SUBMANIFOLDS OF *F*-STRUCTURE MANIFOLD SATISFYING $F^{K} + (-)^{K+1}F = 0$

LOVEJOY S. DAS

(Received 2 May 2000)

ABSTRACT. The purpose of this paper is to study invariant submanifolds of an *n*-dimensional manifold *M* endowed with an *F*-structure satisfying $F^K + (-)^{K+1}F = 0$ and $F^W + (-)^{W+1}F \neq 0$ for 1 < W < K, where *K* is a fixed positive integer greater than 2. The case when *K* is odd (\geq 3) has been considered in this paper. We show that an invariant submanifold \tilde{M} , embedded in an *F*-structure manifold *M* in such a way that the complementary distribution D_m is never tangential to the invariant submanifold $\Psi(\tilde{M})$, is an almost complex manifold with the induced \tilde{F} -structure. Some theorems regarding the integrability conditions of induced \tilde{F} -structure are proved.

2000 Mathematics Subject Classification. 53C15, 53C40, 53D10.

1. Introduction. Invariant submanifolds have been studied by Blair et al. [1], Kubo [4], Yano and Okumura [7, 8], and among others. Yano and Ishihara [6] have studied and shown that any invariant submanifold of codimension 2 in a contact Riemannian manifold is also a contact Riemannian manifold. We consider an *F*-structure manifold *M* and study its invariant submanifolds. Let *F* be a nonzero tensor field of the type (1,1) and of class C^{∞} on an *n*-dimensional manifold *M* such that (see [3])

$$F^{K} + (-)^{K+1}F = 0, \quad F^{W} + (-)^{W+1}F \neq 0, \quad \text{for } 1 < W < K,$$
 (1.1)

where *K* is a fixed positive integer greater than 2. Such a structure on *M* is called an *F*-structure of rank *r* and of degree *K*. If the rank of *F* is constant and r = r(F), then *M* is called an *F*-structure manifold of degree $K(\ge 3)$.

Let the operator on *M* be defined as follows (see [3])

$$\ell = (-)^{K} F^{K-1}, \qquad m = I + (-)^{K+1} F^{K-1},$$
(1.2)

where I denotes the identity operator on M. For the operators defined by (1.2), we have

$$\ell + m = I, \quad \ell^2 = \ell; \quad m^2 = m.$$
 (1.3)

For *F* satisfying (1.1), there exist complementary distribution D_{ℓ} and D_m corresponding to the projection operators ℓ and *m*, respectively. If rank(*F*) = constant on *M*, then dim $D_{\ell} = r$ and dim $D_m = (n - r)$. We have the following results (see [3]).

$$F\ell = \ell F = F, \qquad Fm = mF = 0, \tag{1.4a}$$

$$F^{K-1} = (-)^{K} \ell, \qquad F^{K-1} \ell = -\ell, \qquad F^{K-1} m = 0.$$
 (1.4b)

Thus F^{K-1} acts on D_{ℓ} as an almost complex structure and on D_m as a null operator.

LOVEJOY S. DAS

2. Invariant submanifolds of *F*-structure manifold. Let \tilde{M} be a differentiable manifold embedded differentially as a submanifold in an *n*-dimensional C^{∞} Riemannian manifold *M* with an *F*-structure and we denote its embedding by $\Psi : \tilde{M} \to M$. Denote by $B : T(\tilde{M}) \to T(M)$ the differential mapping of Ψ , where $d\Psi = B$ is the Jacobson map of Ψ . $T(\tilde{M})$ and T(M) are tangent bundles of \tilde{M} and M, respectively. We call $T(\tilde{M}, M)$ as the set of all vectors tangent to the submanifold $\Psi(\tilde{M})$. It is known that $B : T(\tilde{M}) \to T(\tilde{M}, M)$ is an isomorphism (see [5]).

Let \tilde{X} and \tilde{Y} be two C^{∞} vector fields defined along $\Psi(\tilde{M})$ and tangent to $\Psi(\tilde{M})$. Let X and Y be the local extensions of \tilde{X} and \tilde{Y} . The restriction of $[X,Y]_{\tilde{M}}$ is determined independently of the choice of these local extensions X and Y. Therefore, we can define

$$[\tilde{X}, \tilde{Y}] = [X, Y]_{\tilde{M}}.$$
(2.1)

Since *B* is an isomorphism, it is easy to see that $[B\tilde{X}, B\tilde{Y}] = B[\tilde{X}, \tilde{Y}]$ for all $\tilde{X}, \tilde{Y} \in T(\tilde{M})$. We denote by *G* the Riemannian metric tensor of *M* and put

$$\tilde{g}(\tilde{X}, \tilde{Y}) = g(B\tilde{X}, B\tilde{Y}) \quad \forall \tilde{X}, \tilde{Y} \text{ in } T(\tilde{M}),$$
(2.2)

where *g* is the Riemannian metric in *M* and \tilde{g} is the induced metric of \tilde{M} .

