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COMPACITY IN NARROW LIMIT TOWER SPACES

LIVIU C. FLORESCU
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ABSTRACT. We introduce a limit tower structure on the space of all bounded Radon mea-
sures on a completely regular space and we extend the Prohorov’s theorem of narrow
compactness. In the particular case of Polish spaces, we give a sequential version of this
extension.
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1. Introduction. Let T be a completely regular space, % the boreliens of T, and
MY (T) the set of all bounded Radon measures on (T,%) (i.e., the real bounded mea-
sures u: B — R such that |u|(A) = sup{|u|(K) : K is compact, K < A}, for all A € B,
where || is the variation of u). Denote by 6?(T) the space of all bounded continuous
real functions on T and let || f|| = sup{|f(t)| : t € T}, for every f € €"(T). We recall
that a filter § on W?(T) is narrowly convergent to u if and only if Ve, r(u) € %, for all
fe®b(T), >0, where Ve p(u) = {v:Iu(f)—v(f) <&}

We say that a set H € WP (T) is relatively narrowly compact if, for every filterbase
% < 21 there exist a filter § on W?(T) and u € WP (T) such that § converges to u.

Prohorov’s classical theorem states that a bounded set H < WP (T) is relatively nar-
rowly compact if the following condition is satisfied:

Ve>0, 3K.compactc T:|u|(T\K:) <¢e, VueH. (1.1)

A set H as in (1.1) is called tight.

We remark that, if T is a Polish space (i.e., T is a separable, completely metriz-
able space) or T is a locally compact space, the converse is also true (relative narrow
compactness implies tightness) (see [2, Section 5, Theorems 1 and 2]).

Limit tower spaces were first defined in 1997 by Kent and Brock [3] as an isomorphic
gradated variant of convergence approach spaces of Lowen [8].

In this paper, we introduce on 20? (T) a limit tower structure p = {p,:a € [0, +co]}
(see [3]), where py is the narrow convergence structure. Then, for every bounded set
H <MY (T), there exists a number t = t(H) = 0 such that, for every filterbase » c 2H
there exists a filter § on W?(T), % < §, p;-convergent in W?(T) (see Theorem 3.8); we
say that H is p;-relatively compact. The number t (H) estimates the degree of tightness
of H.If H is tight then t(H) = 0, so we obtain Prohorov’s theorem.

If T is a locally compact space we extend also the converse of Prohorov’s theorem
(see Theorem 3.12).

We give some examples in the particular case of T = N when 20?(N) = ¢!,
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In Section 4, we obtain a sequential version of Theorem 3.8 on the subset W' (T) <
MY (T) of all probabilities on the Polish space T. So, every sequence (i )neny € W (T)
contains a subsequence p;-convergent in Y!(T), where t = t({u, : n € N}) (see
Theorem 4.9). In particular, we prove that the limit tower structure p on the set of
probabilities is induced by a probabilistic metric on this space.

2. Limit tower structures. Let X be a set, B(X) the set of all filterbases on X, and
2X the power set of X; for every ¥ € B(X), §' is the filter generated by #¥. For x € X,
let x denote the fixed ultrafilter generated by {x}.

DEFINITION 2.1 (see [3, Definition 1]). A limit structure on X is a function q : B(X)—
2% satisfying

xeqx), xeX, (2.1)
a$) =q(§), Vv§eBX), (2.2)
a(§' n6')=qF) Nnq(6), V$6cB(X). (2.3)

A pair (X,q), where q is a limit structure on X is called a limit space.

REMARK 2.2. The statement “x € q(§)” will be written § 2, x and we say that §
g-converges to x.

REMARK 2.3. In [3], a limit structure is a function g : F(X) — 2%, where F(X) denotes
the set of all filters on X, satisfying

xeq(x), xeX,
§c6=q($) cq0),

. (2.4)
x€qf) =xeqiEnx),

xeqF)ngq6) =xecqEnG6).

If we extend such a function g to B(X) letting q(§) = q(§’), then (2.4) is equivalent to
(2.1), (2.2), and (2.3).

REMARK 2.4. If T is a topology on X and we define § 2t x if and onlyif I+ (x) < §,
then g+ is a limit structure on X (here '+ (x) denotes the neighborhood filter of x in
(X, T)). More exactly we have the following proposition.

