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SUBMANIFOLDS OF F -STRUCTURE MANIFOLD SATISFYING

FK+(−)K+1F = 0
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Abstract. The purpose of this paper is to study invariant submanifolds of an n-
dimensional manifold M endowed with an F -structure satisfying FK + (−)K+1F = 0 and
FW + (−)W+1F ≠ 0 for 1 < W < K, where K is a fixed positive integer greater than 2.
The case when K is odd (≥ 3) has been considered in this paper. We show that an in-
variant submanifold M̃ , embedded in an F -structure manifold M in such a way that the
complementary distribution Dm is never tangential to the invariant submanifold Ψ(M̃), is
an almost complex manifold with the induced F̃ -structure. Some theorems regarding the
integrability conditions of induced F̃ -structure are proved.
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1. Introduction. Invariant submanifolds have been studied by Blair et al. [1], Kubo

[4], Yano and Okumura [7, 8], and among others. Yano and Ishihara [6] have studied

and shown that any invariant submanifold of codimension 2 in a contact Riemannian

manifold is also a contact Riemannian manifold. We consider an F -structure manifold
M and study its invariant submanifolds. Let F be a nonzero tensor field of the type
(1,1) and of class C∞ on an n-dimensional manifold M such that (see [3])

FK+(−)K+1F = 0, FW +(−)W+1F ≠ 0, for 1<W <K, (1.1)

where K is a fixed positive integer greater than 2. Such a structure on M is called an

F -structure of rankr and of degree K. If the rank of F is constant and r = r(F), then
M is called an F -structure manifold of degree K(≥ 3).
Let the operator on M be defined as follows (see [3])

� = (−)KFK−1, m= I+(−)K+1FK−1, (1.2)

where I denotes the identity operator on M . For the operators defined by (1.2), we
have

�+m= I, �2 = �; m2 =m. (1.3)

For F satisfying (1.1), there exist complementary distribution D� and Dm correspond-

ing to the projection operators � and m, respectively. If rank(F) = constant on M ,
then dimD� = r and dimDm = (n−r). We have the following results (see [3]).

F� = �F = F, Fm=mF = 0, (1.4a)

FK−1 = (−)K�, FK−1� =−�, FK−1m= 0. (1.4b)

Thus FK−1 acts on D� as an almost complex structure and on Dm as a null operator.
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2. Invariant submanifolds of F -structure manifold. Let M̃ be a differentiable man-
ifold embedded differentially as a submanifold in an n-dimensional C∞ Riemannian
manifold M with an F -structure and we denote its embedding by Ψ : M̃ →M . Denote
by B : T(M̃) → T(M) the differential mapping of Ψ , where dΨ = B is the Jacobson
map of Ψ . T(M̃) and T(M) are tangent bundles of M̃ and M , respectively. We call
T(M̃,M) as the set of all vectors tangent to the submanifold Ψ(M̃). It is known that
B : T(M̃)→ T(M̃,M) is an isomorphism (see [5]).
Let X̃ and Ỹ be two C∞ vector fields defined along Ψ(M̃) and tangent to Ψ(M̃). Let

X and Y be the local extensions of X̃ and Ỹ . The restriction of [X,Y]M̃ is determined
independently of the choice of these local extensions X and Y . Therefore, we can
define

[
X̃, Ỹ

]= [X,Y]M̃ . (2.1)

Since B is an isomorphism, it is easy to see that [BX̃,BỸ ]= B[X̃, Ỹ ] for all X̃, Ỹ ∈ T(M̃).
We denote by G the Riemannian metric tensor of M and put

g̃
(
X̃, Ỹ

)= g(BX̃,BỸ ) ∀X̃, Ỹ in T(M̃), (2.2)

where g is the Riemannian metric in M and g̃ is the induced metric of M̃ .

Definition 2.1. We say that M̃ is an invariant submanifold of M if

(i) the tangent space Tp(Ψ(M̃)) of the submanifold Ψ(M̃) is invariant by the linear
mapping F at each point p of Ψ(M̃),

(ii) for each X̃ ∈ T(M̃), we have

F(K−1)/2
(
BX̃
)= BX̃′. (2.3)

Definition 2.2. Let F̃ be a (1,1)-tensor field defined in M̃ such that F̃(X̃)= X̃′ and
M is an invariant submanifold, then we have

F
(
BX̃
)= B(F̃ X̃), (2.4a)

F(K−1)/2
(
BX̃
)= B(F̃ (K−1)/2X̃). (2.4b)

We see that there are two cases for any invariant submanifold M̃ . We assume the
following cases.

Case 1. The distribution Dm is never tangential to Ψ(M̃).
Case 2. The distribution Dm is always tangential to Ψ(M̃).

We will consider Case 1 and assume that no vector field of the type mX, where
X ∈ T(Ψ(M̃)) is tangential to Ψ(M̃).

Theorem 2.3. An invariant submanifold M̃ is an almost complex manifold if the

following two conditions are satisfied:

(i) the distribution Dm is never tangential to Ψ(M̃), and
(ii) F̃ in M̃ defines an induced almost complex structure satisfying F̃K−1 = (−)KI.