DEFINITION 2.1. We say that \tilde{M} is an invariant submanifold of *M* if

- (i) the tangent space $T_p(\Psi(\tilde{M}))$ of the submanifold $\Psi(\tilde{M})$ is invariant by the linear mapping *F* at each point *p* of $\Psi(\tilde{M})$,
- (ii) for each $\tilde{X} \in T(\tilde{M})$, we have

$$F^{(K-1)/2}(B\tilde{X}) = B\tilde{X}'.$$
(2.3)

DEFINITION 2.2. Let \tilde{F} be a (1,1)-tensor field defined in \tilde{M} such that $\tilde{F}(\tilde{X}) = \tilde{X}'$ and M is an invariant submanifold, then we have

$$F(B\tilde{X}) = B(\tilde{F}\tilde{X}), \qquad (2.4a)$$

$$F^{(K-1)/2}(B\tilde{X}) = B(\tilde{F}^{(K-1)/2}\tilde{X}).$$
(2.4b)

We see that there are two cases for any invariant submanifold \tilde{M} . We assume the following cases.

CASE 1. The distribution D_m is never tangential to $\Psi(\tilde{M})$.

CASE 2. The distribution D_m is always tangential to $\Psi(\tilde{M})$.

We will consider Case 1 and assume that no vector field of the type mX, where $X \in T(\Psi(\tilde{M}))$ is tangential to $\Psi(\tilde{M})$.

THEOREM 2.3. An invariant submanifold \tilde{M} is an almost complex manifold if the following two conditions are satisfied:

- (i) the distribution D_m is never tangential to $\Psi(\tilde{M})$, and
- (ii) \tilde{F} in \tilde{M} defines an induced almost complex structure satisfying $\tilde{F}^{K-1} = (-)^{K}I$.

PROOF. Applying $F^{(K-1)/2}$ in (2.4), we obtain

$$F^{(K-1)/2}(F^{(K-1)/2}(B\tilde{X})) = F^{(K-1)/2}(B(\tilde{F}^{(K-1)/2},\tilde{X})).$$
(2.5)

168

Making use of (2.4a) in (2.5), we get

$$F^{K-1}(B\tilde{X}) = B(\tilde{F}^{K-1}\tilde{X}).$$
(2.6)

In order to show that vector fields of the type $B\tilde{X}$ belong to the distribution D_{ℓ} , we suppose that $m(B\tilde{X}) \neq 0$, then using (1.2) we have

$$m(B\tilde{X}) = (I + (-)^{K+1}F^{K-1})B\tilde{X} = B\tilde{X} + (-)^{K+1}F^{K-1}(B\tilde{X})$$
(2.7)

which in view of (2.6) becomes

$$m(B\tilde{X}) = B\tilde{X} + (-)^{K+1}B(\tilde{F}^{K-1}\tilde{X}) = B[\tilde{X} + (-)^{K+1}\tilde{F}^{K-1}\tilde{X}]$$
(2.8)

which, contrary to our assumption, shows that $m(B\tilde{X})$ is tangential to $\Psi(\tilde{M})$. Thus $m(B\tilde{X}) = 0$.

Also, in view of (1.4b), (1.3), and (2.6) we obtain

$$B(\tilde{F}^{K-1}\tilde{X}) = F^{K-1}(B\tilde{X}) = (-)^{K}\ell(B\tilde{X}) = (-)^{K}(I-m)B\tilde{X}$$

= $(-)^{K}B\tilde{X} - (-)^{K}mB\tilde{X},$ (2.9)
 $B(\tilde{F}^{K-1}\tilde{X}) = (-)^{K}B\tilde{X}.$

Since *B* is an isomorphism, we get

$$\tilde{F}^{K-1} = (-)^{K} I. \tag{2.10}$$

Let $\mathcal{F}(M)$ be the ring of real-valued differentiable functions on M, and let $\mathcal{X}(M)$ be the module of derivatives of $\mathcal{F}(M)$. Then $\mathcal{X}(M)$ is Lie algebra over the real numbers and the elements of $\mathcal{X}(M)$ are called vector fields. Then M is equipped with (1,1)-tensor field F which is a linear map such that

$$F: \mathscr{X}(M) \longrightarrow \mathscr{X}(M). \tag{2.11}$$

Let *M* be of degree *K* and let *K* be a positive odd integer greater than 2. Then we consider a positive definite Riemannian metric with respect to which D_{ℓ} and D_m are orthogonal so that

$$g(X,Y) = g(HX,HY) + g(mX,Y),$$
 (2.12)

where $H = F^{(K-1)/2}$ for all $X, Y \in \mathcal{X}(M)$.

