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ON S3-EQUIVARIANT HOMOLOGY
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Abstract. We prove that the group S3 (norm 1 quaternions) cannot be a geometric re-
alization of a crossed simplicial group and construct an exact sequence connecting S3-
equivariant homology of an S3-space with its Pin(2)-equivariant homology.
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1. Introduction. This paper arose from a desire to better understand the topolog-

ical interpretation of quaternionic homology given in [4]. Because of the four-fold

periodicity of this homology, one wants the existence of a small category � such that

its classifying space B� is equal to the classifying space of the Lie group S3. This is
the analogue of the result concerning the category Λ such that its classifying space
is homotopically equivalent to the classifying space of the circle S1 (see [1]). The first
result in the former case was obtained by Dwyer et al. [2] giving the p-completion of
BS3 for any prime number p. For p = 2, they give an explicit way of constructing the
2-completion of BS3 using some finite subgroups of S3. The p-completion, for p odd
prime, of infinite quaternionic projective space BS3 is the same as the p-completion
of the classifying space of the normalizer Pin(2) of a maximal torus in S3. Fiedorowicz
and Loday [3] generalized Connes’ notion of the cyclic category Λ by introducing the
category of crossed simplicial groups with simplicial groups as objects and crossed

group homomorphism asmorphisms (see Definition 3.1). The geometric realization of

a crossed simplicial groupG∗ is a topological group |G∗|. Theorem 5.15 of [3] restricts
the kinds of topological groups, including the Lie group S3, which can result from geo-
metric realization. In Proposition 3.11 of [4], Loday defined a category∆Q such that its
classifying space is homeomorphic to BPin(2) and showed that quaternionic homol-
ogy is Pin(2)-equivariant homology. Combining this result and a long exact sequence
connecting the S3-equivariant homology of an S3-space with its Pin(2)-equivariant ho-
mology (Theorem 4.1), we deduce that if 2 is invertible in the ground field k, A is a

k-algebra with involution and Y is the geometric realization of the quaternionic sim-
plicial k-module associated to A (see [3] for complete definition), then quaternionic

homology becomes an S3-equivariant homology and the Connes’s exact sequence for
quaternionic homology becomes the Gysin exact sequence of an S3-fibration. We are
currently working on linking the two concepts when 2 is not invertible in the ground

field.

2. Preliminaries on quaternionic homology. LetA be an involutive unital k-algebra
where k is a commutative ring. When the set of rationals Q is contained in k,
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quaternionic, respectively dihedral homology (here they coincide because 2 is invert-

ible in k), can be defined as the homology of the coinvariant space ofA⊗(n+1) for the ac-
tion of the quaternionic group Qn+1 = 〈x,y | xn+1 =y2,yxy−1 = x−1〉 (respectively,
the dihedral group Dn+1 = 〈x,y | xn+1 = y2 = 1,yxy−1 = x−1〉) usually denoted
by (A⊗(n+1)/(1−x,1−y)). HQn(A) = Hn(A⊗(∗+1)/(1−x,1−y),b), where b is the
Hochschild boundary b =∑n−1

i=0 (−1)idi, and the generators x and y act on A⊗(n+1) by
x(a0,a1, . . . ,an)= (−1)n(an,a0, . . . ,an−1) and y(a0,a1, . . . ,an)= (−1)n(n+1)/2(ā0, ān,
ān−1, . . . , ā1). For the case when 2 is not invertible, Loday [4] defined the quaternionic
homology as the homology of the total complex of a bicomplex obtained using a free

periodic resolution of period four of Z as trivial Qn+1-module and gives an important
result on quaternionic homology which is the periodicity exact sequence

··· �→HTn(A) �→HQn(A) �→HQn−4(A) �→HTn−1(A) �→ ··· , (2.1)

where HT∗ is the homology of a complex T∗ obtained by elimination of acyclic com-
plex in the bicomplex (see [4] for more details). The theory HT is to quaternionic

homology as Hochschild homology is to cyclic homology.