PROPOSITION 2.5 (see [3, Proposition 2]). Let q be a limit structure on X; the neces-
sary and sufficient condition for a topology T to exist on X, such that q = q+, is that q
fulfills the following condition:

(F) Let {§: j € J} be a family of filterbases on X and {x;:j € J} C X be such that
§i A, xjforallje].

If® € B(J) is such thatfi» x, where$ ={{xj:je ¢}:¢pcd}, then

UnNs-+x (2.5)

pedjed



COMPACITY IN NARROW LIMIT TOWER SPACES 361

DEFINITION 2.6 (see [3, Definition 4]). A limit tower p on a set X is a family p =
{pa:a €[0,+c]} of limit structures on X satisfying the following conditions:

pa(§) s pp(§), Vas<b, V§eB(X), (2.6)
P ($) =X, VFeB(X), (2.7)
Pa(F) = Npsapp(§), Vaec[0,+0), V§eB(X). (2.8)

If x € pa(§), we say that § is p,-convergent to x and we denote this by § P, 1t p
is a limit tower on X, (X, p) is called a limit tower space.

The axiom (F) defined in Proposition 2.5 has a natural extension to a limit tower
space (X,p):

(F) Let a,b € [0,+], {§;:j€J} =B(X),and {x;:j € J} < X such that §; 2% x;,
forall je J.If ® € B(J) is such thatfﬂ» x,where £ = {{x;:j€ ¢}:¢pecd}, then

U ﬂf} Pasb (2.9)

pedjed

DEFINITION 2.7. A limit tower p on X which satisfies (F) is called a topological limit
tower.

REMARK 2.8. From [3, Theorems 9, 13 and Proposition 12(b)] we know that a topo-
logical limit tower is an isomorphic form of a Lowen’s approach structure (see [8]).

3. Narrow limit tower on 20?(T). In this section, we introduce a topological limit
tower p = {ps:a € [0,+0o0]} on the space of bounded Radon measures on a completely
regular space such that pg-convergence is just the narrow convergence; then we extend
the Prohorov’s theorem of narrow compactness.

Let T be a completely regular space, let 3 be the o-algebra of Borel subsets of
T, and let 0% (T) be the set of all bounded Radon measures on (T,%). Denote by
C?(T) the set of all bounded continuous real functions on T. For every f € C?(T) and
U EMP(T), we denote u(f) = [ fdu.

Now, for every a € [0,+c0], u € W (T), and f € CP(T), we denote

Vas () = {v €X08(D): [u(FH) =v(H) | < alfI}. (3.1)
Then, for every a € [0, +), let pq : BQWY(T)) — 22"(T) defined by
Pa$) = {HeW! (1) : Vb >a,V eCl(T),Vy () €5}, (3.2)

for all filterbases § on 207 (T); let p., be the indiscrete convergence structure on W? (T)
(P (5) =20P(T), for all § € BN (T))).
We remark that § =% y if and only if for all b > a, for all f € CP(T),Vpr(p) €F.

PROPOSITION 3.1. The limit tower p = {p,:a € [0,+]} is a topological limit tower
on M (T).

PROOEF. For every a € [0, +o), p € WP (T), and f € CP(T), we have u € V, r(u), so
that we have (2.1).
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Equations (2.2), (2.3), (2.6), and (2.7) are consequences of the definition of . From
(2.6), Pa($) S Np=aPp &), for all § € BOWI(T)). If § P, u, for all ¢ > a, then for all
b > a, there exists ¢ such thata < ¢ < bhence V, s (u) € §,forall f C?(T). Therefore
5 Pa, u and so we have (2.8).

(F) Let a,b = 0,{%;:j € J} < BN (T)), and mj:jelt s WP (T) such that (1)
§; La, uj, for all j € J. Let ® be a filterbase on J such that (2) § LR u, where § =
{{uj}jeq : ¢ € @}. Then for all u > a+b, there exist d > a, e > b such that u =d +e.
Then for all f € C¥(T), from (2), Ve, (1) € 5 hence, there exists ¢ € ® such that
{jtjep € Ve r (). Then 3) |u; (f) —p(f)l <el fl, forall j € ¢.