DEFINITION 2.4. The induced metric \tilde{g} defined by (2.2) is Hermitian if the following is satisfied:

$$\tilde{g}(H\tilde{X}, H\tilde{Y}) = \tilde{g}(\tilde{X}, \tilde{Y}), \text{ where } H = F^{(K-1)/2}.$$
 (2.13)

THEOREM 2.5. If F-structure manifold has the following two properties, that is,

- (a) \tilde{M} is an invariant submanifold of *F*-structure manifold *M* such that distribution D_m is never tangential to $\Psi(\tilde{M})$,
- (b) the Riemannian metric g on M is defined by (2.12).

Then the induced metric \tilde{g} of \tilde{M} defined by (2.2) is Hermitian.

169

PROOF. In view of (2.2) and (2.13) we obtain

$$\tilde{g}(\tilde{F}^{(K-1)/2}\tilde{X}, \tilde{F}^{(K-1)/2}\tilde{Y}) = g(B\tilde{F}^{(K-1)/2}\tilde{X}, B\tilde{F}^{(K-1)/2}\tilde{Y}).$$
(2.14)

Applying (2.4) and (2.12) in (2.14), we get

$$\tilde{g}(\tilde{F}^{(K-1)/2}\tilde{X}, \tilde{F}^{(K-1)/2}\tilde{Y}) = g(F^{(K-1)/2}B\tilde{X}, F^{(K-1)/2}B\tilde{Y}) = g(B\tilde{X}, B\tilde{Y}) - g(mB\tilde{X}, B\tilde{Y}).$$
(2.15)

Since the distribution D_m is never tangential to $\Psi(\tilde{M})$, on using (2.2) we get

$$\tilde{g}(\tilde{F}^{(K-1)/2}\tilde{X},\tilde{F}^{(K-1)/2}\tilde{Y}) = g(B\tilde{X},B\tilde{Y}) = \tilde{g}(\tilde{X},\tilde{Y}).$$
(2.16)

Now, we consider the second case and assume that the distribution D_m is always tangential to $\Psi(\tilde{M})$. In view of Case 2, we have $m(B\tilde{X}) = B\tilde{X}^*$, where $\tilde{X}^* \in T(\tilde{M})$ for some $\tilde{X}^* \in T(\tilde{M})$.

We define (1,1)-tensor fields \tilde{m} and $\tilde{\ell}$ in \tilde{M} as follows:

$$\tilde{\ell} = (-)^{K} \tilde{F}^{K-1}, \qquad \tilde{m} = \tilde{I} + (-)^{K+1} \tilde{F}^{K-1},$$
(2.17a)

$$\tilde{m}\tilde{X} = \tilde{X}^*, \qquad m(B\tilde{X}) = B(\tilde{m}\tilde{X}).$$
 (2.17b)

THEOREM 2.6. We have

$$B(\tilde{\ell}\tilde{X}) = \ell(B\tilde{X}). \tag{2.18}$$

PROOF. In view of (2.17a), equation (2.18) assumes the following form:

$$B(\tilde{\ell}\tilde{X}) = B((-)^{K}\tilde{F}^{K-1}\tilde{X}) = (-)^{K}B(\tilde{F}^{K-1}\tilde{X}).$$
(2.19)

Making use of (2.6) and (2.15) in (2.19), we get

$$B(\tilde{\ell}\tilde{X}) = (-)^{K}\tilde{F}^{K-1}(B\tilde{X}) = \tilde{\ell}(B\tilde{X}).$$
(2.20)

THEOREM 2.7. For $\tilde{\ell}$ and \tilde{m} satisfying (2.17*a*), we have

$$\tilde{\ell} + \tilde{m} = \tilde{I}, \quad \tilde{\ell}^2 = \tilde{\ell}, \quad \tilde{m}^2 = \tilde{m}.$$
(2.21)

PROOF. From (1.3) we have $\ell + m = I$, which can be written as $(\ell + m)B\tilde{X} = B\tilde{X}$, thus we have

$$\ell B\tilde{X} + mB\tilde{X} = B\tilde{X} \tag{2.22}$$

which in view of (2.17b) and (2.18) becomes

$$B(\tilde{\ell}\tilde{X}) + B(\tilde{m}\tilde{X}) = B(\tilde{\ell} + \tilde{m})\tilde{X} = B\tilde{X}.$$
(2.23)

Therefore $\tilde{\ell} + \tilde{m} = \tilde{I}$ since *B* is an isomorphism. Proof of the other relations follows in a similar manner.

