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SUBMANIFOLDS OF F-STRUCTURE MANIFOLD SATISFYING
FK+ (—)K*lF =0
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ABSTRACT. The purpose of this paper is to study invariant submanifolds of an n-
dimensional manifold M endowed with an F-structure satisfying FK + (=)X+*1F = 0 and
FW 4+ (=)W+1F + 0 for 1 < W < K, where K is a fixed positive integer greater than 2.
The case when K is odd (= 3) has been considered in this paper. We show that an in-
variant submanifold M, embedded in an F-structure manifold M in such a way that the
complementary distribution D, is never tangential to the invariant submanifold ¥ (M), is
an almost complex manifold with the induced F-structure. Some theorems regarding the
integrability conditions of induced F-structure are proved.
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1. Introduction. Invariant submanifolds have been studied by Blair et al. [1], Kubo
[4], Yano and Okumura [7, 8], and among others. Yano and Ishihara [6] have studied
and shown that any invariant submanifold of codimension 2 in a contact Riemannian
manifold is also a contact Riemannian manifold. We consider an F-structure manifold
M and study its invariant submanifolds. Let F be a nonzero tensor field of the type
(1,1) and of class C* on an n-dimensional manifold M such that (see [3])

FE4 ()X =0, FY+(=)"*1F+0, forl<W <K, (1.1)

where K is a fixed positive integer greater than 2. Such a structure on M is called an
F-structure of rank# and of degree K. If the rank of F is constant and » = v (F), then
M is called an F-structure manifold of degree K (> 3).

Let the operator on M be defined as follows (see [3])

= (—)KFK-1 m =1+ (—)KH k-1 (1.2)

where I denotes the identity operator on M. For the operators defined by (1.2), we
have
L+m=1 =48 wm?=m. (1.3)

For F satisfying (1.1), there exist complementary distribution D, and D,,, correspond-
ing to the projection operators £ and m, respectively. If rank(F) = constant on M,
then dimDy = v and dimD,,, = (n—v). We have the following results (see [3]).

F{={F=F, Fm =mF =0, (1.4a)
FE-l— (kg FKlp—_¢  FX-lym=0. (1.4b)

Thus FX-! acts on Dy as an almost complex structure and on D,,, as a null operator.
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2. Invariant submanifolds of F-structure manifold. Let M be a differentiable man-
ifold embedded differentially as a submanifold in an n-dimensional C* Riemannian
manifold M with an F-structure and we denote its embedding by ¥ : M — M. Denote
by B: T(M) — T(M) the differential mapping of ¥, where d¥ = B is the Jacobson
map of ¥. T(M) and T(M) are tangent bundles of M and M, respectively. We call
T(M,M) as the set of all vectors tangent to the submanifold ¥ (M). It is known that
B:T(M) — T(M,M) is an isomorphism (see [5]).

Let X and Y be two C* vector fields defined along ¥ (M) and tangent to ¥ (M). Let
X and Y be the local extensions of X and Y. The restriction of [X,Y] 37 1s determined
independently of the choice of these local extensions X and Y. Therefore, we can
define

[X,Y]=[X,Y]g. (2.1)

Since B is an isomorphism, it is easy to see that [BX,BY] = B[X,Y]forall X,Y € T(M).
We denote by G the Riemannian metric tensor of M and put

Jg(X,Y)=g(BX,BY) VX,YinT(M), (2.2)
where g is the Riemannian metric in M and § is the induced metric of M.

DEFINITION 2.1. We say that M is an invariant submanifold of M if
(i) the tangent space T}, (¥ (M)) of the submanifold ¥ (M) is invariant by the linear
mapping F at each point p of ¥ (M),
(i) for each X € T(M), we have

FE&-1I2(BX) = BX'. (2.3)

DEFINITION 2.2. Let F be a (1,1)-tensor field defined in M such that F(X) = X’ and
M is an invariant submanifold, then we have

F(BX) = B(FX), (2.42)
F(K—l)/Z(BX) :B(F(K—U/Zj()_ (2.4b)

We see that there are two cases for any invariant submanifold M. We assume the
following cases.