From (1), forall j € J, Va5 (1) € 5—;-. But, from (3), Vi, r (Uj) € Vi, r (), so that Vy, s €
5—3-, for all j € ¢. Therefore,

Vs e N5 U NS (3.3)

jeg pedjed

It follows that p € pa+p (Ugpes Njep$), s0 that p = {pa:a € [0,+]} is a topological
limit tower on 20 (T). O

DEFINITION 3.2. We say that p = {p, : a € [0,+]} is the narrow limit tower on
WP (T).

REMARK 3.3. Note that py is the narrow convergence structure on )’ (T). Indeed,
¥ 2o, u if and only if for all € > 0, for all f € Cb(T),Vf,f € §'. But the sets Vg r(u) =
{vilu(f)—=v(f)l <&llfll} form a subbase for the neighbourhood system of u in the
narrow topology on 207 (T); so that § is narrowly convergent to u.

REMARK 3.4. If § LPa, u then § LN u, for all b = a. Thus pg is the finest limit
structure of p.

REMARK 3.5. We may interpretinf{a:§ Fa, u} as the degree of narrow convergence
of filterbase § to p.

REMARK 3.6. For every net (u;)ie; € WY (T) ((I,<) is a directed set) let § = {{x; :
Jj =1} :ie1} be the filterbase generated by (u;)c;.

If p = {pa:a € [0,+x]} is the narrow limit tower on 20?(T), then we say that
ti % pif § 2%y, Therefore, y; - u if and only if

limsup | i (f) —u(f)| sa-lIfl, VfeCT). (3-4)

DEFINITION 3.7. We say that a subset H € W?(T) is a-relatively compact if for
every filterbase % < 2, there exist a filter § on 0¥ (T) and p € 0¥ (T) such that® c §
and § 2% .

We remark that H is O-relatively compact if and only if H is relatively narrowly
compact.

A subset H € ! (T) is bounded if sup{|u|(T) : u € H} < +oo, where |u| is the
variation of . The mapping p — |u|(T) = |||l is a norm on W?(T).

Let ¥ (T) be the family of all compact sets on T; for every bounded set H < W?(T)
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we denote
t(H)= inf sup|u|(T\K). (3.5)
Ke¥(T)ueH
We remark that t (H) € [0, +o) and t(H) = 0 if and only if H is tight. We say that t (H)
is the degree of tightness of H.
Now we give an extension of Prohorov’s theorem.

THEOREM 3.8. Every bounded set H < W (T) is t (H)-relatively compact.

PROOE. Let X be the Stone-Cech compactification of T and i : T — X be the canoni-
cal injection of T in X. We remark that C?(X) = C(X) (X is compact); so Q0?(X), |- 1)
is the topological dual of the Banach space (C(X),| - |) and the narrow topology on
M?(X) is the weak*-topology, w*, of this dual space.

For every pu € 0?(T) we define v = I(u) € WP (X), where I(v)(F) = u(F o i), for
every F € C(X); VIl = [VI(X) = |ul(T) = |lull so that I:208(T) — WP (X), u— I(p), is
an isometric embedding.

Let H be a bounded subset of ?(T); then I(H) is a bounded subset of " (X).
Therefore I(H) is w*-relatively compact. For every filterbase » < 22, (%) = {I(B) :
B €%} is a filterbase on I(H). So that, there exists a filter & on 20? (X) w*-convergent
to a measure vy € WP (X) such that I(3) < 6. From the definition of ¢ (H), there exists
a sequence (K,);, € H(T) such that (1) |u|(T\K,) < t(H)+1/n, for all n € N, for all
u € H. We denote Ty = U;—1 Ky and (2) Xo = U, i(Kyn) = i(Tp).

For everyn € N, i(K,) € #(X), so that Xj is a Borel set of X. On the other hand, for
every n € N, X\ i(K,) is an open subset of X so that the mapping A — |A|(X\i(K,)) is
a w*-lower semi-continuous mapping on 20? (X) (see [2, Section 5, Proposition 6(a)]).