Proof. Applying F(K−1)/2 in (2.4), we obtain

F(K−1)/2
(
F(K−1)/2

(
BX̃
))= F(K−1)/2(B(F̃ (K−1)/2, X̃)). (2.5)
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Making use of (2.4a) in (2.5), we get

FK−1
(
BX̃
)= B(F̃K−1X̃). (2.6)

In order to show that vector fields of the type BX̃ belong to the distribution D�, we

suppose thatm(BX̃)≠ 0, then using (1.2) we have

m
(
BX̃
)= (I+(−)K+1FK−1)BX̃ = BX̃+(−)K+1FK−1(BX̃) (2.7)

which in view of (2.6) becomes

m
(
BX̃
)= BX̃+(−)K+1B(F̃K−1X̃)= B[X̃+(−)K+1F̃K−1X̃] (2.8)

which, contrary to our assumption, shows that m(BX̃) is tangential to Ψ(M̃). Thus
m(BX̃)= 0.
Also, in view of (1.4b), (1.3), and (2.6) we obtain

B
(
F̃K−1X̃

)= FK−1(BX̃)= (−)K�(BX̃)= (−)K(I−m)BX̃

= (−)KBX̃−(−)KmBX̃,

B
(
F̃K−1X̃

)= (−)KBX̃.
(2.9)

Since B is an isomorphism, we get

F̃K−1 = (−)KI. (2.10)

Let �(M) be the ring of real-valued differentiable functions onM , and let �(M) be the
module of derivatives of �(M). Then �(M) is Lie algebra over the real numbers and
the elements of �(M) are called vector fields. Then M is equipped with (1,1)-tensor
field F which is a linear map such that

F :�(M) �→�(M). (2.11)

Let M be of degree K and let K be a positive odd integer greater than 2. Then we
consider a positive definite Riemannian metric with respect to which D� and Dm are

orthogonal so that

g(X,Y)= g(HX,HY)+g(mX,Y), (2.12)

where H = F(K−1)/2 for all X,Y ∈�(M).

Definition 2.4. The induced metric g̃ defined by (2.2) is Hermitian if the following
is satisfied:

g̃
(
HX̃,HỸ

)= g̃(X̃, Ỹ ), where H = F(K−1)/2. (2.13)

Theorem 2.5. If F -structure manifold has the following two properties, that is,

(a) M̃ is an invariant submanifold of F -structure manifold M such that distribution

Dm is never tangential to Ψ(M̃),
(b) the Riemannian metric g on M is defined by (2.12).

Then the induced metric g̃ of M̃ defined by (2.2) is Hermitian.
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Proof. In view of (2.2) and (2.13) we obtain

g̃
(
F̃ (K−1)/2X̃, F̃ (K−1)/2Ỹ

)= g(BF̃(K−1)/2X̃,BF̃(K−1)/2Ỹ ). (2.14)

Applying (2.4) and (2.12) in (2.14), we get

g̃
(
F̃ (K−1)/2X̃, F̃ (K−1)/2Ỹ

)= g(F(K−1)/2BX̃,F(K−1)/2BỸ )

= g(BX̃,BỸ )−g(mBX̃,BỸ
)
.

(2.15)

Since the distribution Dm is never tangential to Ψ(M̃), on using (2.2) we get

g̃
(
F̃ (K−1)/2X̃, F̃ (K−1)/2Ỹ

)= g(BX̃,BỸ )= g̃(X̃, Ỹ ). (2.16)

Now, we consider the second case and assume that the distribution Dm is always

tangential to Ψ(M̃). In view of Case 2, we have m
(
BX̃
) = BX̃∗, where X̃∗ ∈ T(M̃) for

some X̃∗ ∈ T(M̃).
We define (1,1)-tensor fields m̃ and �̃ in M̃ as follows:

�̃ = (−)KF̃K−1, m̃= Ĩ+(−)K+1F̃K−1, (2.17a)

m̃X̃ = X̃∗, m
(
BX̃
)= B(m̃X̃

)
. (2.17b)

Theorem 2.6. We have

B
(
�̃X̃
)= �(BX̃). (2.18)

Proof. In view of (2.17a), equation (2.18) assumes the following form:

B
(
�̃X̃
)= B((−)KF̃K−1X̃)= (−)KB(F̃K−1X̃). (2.19)

Making use of (2.6) and (2.15) in (2.19), we get

B
(
�̃X̃
)= (−)KF̃K−1(BX̃)= �̃(BX̃). (2.20)

Theorem 2.7. For �̃ and m̃ satisfying (2.17a), we have

�̃+m̃= Ĩ, �̃2 = �̃, m̃2 = m̃. (2.21)

Proof. From (1.3) we have �+m = I, which can be written as
(
�+m)BX̃ = BX̃,

thus we have

�BX̃+mBX̃ = BX̃ (2.22)

which in view of (2.17b) and (2.18) becomes

B
(
�̃X̃
)+B(m̃X̃

)= B(�̃+m̃)X̃ = BX̃. (2.23)

Therefore �̃+m̃= Ĩ since B is an isomorphism. Proof of the other relations follows in
a similar manner.