3. Crossed simplicial groups. Using the notion of crossed simplicial groups

(Definition 3.1) and their homology [3], the quaternionic homology can be understood

as Pin(2)-equivariant homology instead of S3-equivariant homology which seems to
be the natural candidate because of the fourth periodicity. The reason why it is not

the latter homology is connected to the next Lemma 3.2. We will then in the main

theorem connect these two homologies.

Definition 3.1 (see [3]). A crossed simplicial group is a family of groups {Gn}n≥0
such that there exists a small category ∆G with the following properties:
(1) The objects of ∆G are ordered sets [n]= {0,1, . . . ,n}.
(2) ∆G contains the simplicial category ∆ as a subcategory.
(3) The automorphism group of [n] in ∆G is the group Gopn (opposite group of Gn).

(4) Any morphism from [n] to [m] in ∆G can be uniquely written as a composite

Φ◦g, where Φ ∈Hom∆([n],[m]) and g ∈Aut∆G([n])=Gopn .

The classical examples (see [3]) are the family of cyclic groups {Z/mZ}m≥1, dihe-
dral groups {Dm}m≥1, quaternionic groups {Qm}m≥1, and the family of permutation
groups {Sm}m≥1. The geometric realizations of these crossed simplicial groups are,
respectively, the circle group S1, the orthogonal group O(2), the normalizer of S1 in
S3, and the infinite sphere S∞ = limnSn. Then a natural question arises: does there
exist a crossed simplicial group such that its geometric realization is the Lie group S3?

3.1. The Lie group S3 is not a crossed simplicial group

Lemma 3.2. The group S3 is not nilpotent.

Proof. This is because, if S3 were nilpotent, there would exist q normal sub-

groups H1,H2, . . . ,Hq of S3 such that S3 = H0 ⊃ H1 ⊃ ··· ⊃ Hq = {1} and for all k,
0≤ k≤ q−1, there would be an inclusion Hk/Hk+1 ⊂ center(S3/Hk+1). In particular,
Hq−1 ⊂ center(S3)= {±1}. We can assume that the inclusionHq ⊂Hq−1 is strict, which
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implies Hq−1 = {±1}. In the same way, Hq−2/Hq−1 ⊂ center(S3/{±1}) = {1} because
S3/{±1} is simple. This implies that Hq−2 = Hq−1. So the sequence of inclusions re-
duces to S3 = H0 ⊃ H1 = {±1} ⊃ H2 = {1} and then O+(3,R) = S3/{±1} = H0/H1 ⊂
center(S3/H1)= {1}, giving us a contradiction.

Theorem 3.3 (see [3]). If G∗ is a crossed simplicial group such that the geomet-
ric realization |G∗| is a Lie group, then the path component of the identity of |G∗|
is nilpotent.

As a consequence of Lemma 3.2 and Theorem 3.3, there is no crossed simplicial

group with geometric realization S3.
Another approach to the question is to consider the discrete subgroups of S3. For

this we need to recall the following theorem.

Theorem 3.4 (see [5]). Every finite subgroup of S3 is a cyclic, binary dihedral, or
binary polyhedral group. If two finite subgroups of S3 are isomorphic, then they are
conjugate in S3. A finite subgroup of S3 is contained in a complex subfield of H if and

only if it is cyclic, and is contained in the real subfield of H if and only if it is cyclic of

order 1 or 2.

Based on this theorem, we see that S3 cannot be a crossed simplicial group. In fact,
if the topological group S3 were a crossed simplicial group S3 = |G∗|, then by Propo-
sition 5.13 in [3], there would be inclusions of discrete subgroups Gn ⊂ S3. Moreover,
the discrete subgroups of S3 are, up to conjugations, the families of cyclic subgroups
{Z/nZ}, those of quaternionic {Qn}, the binary tetrahedral group, the binary octa-
hedral, and the binary icosahedral. In addition, the geometric realizations of these

five simplicial groups give, respectively, the circle S1, the group Pin(2), the binary
tetrahedral group, the binary octahedral group, and the binary icosahedral group and

therefore they cannot give S3.

