂xn is quasihomogeneous of degree N−
∑

iwi.

In what follows, the degreeswill be quasidegreeswith respect toW =w1x1(∂/∂x1)+
···+wnxn(∂/∂xn).
We will need the following result.

Lemma 3.2. Let k1, . . . ,kn ∈N and put p =∑kiwi. Assume that g ∈�(Kn) and α∈
Ωi(Kn) verify ord(j∞0 (g)) > p and ord(j∞0 (α)) > p (j∞0 indicates the ∞-jet at 0). Then
(1) there exists h∈�(Kn) such that W ·h−ph= g,
(2) there exists β∈Ωi(Kn) such that �Wβ−pβ=α.

Proof. The first claim is only a generalization of Lemma 3.5 in [9] (it also appears

in Lemma 2 in [2]) and it can be proved in the same way. The second claim is a conse-

quence of the first.

Now, we compute the spacesHk
f (K

n) (i.e.,HK
NP(Kn,Λ)) for k=0, . . . ,n. We denote by

Zk
f (K

n) and Bkf (K
n) the spaces of k-cocycles and k-cobords. We also compute some

spaces Hk
f,p(K

n) with particular interest in the spaces Hn
f,n−2(K

n) (i.e., H2Λ(Kn)) and
Hn−1
f ,n−2(K

n) (i.e., H1Λ(Kn)). We denote by Zk
f ,p(K

n) (Bkf ,p(K
n)) the spaces of k-cocycles

(k-cobords) for the operator d(p)f .

3.2. Two useful preliminary results. In the computation of these spaces of coho-

mology, we need the two following propositions. The first is only a corollary of the de

Rham’s division lemma (see [4]).

Proposition 3.3. Let f ∈�(Kn) of finite codimension. If α∈Ωk(Kn) (1≤k≤n−1)
verifies df ∧α= 0, then there exists β∈Ωk−1(Kn) such that α= df ∧β.

Proposition 3.4. Let f ∈�(Kn) of finite codimension. Let α be a k-form (2 ≤ k ≤
n−1) which verifies dα= 0 and df ∧α= 0, then there exists γ ∈Ωk−2(Kn) such that
α= df ∧dγ.

Proof. We prove this result in the formal case and in the analytical case.

Formal case: let α be a quasihomogeneous k-form of degree p which verifies the
hypotheses. Since df ∧α= 0, we have α= df ∧β1, where β1 is a quasihomogeneous
(k−1)-form of degree p−N . Now, since dα = 0, we have df ∧dβ1 = 0 and so dβ1 =
df ∧β2, where β2 is a quasihomogeneous (k−1)-form of degree p−2N . This way, we
can construct a sequence (βi) of quasihomogeneous (k−1)-forms with degβi = p−iN
which verifies that dβi = df∧βi+1. Let q ∈N such that p−qN ≤ 0. Thus, we have βq =
0 and so dβq−1 = 0, that is, βq−1 = dγq−1, where γq−1 is a (k−2)-form. Consequently,
dβq−2 = df ∧dγq−1 which implies that βq−2 = −df ∧γq−1+dγq−2, where γq−2 is a
(k− 2)-form. In the same way, dβq−3 = df ∧dγq−2 so βq−3 = −df ∧ γq−2 +dγq−3,
where γq−3 is a (k−2)-form. This way, we can show that β1 = −df ∧γ2+dγ1, where
γ1 and γ2 are (k−2)-forms. Therefore, α= df ∧dγ1.
Analytical case: in [8], Malgrange gave a result on the relative cohomology of a germ

of an analytical function. In particular, he showed that in our case, if β is a germ at
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0 of analytical r -forms (r < n−1) which verifies dβ = df ∧µ (µ is an r -form) then
there exist two germs of analytical (r −1)-forms γ and ν such that β= dγ+df ∧ν .
Now, we prove our proposition. Let α be a germ of analytical k-forms (2≤ k≤n−1)

which verifies the hypotheses of the proposition. Then there exists a (k−1)-form β
such that α = df ∧β (Proposition 3.3). But since 0 = dα = −df ∧dβ, we have dβ =
df ∧µ and so (see [8]) β= dγ+df ∧ν , where γ and ν are analytical (k−2)-forms. We
deduce that α= df ∧dγ, where γ is analytic.

Remark 3.5. Important: in fact, some results which appear in [13] lead us to think

that this proposition is not true in the real �∞ case.
The computation of the spaces Hn

f,p(K
n), Hn−1

f ,p (Kn) (p ≠ n− 2), and H0f ,p(K
n)

does not use this proposition, so it still holds in the �∞ case.
The results we find on the other spaces should be the same in the �∞ case as in the

analytical case but another proof need to be found.

3.3. Computation ofH0f ,p(K
n). We consider the applicationd(p)f :Ω0(Kn)→Ω1(Kn),

g� f dg+pdf ∧g.
Theorem 3.6. (1) If p > 0 then H0f ,p(K

n)= {0}.
(2) If p ≤ 0 then H0f ,p(Kn)=K·f−p .