Theorem 2.7 shows that $\tilde{\ell}$ and \tilde{m} defined by (2.17a) are complementary projectionoperators on \tilde{M} .

170

THEOREM 2.8. If *F*-structure manifold has the following property, that is, \tilde{M} is an invariant submanifold of *F*-structure manifold *M* such that distribution D_m is always tangential to $\Psi(\tilde{M})$. Then there exists an induced \tilde{F} -structure manifold which admits a similar Riemannian metric \tilde{g} satisfying

$$\tilde{g}(\tilde{X}, \tilde{Y}) = \tilde{g}(\tilde{H}\tilde{X}, \tilde{H}\tilde{Y}) + \tilde{g}(\tilde{m}\tilde{X}\tilde{Y}).$$
(2.24)

PROOF. From (2.4b) we get

$$B(\tilde{F}^{(K-1)/2}\tilde{X}) = F^{(K-1)/2}(B\tilde{X}).$$
(2.25)

Furthermore,

$$B(\tilde{F}^K\tilde{X}) = F^K(B\tilde{X}) \tag{2.26}$$

which in view of (1.1) and (2.4a) yields

$$B(\tilde{F}^{K}\tilde{X}) = B(-(-)^{K+1}\tilde{F}\tilde{X})$$
(2.27)

which shows that \tilde{F} defines an \tilde{F} -structure manifold which satisfies

$$\tilde{F}^{K} + (-)^{K+1}\tilde{F} = 0. (2.28)$$

In consequence of (2.2), (2.4b), and (2.12) we obtain

$$\begin{split} \tilde{g}(\tilde{H}, \tilde{X}, \tilde{H}\tilde{Y}) + \tilde{g}(\tilde{m}\tilde{X}, \tilde{Y}) &= g(B\tilde{H}\tilde{X}, B\tilde{H}\tilde{Y}) + g(B\tilde{m}\tilde{X}, B\tilde{Y}) \\ &= g(HB\tilde{X}, HB\tilde{Y}) + g(mB\tilde{X}, B\tilde{Y}) \\ &= g(B\tilde{X}, B\tilde{Y}), \quad \text{where } \tilde{H} = \tilde{F}^{(K-1)/2} \end{split}$$
(2.29)

which in view of the fact that *B* is an isomorphism gives

$$\tilde{g}(\tilde{H}, \tilde{X}, \tilde{H}\tilde{Y}) + \tilde{g}(\tilde{m}\tilde{X}, \tilde{Y}) = \tilde{g}(\tilde{X}, \tilde{Y}).$$
(2.30)

3. Integrability conditions. The Nijenhuis tensor N of the type (1.2) of F satisfying (1.1) in M is given by (see [2])

$$N(X,Y) = [FX,FY] - F[FX,Y] - F[X,F,Y] + F^{2}[X,Y],$$
(3.1)

and the Nijenhuis tensor \tilde{N} of \tilde{F} satisfying (2.28) in \tilde{M} is given by

$$N(\tilde{X}, \tilde{Y}) = [\tilde{F}\tilde{X}, \tilde{F}\tilde{Y}] - \tilde{F}[\tilde{F}\tilde{X}, \tilde{Y}] - \tilde{F}[\tilde{X}\tilde{F}\tilde{Y}] + \tilde{F}^2[\tilde{X}, \tilde{Y}].$$
(3.2)

THEOREM 3.1. The Nijenhuis tensors N and \tilde{N} of M and \tilde{M} given by (3.1) and (3.2) satisfy the following relation:

$$N(B\tilde{X}, B\tilde{Y}) = B\tilde{N}(\tilde{X}, \tilde{Y}).$$
(3.3)