CASE 1. The distribution D,, is never tangential to ¥ (M).

CASE 2. The distribution D,, is always tangential to ¥ (M).

We will consider Case 1 and assume that no vector field of the type mX, where
X e T(Y(M)) is tangential to ¥ (M).

THEOREM 2.3. An invariant submanifold M is an almost complex manifold if the
following two conditions are satisfied:
(i) the distribution D, is never tangential to ¥ (M), and
(i) F in M defines an induced almost complex structure satisfying FX-1 = (=)X].

PROOF. Applying F(X-1)/2 in (2.4), we obtain

F&-D/2(pE-DI2(BX)) = FK-D/2(B(FK-D/2 X)), (2.5)
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Making use of (2.4a) in (2.5), we get

FK-1(BX) = B(FX-1X). (2.6)

In order to show that vector fields of the type BX belong to the distribution D, we
suppose that m(BX) = 0, then using (1.2) we have

m(BX) = (I+ (—=)X*'FK-HBX = BX + ()X FK-1(BX) (2.7)
which in view of (2.6) becomes
m(BX) = BX + (=)X*1B(FX-1X) = B[X + (—)K T FK-1X] (2.8)

which, contrary to our assumption, shows that m(BX) is tangential to ¥ (M). Thus
m(BX) = 0.
Also, in view of (1.4b), (1.3), and (2.6) we obtain

B(FX-1X) = F&-Y(BX) = (-)*¢(BX) = (-)X(I-m)BX
= (-)XBX - (-)*mBX, (2.9)
B(F¥-1X) = (-)¥BX.

Since B is an isomorphism, we get
FE1 = ()KL (2.10)

Let (M) be the ring of real-valued differentiable functions on M, and let (M) be the
module of derivatives of #(M). Then ¥ (M) is Lie algebra over the real numbers and
the elements of ¥ (M) are called vector fields. Then M is equipped with (1,1)-tensor
field F which is a linear map such that

F:%¥(M) — %(M). (2.11)

Let M be of degree K and let K be a positive odd integer greater than 2. Then we
consider a positive definite Riemannian metric with respect to which Dy and D,, are
orthogonal so that

g(X,Y)=g(HX,HY)+g(mX,Y), (2.12)

where H = FIK-D/2 for all X,Y € X(M). O

DEFINITION 2.4. The induced metric g defined by (2.2) is Hermitian if the following
is satisfied:
JHX,HY) =g(X,Y), where H=F&-D/2, (2.13)

THEOREM 2.5. If F-structure manifold has the following two properties, that is,
(@) M is an invariant submanifold of F-structure manifold M such that distribution
Dy, is never tangential to ¥ (M),
(b) the Riemannian metric g on M is defined by (2.12).
Then the induced metric § of M defined by (2.2) is Hermitian.
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PROOF. In view of (2.2) and (2.13) we obtain
G(EE-DRE FE-DI2yYy = g(BFK-DI2E BFEK-D/2y), (2.14)
Applying (2.4) and (2.12) in (2.14), we get

g(ﬁ(K—l)/Zf(’IE(K—l)/ZY) _ g(F(K—l)/ZBXv,F(K—l)/ZBY)

L .. (2.15)
= g(BX,BY) - g(mBX,BY).
Since the distribution D,, is never tangential to ¥ (M), on using (2.2) we get
g(Fk-bizg FK-D2Yy) = g(BX,BY) = §(X,Y). (2.16)

Now, we consider the second case and assume that the distribution D,, is always
tangential to ¥ (M). In view of Case 2, we have m(BX) = BX*, where X* € T(M) for
some X* € T(M).