Proof. (1) If g ∈ �(Kn) verifies d(p)f g = 0, then d(fpg) = 0, and so fpg is con-
stant. But as f(0)= 0, fpgmust be 0, that is, g = 0 (because f is of finite codimension;
see Remark 3.1).

(2) We use an induction to show that for any k≥ 0, if g satisfies fdg = kgdf then
g = λfk, where λ∈K.
For k= 0 it is obvious.
Now we suppose that the property is true for k≥ 0. We show that it is still valid for

k+1. Let g ∈�(Kn) be such that

fdg = (k+1)gdf . (3.1)

Then df∧dg = 0 and so there exists h∈�(Kn) such that dg = hdf (Proposition 3.3).
Replacing dg by hdf in (3.1), we get fhdf = (k+1)gdf , that is, g = (1/(k+1))fh.
Now, this former relation gives, on one hand, f dg = (1/(k+1))(f 2dh+fhdf) and
on the other hand, using (3.1), f dg = fhdf . Consequently, f dh = khdf and so
h= λfk with λ∈K.
3.4. Computation of Hk

f (K
n) 1≤ k≤n−2

Lemma 3.7. Let α∈ Zk
f ,p(K

n) with 1≤ k≤n−2. Then α is cohomologous to a closed

k-form.

Proof. Wehave f dα−(k−p)df∧α= 0. If k= p thenα is closed. Nowwe suppose
that k≠ p. We put β= dα∈Ωk+1(Kn). We have

0= df ∧(f dα−(k−p)df ∧α)= f df ∧α, (3.2)

so df ∧α= 0.
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Now, since dβ = 0 and df ∧ β = 0, Proposition 3.4 gives β = df ∧dγ with γ ∈
Ωk−1(Kn). Then, if we consider α′ =α−(1/(k−p))(f dγ−(k−p−1)df∧γ), we have
dα′ = 0 and f dγ−(k−p−1)df ∧γ ∈ Bkf ,p(K

n).

Theorem 3.8. If k∈ {2, . . . ,n−2} then Hk
f (K

n)= {0}.
Proof. Let α∈ Zk

f (K
n). Then α∈Ωk(Kn) and verifies f dα−kdf ∧α= 0.

According to Lemma 3.7 we can assume that α is closed. Now we show that α ∈
Bkf (K

n). Since dα= 0 and df∧α= 0, there exists β∈Ωk−2(Kn) such that α= df∧dβ
(Proposition 3.4). Thus, α= df ((−1/(k−1))dβ).

Remark 3.9. It is possible to adapt this proof to show that Hk
f,p(K

n) = {0} if k ∈
{2, . . . ,n−2} and p ≠ k, k−1.

Lemma 3.10. Let α∈ Z1f (K
n). If ord(j∞0 (α)) > N then α∈ B1f (K

n).

Proof. According to Lemma 3.7, we can assume that dα= 0.
Since df ∧α = 0 we have α = gdf (see Proposition 3.3), where g is in �(Kn) and

verifies ord(j∞0 (g)) > 0. We show that f divides g.
Let ḡ ∈�(Kn) be such that W · ḡ = g (see Lemma 3.2); note that ord(j∞0 (ḡ)) > 0.
We have�W(df∧dḡ)=Ndf∧dḡ+df∧dg, and since df∧dg =−dα= 0, df∧dḡ

verifies

�W(df ∧dḡ)=Ndf ∧dḡ, (3.3)

which means that df ∧dḡ is either 0 or quasihomogeneous of degree N .
But since ord(j∞0 (df ∧dḡ)) > N , df ∧dḡ must be 0.
Consequently, there exists ν ∈ �(Kn) such that ∂ḡ/∂xi = ν(∂f/∂xi) for any i.

Thus, W · ḡ = νW ·f and so g = νf .
We deduce that α= fβ with β∈Ω1(Kn).
Now, we have

0= dα= df ∧β+f dβ, 0= df ∧α= f df ∧β, (3.4)

which implies that dβ= 0.
Therefore, α= f dh= df (h) with h∈�(Kn).

Theorem 3.11. The space H1f (K
n) is of dimension 1 and spanned by df .