Theorem 2.7 shows that �̃ and m̃ defined by (2.17a) are complementary projec-

tionoperators on M̃ .
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Theorem 2.8. If F -structure manifold has the following property, that is, M̃ is an

invariant submanifold of F -structure manifold M such that distribution Dm is always

tangential to Ψ(M̃). Then there exists an induced F̃ -structure manifold which admits a

similar Riemannian metric g̃ satisfying

g̃
(
X̃, Ỹ

)= g̃(H̃X̃,H̃Ỹ )+ g̃(m̃X̃Ỹ
)
. (2.24)

Proof. From (2.4b) we get

B
(
F̃ (K−1)/2X̃

)= F(K−1)/2(BX̃). (2.25)

Furthermore,

B
(
F̃KX̃

)= FK(BX̃) (2.26)

which in view of (1.1) and (2.4a) yields

B
(
F̃KX̃

)= B(−(−)K+1F̃ X̃) (2.27)

which shows that F̃ defines an F̃ -structure manifold which satisfies

F̃K+(−)K+1F̃ = 0. (2.28)

In consequence of (2.2), (2.4b), and (2.12) we obtain

g̃
(
H̃, X̃,H̃Ỹ

)+ g̃(m̃X̃, Ỹ
)= g(BH̃X̃,BH̃Ỹ )+g(Bm̃X̃,BỸ

)

= g(HBX̃,HBỸ )+g(mBX̃,BỸ
)

= g(BX̃,BỸ ), where H̃ = F̃ (K−1)/2
(2.29)

which in view of the fact that B is an isomorphism gives

g̃
(
H̃, X̃,H̃Ỹ

)+ g̃(m̃X̃, Ỹ
)= g̃(X̃, Ỹ ). (2.30)

3. Integrability conditions. The Nijenhuis tensorN of the type (1.2) of F satisfying
(1.1) in M is given by (see [2])

N(X,Y)= [FX,FY]−F[FX,Y]−F[X,F,Y]+F2[X,Y], (3.1)

and the Nijenhuis tensor Ñ of F̃ satisfying (2.28) in M̃ is given by

N
(
X̃, Ỹ

)= [F̃ X̃, F̃ Ỹ ]− F̃[F̃ X̃, Ỹ ]− F̃[X̃F̃ Ỹ ]+ F̃2[X̃, Ỹ ]. (3.2)

Theorem 3.1. The Nijenhuis tensors N and Ñ of M and M̃ given by (3.1) and (3.2)

satisfy the following relation:

N
(
BX̃,BỸ

)= BÑ(X̃, Ỹ ). (3.3)

Proof. We have

N
(
BX̃,BỸ

)= [F(BX̃),F(BỸ )]−F[F(BX̃),BỸ ]−F[BX̃,F(BỸ )]+F2[BX̃,BỸ ] (3.4)
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which in view of (2.4a) becomes

N
(
BX̃,BỸ

)= B[F̃ X̃, F̃ Ỹ ]−F[B(F̃ X̃),BỸ ]−F[(BX̃,BF̃Ỹ )]+F2[BX̃,BỸ ]

= B[F̃ X̃, F̃ Ỹ ]−FB[F̃X̃, Ỹ ]−FB[X̃, F̃ Ỹ ]+BF2[X̃, Ỹ ]

= B[F̃ X̃, F̃ Ỹ ]−BF̃[F̃ , X̃, Ỹ ]−BF̃[X̃, F̃ Ỹ ]+BF̃2[X̃, Ỹ ]= BÑ(X̃, Ỹ ).
(3.5)

Theorem 3.2. The following identities hold:

BÑ
(
�̃X̃, �̃Ỹ

)=N(�̃BX̃, �̃BỸ ), BÑ
(
m̃X̃,m̃Ỹ

)=N(m̃BX̃,m̃BỸ
)
,

B
{
m̃ñ

(
X̃, Ỹ

)}=mN
(
BX̃,BỸ

)
.

(3.6)

Proof. The proof of (3.6) follows by virtue of Theorem 3.1, equations (1.4a), (2.4a),

(2.17a), (2.17b), and (3.3).

For F̃ satisfying (2.28), there exists complementary distribution D�̃ and Dm̃ corre-

sponding to the projection operators �̃ and m̃ in M̃ given by (2.17a). Then in view of

the integrability conditions of F̃ structure we state the following theorems.

Theorem 3.3. If D� is integrable in M , then D�̃ is also integrable in M̃ . If Dm is

integrable in M , then Dm̃ is also integrable in M̃ .

Theorem 3.4. If D� and Dm are both integrable in M , then D�̃ and Dm̃ are also

integrable in M̃ .

Theorem 3.5. If F -structure is integrable in M , then the induced structure F̃ is also

integrable in M̃ .
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