We define (1,1)-tensor fields 1 and £ in M as follows:

0= ()XFK1, =T+ (0K EKY (2.17a)
mX=X*  m(BX)=B(mX). (2.17b)
O

THEOREM 2.6. We have )
B({X) = £(BX). (2.18)

PROOF. In view of (2.17a), equation (2.18) assumes the following form:
B(£X) = B((-)XFX-1X) = (-)KB(FX-1X). (2.19)
Making use of (2.6) and (2.15) in (2.19), we get

B({X) = (-)XFX-1(BX) = {(BX). (2.20)

THEOREM 2.7. For { and satisfying (2.17a), we have

P+m=10 02=0 wm?=m. (2.21)

PROOE. From (1.3) we have £ +m = I, which can be written as (£ + m)BX = BX,
thus we have
¢BX + mBX = BX (2.22)

which in view of (2.17b) and (2.18) becomes
B(£X)+B(mX) = B({+m)X = BX. (2.23)

Therefore £+ = I since B is an isomorphism. Proof of the other relations follows in
a similar manner. O

Theorem 2.7 shows that £ and 7 defined by (2.17a) are complementary projec-
tionoperators on M.
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THEOREM 2.8. If F-structure manifold has the following property, that is, M is an
invariant submanifold of F-structure manifold M such that distribution D, is always
tangential to ¥ (M). Then there exists an induced F -structure manifold which admits a
similar Riemannian metric g satisfying

Jd(X,Y)=gHX,HY) +g(mXY). (2.24)
PROOF. From (2.4b) we get
B(EK-DI2XY = pK=DI2(BX). (2.25)

Furthermore,
B(EXX) = FK(BX) (2.26)

which in view of (1.1) and (2.4a) yields
B(FXX) = B(— (—)X*1EX) (2.27)
which shows that F defines an F-structure manifold which satisfies
FE+ (m)F1F=0. (2.28)
In consequence of (2.2), (2.4b), and (2.12) we obtain
g(H,X,HY) +g(mX,Y) = g(BHX,BHY) + g(BmX,BY)
=g(HBX,HBY) +g(mBX,BY) (2.29)
=g(BX,BY), where H=F&-D/?
which in view of the fact that B is an isomorphism gives

gH,X,HY)+g(mX,Y)=g(X,Y). (2.30)
O

3. Integrability conditions. The Nijenhuis tensor N of the type (1.2) of F satisfying
(1.1) in M is given by (see [2])

N(X,Y)=[FX,FY]-F[FX,Y]-F[X,F,Y]+F?[X,Y], 3.1)
and the Nijenhuis tensor N of F satisfying (2.28) in M is given by
N(X,Y) = [FX,FY]|-F[EX,Y]|-F[XEY]+F?[X,Y]. (3.2)
THEOREM 3.1. The Nijenhuis tensors N and N of M and M given by (3.1) and (3.2)
satisfy the following relation:

N(BX,BY) =BN(X,Y). (3.3)

PROOF. We have

N(BX,BY) = [F(BX),F(BY)]-F[F(BX),BY]-F[BX,F(BY)] +F*[BX,BY] (3.4)
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which in view of (2.4a) becomes

N(BX,BY) = B[FX,FY]-F[B(FX),BY]-F[(BX,BFY)] + F?[BX,BY]
=B[EX,FY]-FB[FX,Y]-FB[X,FY]+BF*[X,Y] (3.5)
= B[EX,FY]-BF[F,X,Y]-BF[X,FY]+BF?[X,Y] =BN(X,Y) O

BN(£X,0Y) =N(€BX,0BY), BN(mX,mY)=N(mBX,mBY), 56
{(mn(X,Y)} = mN(BX,BY). '

PROOF. The proof of (3.6) follows by virtue of Theorem 3.1, equations (1.4a), (2.4a),

(2.17a), (2.17b), and (3.3). O

For F satisfying (2.28), there exists complementary distribution D j and Dy corre-
sponding to the projection operators £ and # in M given by (2.17a). Then in view of
the integrability conditions of F structure we state the following theorems.

THEOREM 3.3. If Dy is integrable in M, then D; is also integrable in M. If Dy, is
integrable in M, then D, is also integrable in M.

THEOREM 3.4. If Dy and Dy, are both integrable in M, then D; and Dy, are also
integrable in M.

THEOREM 3.5. If F-structure is integrable in M, then the induced structure F is also
integrable in M.
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