Proof. Let α ∈ Z1f (K
n). According to Lemma 3.10, we only have to study the

case where α is quasihomogeneous with deg(α) ≤ N . We have f dα−df ∧α = 0,
so df ∧dα= 0. We deduce that dα= df ∧β, where β is a quasihomogeneous 1-form
of degree deg(α)−N ≤ 0. But since dxi is quasihomogeneous of degree wi > 0 for
any i, every quasihomogeneous nonzero 1-form has a strictly positive degree. We de-
duce that β = 0 and so dα = 0. Therefore, df ∧α = 0 which implies that α = gdf ,
where g is a quasihomogeneous function of degree deg(α)−N ≤ 0. Consequently, if
deg(α) < N then g = 0; otherwise g is constant. To conclude, note that df is not a
cobord because f does not divide df .
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3.5. Computation of Hn
f,p(K

n). We compute the spaces Hn
f,p(K

n) for p ≠n−1. We
consider the application

d(n−q)f :Ωn−1(Kn) �→Ωn(Kn), α 
 �→ f dα−(q−1)df ∧α, (3.5)

with q ≠ 1 (note that if q = n then we obtain the space Hn
NP(M,Λ) and if q = 2 then

we have H2Λ(Kn)).
We denote �n = {df ∧α; α ∈ Ωn−1(Kn)}. It is clear that �n � If (recall that If

is the ideal of �(Kn) spanned by ∂f/∂x1, . . . ,∂f/∂xn) and that Ωn(Kn)/�n � Qf =
�(Kn)/If .
We put σ = iWω (recall that W =w1x1(∂/∂x1)+···+wnxn(∂/∂xn) and that ω is

the standard volume form on Kn). Note that σ is a quasihomogeneous (n−1)-form
of degree

∑
iwi and that dg∧σ = (W ·g)ω if g ∈�(Kn).

If α ∈ Ωn−1(Kn), we use the notation div(α) for dα = div(α)ω; for example,
div(σ) = ∑iwi. Note that if α is quasihomogeneous, then div(α) is quasihomoge-
neous of degree degα−∑iwi.

Lemma 3.12. (1) If the ∞-jet at 0 of γ does not contain a component of degree qN
(in particular if q ≤ 0) then γ ∈ Bnf,n−q(K

n)	 γ ∈ �n.

(2) If γ is a quasihomogeneous n-form of degree qN , then γ ∈ Bnf,n−q(K
n)⇒ γ ∈ �n.

Proof. If γ = f dα−(q−1)df ∧α∈ Bn(d(n−q)f ), where α∈Ωn−1 then γ = df ∧β
with β=−(q−1)α+(div(α)/N)σ . This shows the second claim and the first part of
the first one.

Now we prove the reverse of the first claim.

Formal case: let γ = ∑i>0γ(i) and β = ∑β(i−N) (with γ(i) of degree i, γ(qN) = 0
and β(i−N) of degree i−N) such that γ = df ∧ β. If we put α = (−1/(q − 1))β+∑

i(div(β(i−N))/(q−1)(i−qN))σ , we have d(n−q)f (α)= γ.
Analytical case: if β is analytic at 0, the function div(β) is analytic too, and since

limi→+∞(1/(i−qN))= 0, the (n−1)-form defined above is also analytic at 0.
�∞ case: we suppose that γ = df ∧β. If we denote γ̃ = j∞0 (γ), then there exists a

formal (n−1)-form α̃ such that γ̃ = f dα̃− (q−1)df ∧ α̃. Let α be a �∞ − (n−1)-
form such that α̃ = j∞0 (α). This form verifies f dα− (q−1)df ∧α = γ+ε, where ε
is flat at 0. Since Bnf,n−q(K

n) ⊂ �n, ε ∈ �n so that ε = df ∧µ, where µ is flat at 0. Let
g ∈�(Kn) be such thatW ·g−((q−1)N−∑wi)g = div(µ)/(q−1) (Lemma 3.2). Then
the form θ = (−1/(q−1))µ+gσ verifies d(n−q)f (θ)= ε.

Remark 3.13. (1) Lemma 3.12 gives Bnf,n−q(K
n) ⊂ �n. Thus, there is a surjection

fromHn
f,n−q(K

n) ontoQf . Therefore, if f is not of finite codimension, thenHn
f,n−q(K

n)
is an infinite-dimensional vector space.

(2) According to this lemma, if γ is in �n then there exits a quasihomogeneous

n-form θ, of degree qN , such that γ+θ ∈ Bnf,n−q(K
n). Note that θ is in �n.

The first claim of this lemma allows us to state the following theorem.

Theorem 3.14. If q ≤ 0 then Hn
f,n−q(K

n)�Qf .

Now we suppose that q > 1.
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Lemma 3.15. Let α∈Ωk(Kn) and p ∈ Z. Then f d(p)f (α)= d(p−1)f (fα).

Proof. The proof is obvious.

Lemma 3.16. (1) Let q > 2. If α ∈Ωn(Kn) is quasihomogeneous of degree (q−1)N
and verifies fα∈ Bnf,n−q(K

n), then α∈ Bnf,n−q+1(K
n).

(2) If α is quasihomogeneous of degree N with fα∈ Bnf,n−2(K
n), then α= 0.