4. S3-equivariant homology. Let G be a group and �G be the category with one

object ∗ such that the monoid Hom�G(∗,∗) is the group G. The geometric realization
of the nerve of this category is a contractible space denoted by EG = |�G|. The groupG
acts transitively on EG and the orbit space is the classifying space BG of the group G.
In fact there is a principal G-bundle EG→ BG.
For aG-space Y , the Borel space is the quotient of EG×Y by the equivalence relation

generated by (gx,gz)∼ (x,z) for all g ∈G and x,z ∈ Y . This space is usually denoted
by EG×GY . Recall that there is a fibration

G �→ EG×Y �→ EG×G Y . (4.1)

The G-equivariant homology of Y is, by definition, the homology of the associated

Borel space HG
n(Y ,k) :=Hn(EG×G Y ,k).

The main result of this paper is the following theorem.

Theorem 4.1. Let Y be a connected S3-space. There is a long exact sequence

··· �→HS3
n−1(Y ,Z/2Z) �→HPin(2)

n (Y) �→HS3
n (Y) �→HS3

n−2(Y ,Z/2Z) �→ ··· . (4.2)
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Proof. The inclusion Pin(2)→ S3 induces the following fibration:

RP(2) �→ EPin(2)×Pin(2)Y �→ ES3×S3Y . (4.3)

Since Hq(RP(2)) = 0 for q ≠ 0 and q ≠ 1, the spectral sequence lies on the two hor-
izontal lines q = 0 and q = 1. The only nonzero differential is d2. The filtration of
HPin(2)

n (Y) is given by

0= F0 ⊂ F1 ⊂ ··· ⊂ Fn−1 ⊂ FnHPin(2)
n (Y)=HPin(2)

n (Y). (4.4)

The successive quotients are given by

HPin(2)
n (Y)
Fn−1

= E∞n,0 = ker
(
HS3

n (Y) �→Hn−2
(
ES3×S3Y ;Z/2Z

))
, (4.5)

Fn−1/Fn−2 = E∞n−1,1, and Fn−2 = Fn−3 = ··· = F0 = 0 because E∞p,q = 0 since q ≥ 2.
Thus we have the exact sequence,

0 �→ E∞n−1,1 �→HPin(2)
n (Y) �→ E∞n,0 �→ 0. (4.6)

We also have

E∞n,1 = E3n,1 =
Hn
(
ES3×S3Y ;Z/2Z

)

Im
(
HS3

n+2(Y) �→Hn
(
ES3×S3Y ;Z/2Z

)) . (4.7)

Therefore, the filtration of HPin(2)
n (Y) becomes

0⊂ Fn−1 = Hn−1
(
ES3×S3Y ;Z/2Z

)

Im
(
HS3

n+1(Y) �→Hn−1
(
ES3×S3Y ;Z/2Z

)) ⊂ Fn =HPin(2)
n (Y), (4.8)

and the quotient becomes

Fn
Fn−1

= HPin(2)
n

Fn−1
� ker(HS3

n (Y) �→Hn−2
(
ES3×S3Y ;Z/2Z

))
. (4.9)

Then we obtain the exact sequence

0 �→ E∞p,0 �→ E2p,0
d2
�→ E2p−2,1 �→ E∞p−2,1 �→ 0. (4.10)

Now, by combining (4.6) and (4.10), the exact sequence follows.

Corollary 4.2. If 2 is invertible in the field k, and A is a k-algebra with involution,
then the geometric realization of the quaternionic simplicial k-module associated to
A, {A⊗(n+1)}n≥0, allows one to obtain the periodicity exact sequence in quaternionic
homology,

··· �→HTn(A) �→HQn(A) �→HQn−4(A) �→HTn−1(A) �→ ··· , (4.11)

as the Gysin exact sequence of an S3-fibration.

When 2 is invertible in k and if Y is the geometric realization of the simplicial mod-
ule {A⊗(n+1)}n≥0, then the mapping EPin(2)×Pin(2)Y → ES3×S3Y induces homology

isomorphisms.

The groups HS3∗ (Y ,Z/2Z) look like obstruction to the isomorphisms HPin(2)
∗ (Y) �

HS3∗ (Y).
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