PROOF. We have

$$N(B\tilde{X}, B\tilde{Y}) = [F(B\tilde{X}), F(B\tilde{Y})] - F[F(B\tilde{X}), B\tilde{Y}] - F[B\tilde{X}, F(B\tilde{Y})] + F^2[B\tilde{X}, B\tilde{Y}]$$
(3.4)

which in view of (2.4a) becomes

$$N(B\tilde{X}, B\tilde{Y}) = B[\tilde{F}\tilde{X}, \tilde{F}\tilde{Y}] - F[B(\tilde{F}\tilde{X}), B\tilde{Y}] - F[(B\tilde{X}, B\tilde{F}\tilde{Y})] + F^{2}[B\tilde{X}, B\tilde{Y}]$$

$$= B[\tilde{F}\tilde{X}, \tilde{F}\tilde{Y}] - FB[\tilde{F}\tilde{X}, \tilde{Y}] - FB[\tilde{X}, \tilde{F}\tilde{Y}] + BF^{2}[\tilde{X}, \tilde{Y}] \qquad (3.5)$$

$$= B[\tilde{F}\tilde{X}, \tilde{F}\tilde{Y}] - B\tilde{F}[\tilde{F}, \tilde{X}, \tilde{Y}] - B\tilde{F}[\tilde{X}, \tilde{F}\tilde{Y}] + B\tilde{F}^{2}[\tilde{X}, \tilde{Y}] = B\tilde{N}(\tilde{X}, \tilde{Y}).$$

THEOREM 3.2. The following identities hold:

$$B\tilde{N}(\tilde{\ell}\tilde{X},\tilde{\ell}\tilde{Y}) = N(\tilde{\ell}B\tilde{X},\tilde{\ell}B\tilde{Y}), \qquad B\tilde{N}(\tilde{m}\tilde{X},\tilde{m}\tilde{Y}) = N(\tilde{m}B\tilde{X},\tilde{m}B\tilde{Y}), B\{\tilde{m}\tilde{n}(\tilde{X},\tilde{Y})\} = mN(B\tilde{X},B\tilde{Y}).$$
(3.6)

PROOF. The proof of (3.6) follows by virtue of Theorem 3.1, equations (1.4a), (2.4a), (2.17a), (2.17b), and (3.3).

For \tilde{F} satisfying (2.28), there exists complementary distribution $D_{\tilde{\ell}}$ and $D_{\tilde{m}}$ corresponding to the projection operators $\tilde{\ell}$ and \tilde{m} in \tilde{M} given by (2.17a). Then in view of the integrability conditions of \tilde{F} structure we state the following theorems.

THEOREM 3.3. If D_{ℓ} is integrable in M, then $D_{\tilde{\ell}}$ is also integrable in \tilde{M} . If D_m is integrable in M, then $D_{\tilde{m}}$ is also integrable in \tilde{M} .

THEOREM 3.4. If D_{ℓ} and D_m are both integrable in M, then $D_{\tilde{\ell}}$ and $D_{\tilde{m}}$ are also integrable in \tilde{M} .

THEOREM 3.5. If *F*-structure is integrable in *M*, then the induced structure \tilde{F} is also integrable in \tilde{M} .

REFERENCES

- D. E. Blair, G. D. Ludden, and K. Yano, *Semi-invariant immersions*, Kōdai Math. Sem. Rep. 27 (1976), no. 3, 313–319. MR 53#9074. Zbl 327.53039.
- [2] S. Ishihara and K. Yano, *On integrability conditions of a structure f satisfying* $f^3 + f = 0$, Quart. J. Math. Oxford Ser. (2) **15** (1964), 217–222. MR 29#3991. Zbl 173.23605.
- J. B. Kim, Notes on f-manifolds, Tensor (N.S.) 29 (1975), no. 3, 299–302. MR 51#8983. Zbl 304.53031.
- [4] Y. Kubo, *Invariant submanifolds of codimension* 2 *of a manifold with* (F, G, u, v, λ)*structure*, Kōdai Math. Sem. Rep. 24 (1972), 50–61. MR 46#8118. Zbl 245.53042.
- H. Nakagawa, *f*-structures induced on submanifolds in spaces, almost Hermitian or Kaehlerian, Kōdai Math. Sem. Rep. 18 (1966), 161–183. MR 34#736. Zbl 146.17801.
- K. Yano and S. Ishihara, *Invariant submanifolds of an almost contact manifold*, Kōdai Math. Sem. Rep. 21 (1969), 350–364. MR 40#1946. Zbl 197.18403.
- [7] K. Yano and M. Okumura, On (F, g, u, v, λ)-structures, Kōdai Math. Sem. Rep. 22 (1970), 401–423. MR 43#2638. Zbl 204.54801.
- [8] _____, Invariant hypersurfaces of a manifold with (f, g, u, v, λ) -structure, Kōdai Math. Sem. Rep. **23** (1971), 290–304. MR 45#1066. Zbl 221.53044.

LOVEJOY S. DAS: DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE, KENT STATE UNIVERSITY, TUSCARAWAS CAMPUS, NEW PHILADELPHIA, OH 44663, USA

E-mail address: ldas@tusc.kent.edu