Proof. (1) We suppose that α= gω with g ∈�(Kn) quasihomogeneous of degree
(q−1)N−∑wi. We have fgω= f dβ−(q−1)df∧β, where β is a quasihomogeneous
(n−1)-form of degree (q−1)N .
If we put θ = −(q−1)β+ ((div(β)−g)/N)σ , then df ∧θ = 0, and so θ = df ∧γ,

where γ is a quasihomogeneous (n−2)-form of degree (q−2)N . Consequently, β =
(−1/(q−1))df∧γ+((div(β)−g)/(q−1)N)σ . Now, a computation shows that f dβ−
(q−1)df ∧β = (1/(q−1))f df ∧dγ, that is, fα = (1/(q−1))f df ∧dγ. Therefore,
α= (1/(q−1))df ∧dγ = (1/(q−1))d(n−q+1)f ((−1/(q−2))dγ).
(2) As in (1) (with q=2), we have fα=fgω=d(n−2)f (β)with degg=N and degβ=N .

We put θ =−β+((div(β)−g)/N)σ .
If θ ≠ 0 then θ = df ∧γ, where γ is a quasihomogeneous (n−2)-form of degree 0

which is not possible. So θ = 0, that is, β= ((div(β)−g)/N)σ .
We deduce that f dβ−df ∧β= 0, that is, α= 0.
Let� be amonomial basis ofQf (for the existence of such a basis, see [3]). We denote

by rj (j = 2, . . . ,q−1) the number of monomials of � whose degree is jN−∑wi (this

number does not depend on the choice of�). We also denote by s the dimension of the
space of quasihomogeneous polynomials of degree N−∑wi and c the codimension
of f .

Theorem 3.17. Let α ∈ Ωn(Kn). Then there exist unique polynomials h1, . . . ,hq
(possibly zero) such that

(a) h1 is quasihomogeneous of degree N−
∑
wi,

(b) hj (2≤ j ≤ q−1) is a linear combination of monomials of � of degree jN−∑wi,

(c) hq is a linear combination of monomials of �, and

α= (hq+fhq−1+···+fq−1h1
)
ω modBnf,n−q

(
Kn). (3.6)

In particular, the dimension of Hn
f,n−q(K

n) is c+rq−1+···+r2+s.
Proof

Existence. We suppose thatα= gωwithg ∈�(Kn). There existshq, a linear com-
bination of themonomials of�, such that g = hq mod If . So, according to Lemma 3.12
(see Remark 3.13), gω = hqω+df ∧β modBnf,n−q(Kn), where β is a quasihomoge-
neous (n−1)-form of degree (q−1)N .
Consequently, gω = hqω+ (1/(q − 1))f dβ− (1/(q − 1))[f dβ− (q − 1)df ∧ β]

modBnf,n−q(K
n), so we can write

gω= hqω+fgq−1ω modBnf,n−q
(
Kn), (3.7)

where gq−1 is quasihomogeneous of degree (q−1)N−
∑
wi.
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In the same way,

gq−1ω= hq−1ω+fgq−2ω modBnf,n−q+1
(
Kn), (3.8)

where hq−1 is a linear combination of the monomials of � of degree (q−1)N−∑wi

and gq−2 is quasihomogeneous of degree (q−2)N−
∑
wi, . . . ,

g2ω= h2ω+fh1ω modBnf,n−2
(
Kn), (3.9)

where h2 is a linear combination of the monomials of � of degree 2N−∑wi and h1
is quasihomogeneous of degree N−∑wi.

Using Lemma 3.15, we get

α= gω= (hq+hq−1+f 2hq−2+···+fq−1h1
)
ω modBn

(
d(n−q)f

)
. (3.10)

Unicity. Let g = hq+fhq−1+···+fq−1h1 with h1, . . . ,hq as in the statement of
the theorem. We suppose that gω ∈ Bnf,n−q(K

n). Then gω ∈ �n, that is, g ∈ If . But
since fhq−1+···+fq−1h1 ∈ If (because f ∈ If ) we have hq ∈ If and so hq = 0.
Now, according to Lemma 3.16, (hq−1+fhq−2+···+fq−2h1)ω is in Bnf,n−q+1(K

n)
and so, in the same way, hq−1 = 0.
This way, we get hq = hq−1 = ··· = h2 = 0 and fh1ω ∈ Bnf,n−2(K

n). Lemma 3.16
gives h1 = 0.
This theorem allows us to give the dimension of the spacesHn

NP(Kn,Λ) andH2Λ(Kn).

Corollary 3.18. Let α ∈ Ωn(Kn). Then there exist unique polynomials h1, . . . ,hn
(Possibly zero) such that

(a) h1 is quasihomogeneous of degree N−
∑
wi,

(b) hj (2≤ j ≤n−1) is a linear combination of monomials of � of degree jN−∑wi,

(c) hn is a linear combination of monomials of �, and

α= (hn+fhn−1+···+fn−1h1
)
ω modBnf

(
Kn). (3.11)

In particular, the dimension of Hn
NP(Kn,Λ) is c+rn−1+···+r2+s.

Corollary 3.19. Let α∈Ωn(Kn). Then there exist unique polynomials h1,h2 (pos-
sibly zero) such that

(a) h1 is quasihomogeneous of degree N−
∑
wi,

(b) h2 is a linear combination of monomials of �, and

α= (h2+fh1)ω modBnf,n−2
(
Kn). (3.12)

In particular, the dimension of H2Λ(Kn) is c+s.
Remark 3.20. If q = 1, then the space Hn

f,n−1(K
n) is Ωn(Kn)/fΩn(Kn) which is of

infinite dimension.

3.6. Computation of Hn−1
f ,p (Kn). We compute the spaces Hn−1

f ,p (Kn) with p ≠n−1.
We consider the piece of complex

Ωn−2(Kn) �→Ωn−1(Kn) �→Ωn(Kn), (3.13)
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with

d(n−q)f (α)= f dα−(q−2)df ∧α if α∈Ωn−2(Kn),
d(n−q)f (α)= f dα−(q−1)df ∧α if α∈Ωn−1(Kn), (3.14)

with q ≠ 1.
Remember that if q =n, we obtain Hn−1

NP (Kn,Λ) and if q = 2 we have H1Λ(Kn).

Lemma 3.21. If α ∈ Zn−1
f ,n−q(K

n), then α = (div(α)/(q− 1)N)σ +df ∧β with β ∈
Ωn−2(Kn) and so, dα verifies �W(dα)−(q−1)Ndα= (q−1)Ndf ∧dβ.

Proof. It is sufficient to notice thatdf∧(α−(div(α)/(q−1)N)σ)=0 (see Proposition
3.3). For the second claim, we have (q− 1)Ndα = (W · div(α)+ (∑wi)div(α))ω−
(q−1)Ndf ∧dβ and the conclusion follows.

Lemma 3.22. Ifα∈ Zn−1
f ,n−q(K

n)with ord(j∞0 (α)) > (q−1)N , thenα is cohomologous

to a closed (n−1)-form. In particular, if q ≤ 0 then every (n−1)-cocycle for d(n−q)f is

cohomologous to a closed (n−1)-form.
Proof. We have α= (div(α)/(q−1)N)σ +df ∧β (Lemma 3.21) with

�W(dα)−(q−1)Ndα= (q−1)Ndf ∧dβ. (3.15)

Now, let γ ∈ Ωn−2(Kn) such that �Wγ − (q− 2)Nγ = (q− 1)Nβ (γ exists because
ord(j∞0 (β)) > (q−2)N , see Lemma 3.2).
We have �W dγ−(q−2)Ndγ = (q−1)Ndβ. Thus df ∧dγ verifies

�W(df ∧dγ)−(q−1)Ndf ∧dγ = (q−1)Ndf ∧dβ. (3.16)

From (3.15) and (3.16) we get dα= df ∧dγ.
Indeed, �W(dα−df ∧dγ)= (q−1)N(dα−df ∧dγ) but dα−df ∧dγ is not quasi-

homogeneous of degree (q−1)N .
Now, if we put θ = α− (1/(q − 1))(f dγ − (q − 2)df ∧ γ), we have dθ = 0 and

θ =α modBn−1f ,n−q(K
n).

Lemma 3.22 allows us to state the following theorem.

Theorem 3.23. If we suppose that q ≤ 0 then Hn−1
f ,n−q(K

n)= {0}.
Proof. Let α∈ Zn−1

f ,n−q(K
n). We can suppose (according to Lemma 3.22) that dα=

0. Thuswe havedf∧α=0. Proposition 3.4 gives then,α= df∧dγ with γ ∈Ωn−3(Kn).
Therefore, α= d(n−q)f (−(1/(q−2))dγ).
Now, we assume that q > 1.

Lemma 3.24. If α ∈ Zn−1
f ,n−q(K

n) is a quasihomogeneous (n−1)-form whose degree

is strictly lower than (q−1)N , then α is cohomologous to a closed (n−1)-form.
Proof. According to Lemma 3.21, we haveα= (div(α)/(q−1)N)σ+df∧β, and so

dα= (q−1)N
deg(α)−(q−1)N df ∧dβ. (3.17)



COMPUTATIONS OF NAMBU-POISSON COHOMOLOGIES 77

We deduce that, if we put θ = α − d(n−q)f ((N/(deg(α) − (q − 1)N))dβ), we have
dθ = 0.

Remark 3.25. A consequence of Lemmas 3.22 and 3.24 is that, if q > 1, every
cocycle α∈ Zn−1

f ,n−q(K
n) is cohomologous to a cocycle η+θ, where η is in Zn−1

f ,n−q(K
n)

and is closed, and θ is quasihomogeneous of degree (q−1)N .
Lemma 3.26. Let α = gσ , where g is a quasihomogeneous polynomial of degree

(q−1)N−∑wi. Then

(1) if q > 2, then α∈ Bn−1f ,n−q(K
n)	 gω∈ Bnf,n−q+1(K

n),
(2) if q = 2, α∈ Bn−1f ,n−2(K

n)	α= 0.
Proof. (1) (a) We suppose that α ∈ Bn−1f ,n−q(K

n), that is, α = f dβ− (q−2)df ∧β
with β∈Ωn−2(Kn). Then dα= (q−1)df ∧dβ.
On the other hand,dα=(q−1)Ngω so gω=(1/N)df∧dβ=d(n−q+1)f (−dβ/(q−2)N).
(b) Now we suppose that gω ∈ Bnf,n−q+1(K

n), that is, gω = f dβ− (q−2)df ∧β,
where β is a quasihomogeneous (n−1)-form of degree (q−2)N . We put γ = iWβ ∈
Ωn−2(Kn). We have

d(n−q)f (γ)= f dγ−(q−2)df ∧γ = f d
(
iWβ

)−(q−2)df ∧(iWβ)
= f

(
�Wβ−iW dβ

)−(q−2)[−iW (df ∧β)+(iW df )∧β]
= f(q−2)Nβ−iW

[
f dβ−(q−2)df ∧β]−(q−2)(W ·f)β

=−iW
[
f dβ−(q−2)df ∧β].

(3.18)

Consequently, d(n−q)f (γ)= iW (gω)=−gσ .
(2) If α= f dβ, where β is a quasihomogeneous (n−2)-form of degree degα−N = 0,

then β= 0 and so α= 0.
We recall that � indicates a monomial basis ofQf . We adopt the same notations as

for Theorem 3.17.

Theorem 3.27. We suppose that q > 2. Let α ∈ Zn−1
f ,n−q(K

n). There exist unique

polynomials h1, . . . ,hq−1 (possibly zero) such that
(a) h1 is quasihomogeneous of degree N−

∑
wi,

(b) hk (k≥ 2) is a linear combination of monomials of � of degree kN−∑wi, and

ω= (hq−1+fhq−2+···+fq−2h1
)
σ modBn−1f ,n−q

(
Kn). (3.19)

In particular, the dimension of the space Hn−1
f ,n−q(K

n) is rq−1+···+r2+s.
Proof. Ifα∈Zn−1

f ,n−q(K
n), thenα is cohomologous toη+θ, whereη is inZn−1

f ,n−q(K
n)

and is closed, and θ is quasihomogeneous of degree (q−1)N (see Remark 3.25).
The same proof as of Theorem 3.23 shows that η is a cobord.
Now, we have to study θ. According to Lemma 3.21, we can write θ = (div(θ)/(q−

1)N)σ +df ∧β (β∈Ωn−2(Kn)) with �W(dθ)−(q−1)Ndθ = (q−1)Ndf ∧dβ. Since
θ is quasihomogeneous of degree (q−1)N , the former relation gives df ∧dβ = 0.
Consequently, if we put γ = df ∧β, Proposition 3.4 gives γ = df ∧dξ.
Therefore,γ=d(n−q)f (−(1/(q−2))dξ) and soθ=(div(θ)/(q−1)N)σ modBn−1f ,n−q(K

n).
The conclusion follows using Lemma 3.26 and Theorem 3.17.



78 PHILIPPE MONNIER

Corollary 3.28. We suppose that q = n. Let α ∈ Zn−1
f (Kn). There exist unique

polynomials h1, . . . ,hn−1 (possibly zero) such that
(a) h1 is quasihomogeneous of degree N−

∑
wi,

(b) hk (k≥ 2) is a linear combination of monomials of � of degree kN−∑wi, and

ω= (hn−1+fhn−2+···+fn−2h1
)
σ modBn−1f

(
Kn). (3.20)

In particular, the dimension of the space Hn−1
NP (Kn,Λ) is rn−1+···+r2+s.

Remark 3.29. If q = 2, the description of the space Hn−1
f ,n−2(K

n) (and so H1Λ(Kn))
is more difficult. It is possible to show that this space is not of finite dimension.

Indeed, we consider the case n= 3 for simplicity (but it is valid for any n≥ 3). We put
α= g((∂f/∂x)dx∧dz+(∂f/∂y)dy∧dz), where g is a function which depends only
on z. We have dα= 0 and df ∧α= 0, so α∈ Zn−1

f ,n−1(K
n) but α �∈ Bnf,n−2(K

n) because
f does not divide α.

We can yet give more precisions on the space Hn−1
f ,n−2(K

n).

Theorem 3.30. Let E be the space of (n− 1)-forms hσ , where h is a quasiho-

mogeneous polynomial of degree N −∑wi, and F the quotient of the vector space

{df ∧dγ; γ ∈Ωn−3(Kn)} by the subspace {df ∧d(fβ); β∈Ωn−3(Kn)}.
Then Hn−1

f ,n−2(K
n)= E⊕F .

Proof. Let α in Zn−1
f ,n−2(K

n).
According to Remark 3.25, there exist a closed (n−1)-form η with η ∈ Zn−1

f ,n−2(K
n)

and a quasihomogeneous (n−1)-form θ of degree N , such that α is cohomologous to
η+θ.
We have (Lemma 3.21) θ = (div(θ)/N)σ +df ∧β with β quasihomogeneous of de-

gree 0 which is possible only if β = 0. So, θ = gσ , where g is a quasihomogeneous
polynomial of degree N −∑wi. Lemma 3.26 says that θ ∈ Bn−1f ,n−2(K

n) if and only if
θ = 0.
Now we study η. Proposition 3.4 gives η = df ∧dγ, where γ is an (n− 3)-form.

If we suppose that η ∈ Bn−1f ,n−2(K
n), then df ∧dγ = f dξ with ξ ∈ Ωn−2(Kn), and so

df∧dξ = 0. Now we apply Proposition 3.4 to dξ and we obtain dξ = df∧dβ with β∈
Ωn−3(Kn). Consequently, df ∧dγ = f df ∧ dβ which implies that dγ = f dβ+df ∧µ
with µ ∈Ωn−3(Kn), and so dγ = d(fβ)+df ∧ν with ν ∈Ωn−3(Kn).
Therefore, η∈ Bn−1f ,n−2(K

n)	 η= df ∧d(fβ).
3.7. Summary. It is time to sum up the results we have found.

The cohomology H•
f (K

n) (and so the Nambu-Poisson cohomology H•
NP(Kn,Λ)) has

been entirely computed (see Theorems 3.6, 3.8, 3.11, and Corollaries 3.18 and 3.28).

The spaces of this cohomology are of finite dimension and only the “extremal” ones

(i.e., H0,H1,Hn−1, and Hn) are possibly different to {0}. The spaces H0NP(Kn,Λ) and
H1NP(Kn,Λ) are always of dimension 1. The dimensions of the spaces Hn−1

NP (Kn,Λ)
and Hn

NP(Kn,Λ) depend, on one hand, on the type of the singularity of Λ (via the role
played by Qf ), and on the other hand, on the “polynomial nature” of Λ.
Concerning the cohomologyH•

f ,n−2(K
n), we have computedHn, that is,Hn

Λ(Kn) (see
Corollary 3.19) and we have given a sketch of description ofHn−1 (see Theorem 3.30).
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We have also computed the spaces H0f ,n−2(K
n) (see Theorem 3.6) and Hk

f,n−2(K
n) (see

Theorem 3.8) for k≠n−2,n−1, but these spaces are not particularly interesting for
our problem. The space H2Λ(Kn), which describes the infinitesimal deformations of Λ
is of finite dimension and its dimension has the same property as the dimension of

Hn
NP(Kn,Λ). On the other hand, the space H1Λ(Kn) which is the space of the vector
fields preserving Λ modulo the Hamiltonian vector fields, is not of finite dimension.
It is interesting to compare the results we have found on these two cohomolo-

gies with the ones given in [9] on the computation of the Poisson cohomology in

dimension 2.

Finally, if p ≠ 0,n− 2,n− 1, we have computed the spaces H0f ,p(Kn),Hn−1
f ,p (Kn),

Hn
f ,p(K

n), and Hk
f,p(K

n) with k≠ p,p+1.
If p = n−1, we have computed the spaces H0f ,n−1(Kn) and Hk

f,n−1(K
n) for 2≤ k≤

n−2, k≠ p,p+1 (the space Hn
f,n−1(K

n) is of infinite dimension).

4. Examples. In this section, we explicit the cohomology of some particular germs

of n-vectors.

4.1. Normal forms of n-vectors. Let Λ= f(∂/∂x1)∧···∧∂/∂xn be a germ at 0 of
n-vectors on Kn (n≥ 3) with f of finite codimension (see the beginning of Section 3)
and f(0)= 0 (if f(0)≠ 0, then the local triviality theorem, see [1, 5] or [11], allows us
to write, up to a change of coordinates, that Λ= ∂/∂x1∧···∧∂/∂xn).

Proposition 4.1. If 0 is not a critical point for f , then there exist local coordinates
y1, . . . ,yn such that

Λ=y1
∂
∂y1

∧···∧ ∂
∂yn

. (4.1)

Proof. A similar proposition is shown for instance in [9] in dimension 2. The proof

can be generalized to the n-dimensional (n≥ 3) case.
Now we suppose that 0 is a critical point of f . Moreover, we suppose that the

germ f is simple, which means that a sufficiently small neighbourhood (with respect
to Whitney’s topology; see [3]) of f intersects only a finite number of R-orbits (two
germs g and h are said to be R-equivalent if there exits ϕ, a local diffeomorphism at
0, such that g = h◦ϕ). Simple germs are those who present a certain kind of stability
under deformation.

The following theorem can be found in [2].

Theorem 4.2. Let f be a simple germ at 0 of finite codimension. Suppose that f has

at 0 a critical point with critical value 0. Then there exist local coordinates y1, . . . ,yn

such that the germ Λ = f(∂/∂x1)∧···∧∂/∂xn can be written, up to a multiplicative

constant, g(∂/∂y1)∧···∧∂/∂yn, where g is in the following list:

Ak :yk+1
1 ±y22 ±···±y2n, k≥ 1, Dk :y21y2±yk−1

2 ±y23 ±···±y2n, k≥ 4,
E6 :y31 +y42 ±y23 ±···±y2n, E7 :y31 +y1y32 ±y23 ±···±y2n,

E8 :y31 +y52 ±y23 ±···±y2n.
(4.2)
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Proposition 4.1 and Theorem 4.2 describe most of the germs at 0 of n-vectors on
Kn vanishing at 0.

We can notice that the models given in the former list are all quasihomogeneous

polynomials; which justifies the assumption we made in Section 3.

4.2. Some examples. (1) The regular case: f(x1, . . . ,xn)= x1.
It is easy to see thatQf = {0} and that f is quasihomogeneous of degreeN = 1, with

respect tow1 = ··· =wn = 1. We haveN−
∑
wi < 0, soH0f (K

n)�K,H1f (Kn)=K·dx1
and Hk

f (K
n)= {0} for any k≥ 2.

(2) Nondegenerate singularity: f(x1, . . . ,Xn)= x21+···+x2n with n≥ 3.
We have N = 2 and w1 = ··· = wn = 1. The space Qf is isomorphic to K and is

spanned by the constant germ 1, which is of degree 0.

We deduce that H0f (K
n)�K, H1f (Kn)=K·(x1dx1+···+xndxn) and Hk

f = {0} for
2≤ k≤n−2.
In order to describe the spaces Hn−1

f (Kn) and Hn
f (K

n), we look for an integer k ∈
{1, . . . ,n−1} such that kN−∑wi = deg1, that is, 2k−n= 0.
Therefore,

(a) if n is even, then {ω,fn/2ω} is a basis of Hn
f (K

n) and Hn−1
f (Kn) is spanned

by {fn/2−1σ},
(b) if n is odd, then Hn−1

f (Kn)= {0} and the space Hn
f (K

n) is spanned by {ω}.
We recall that ω= dx1∧···∧dxn and

σ = iWω=
n∑
i=1

(−1)i−1xidxi∧···∧ d̂xi∧···∧dxn. (4.3)

(3) The case A2 with n= 3 : f(x1,x2,x3)= x31+x22+x23.
Here, w1 = 2, w2 = w3 = 3, and N = 6. Thus, N −∑wi = −2, 2N −

∑
wi = 4, and

3N−∑wi = 10.
Moreover, � = {1,x1} is a monomial basis of Qf . But as deg1 = 0 and degx1 = 3,

we have

H0f
(
K3
)�K, H1f

(
K3
)=K·(3x1dx1+2x2dx2+2x3dx3),

H2f
(
K3
)=H3f

(
K3
)= {0}. (4.4)

(4) The case D5 with n= 4 : f(x1,x2,x3,x4)= x21x2+x42+x23+x24.
We havew1 = 3,w2 = 2,w3 =w4 = 4, andN = 8, thenN−

∑
wi =−5, 2N−

∑
wi = 3,

3N−∑wi = 11, and 4N−
∑
wi = 19.

Now, �={1,x1,x2,x22 ,x32} is a monomial basis of Qf . Here, deg1 = 0, degx1 = 3,
degx2 = 2, degx22 = 4, and degx32 = 6. Thus, the only element of � whose degree is

of type kN−∑wi is x1.
Consequently,

H0f
(
K4
)�K, H1f

(
K4
)=K·(2x1x2dx1+(x21+4x32)dx2+2x3dx3+2x4dx4),

H2f
(
K4
)= {0}, H3f

(
K4
)=K·(x1σ), (4.5)

and {ω,x1ω,x2ω,x22ω,x32ω,x1fω} is a basis of H4f (K4).
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Here, we have W = 3x1(∂/∂x1)+2x2(∂/∂x2)+4x3(∂/∂x3)+4x4(∂/∂x4) and
σ = 3x1dx2∧dx3∧dx4−2x2dx1∧dx3∧dx4

+4x3dx1∧dx2∧dx4−4x4dx1∧dx2∧dx3. (4.6)

References

[1] D. Alekseevsky and P. Guha, On decomposability of Nambu-Poisson tensor, Acta Math.
Univ. Comenian. (N.S.) 65 (1996), no. 1, 1–9. MR 97j:58044. Zbl 864.70012.

[2] V. I. Arnol’d, Poisson structures on the plane and on other powers of volume forms, J.
Soviet Math. 47 (1989), no. 3, 2509–2516. Zbl 694.58015.
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