From 6 - vo, forall n € N, there exists G,, € 6 such that (3) [vol|(X\i(K,))—-1/n <
[Al(X\i(Ky)), for all A € Gy,.

The filterbase % is a filterbase on H so that® # @. Let By be a set in%; then I(By) €
I®) c6.

For every n € N, there exists u, € By such that I(u,) € G, I(By) NGy, # @). There-
fore, from (1) and (3), for every n € N,

[vol (X\Xo) = [ (X\i(Kn)) < [(m) | (XVi(Kn)) 4

(3.6)
, , 1 1 2
= |t (1-1(X\1(1<n))> o= | (T\Kn) + - < L(H) + .

Hence (4) |vo|(X\ Xo) <t(H).

Now, X being the Stone-Cech compactification of T, for every f € C?(T) there exists
F € C(X) such that Foi = f and ||F| = ||.fIl (see [10, Theorem 1.4.6, page 25]). Now
we define J : C?(T) — R letting

J(f) = V()(F 'XXO) = ,[XOFdVO. (3.7)

Obviously, J is a continuous linear mapping on C?(T). For every & > 0, from (2), there
exists K € %(T) such that |vg|(Xo\i(K)) < £ and i(K) € Xq. Then, for every g € C?(T)
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with |g| <1 and glk =0, let G € C(X) such that Goi = g. Therefore, we have

[J(g)]| =

V‘)(G'xXo)‘ = V0<G'XXo\iu<>) ’ +v0(6 X)) ’

< |V0|(X()\i(K)) < €.

(3.8

Hence, J is a linear mapping satisfying the condition (M) from [2, Section 5, Proposi-
tion 5] so that there exists exactly one measure py € ?(T) such that uy(f) = J(f),
for every f € C?(T). Then we have (5) o (f) = vo(F - Xy, ), forall f e CP(T), where F
is the continuous extension of f to X.

Now, for every fi,...,fn € CP(T) with || fxll > 0, for all k = 1,...,n, let Fy,...,F, €
C(X) such that Fyoi = fi and ||Fi|| = || fxll, for every k = 1,...,n.

Forall b > t(H),lete = (b—t(H)) -min{|| fxll: k=1,...,n} > 0. The set

G = ﬁ {7\ €08 (X) ¢ |A(F) = vo (Fi) | < s} (3.9)
k=1

is a w*-neighborhood of vy and so is a member of 6 (6 ot vp). Therefore, for every
Be®, GNnI(B) # @ (I(B3) < 6). Hence there exists u € B such that I(u) € G. Then, for
every k = 1,...,n, from (4) and (5), we have

‘H(fk)*llo(fk)‘ = ‘H(Fkoi)*uo(fk)‘ = ’I(H)(Fk)*VO(Fk-XXO)‘
< | 1) (F) = vo (F) | + [vo (Fi- Xyixg ) | < €+ [1Fell - [vo | (X\ Xo)
<e+|lfill- t(H) < (b=t (ED) - [[ fiel [+ [[fiel |- t (H) = b - [ fi|.
(3.10)

Therefore, u € N¢_; Va5, (Ho)- So, for every b > t(H), n € N, fi,..., fn € CP(T) and
Bed,

() Vb5 (Ho) "B # 2. (3.11)
k=1

Let § be the filter generated by the filterbase

n
{ Vi (M) N\B:b > t(H), fi,...,fa €C(T), B eza}. (3.12)
k=1
Then?% < § and § LOCIN Lo, so that H is a t(H)-relatively compact set. O

REMARK 3.9. If H is tight in W?(T) then ¢ (H) = 0, so that H is a relatively narrowly
compact set and we obtain Prohorov’s theorem.

REMARK 3.10. Let a = b > 0; then, every b-relatively compact set is a-relatively
compact set, also. Therefore, for every bounded set H < W?(T)

[t(H),+) S {a>0:H is a-relatively compact}. (3.13)

REMARK 3.11. We say that H € W2 (T) is a-relatively compact in % (T) if, for every
filterbase » < 2/, there exist a filter § on % (T) and u € 2 (T) such that % < § and
forall b > a, for all f € Cb(T),Vb_f(u) NML (T) € §; we say in this case that § Pa, u
in W% (T).
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The subset of all positive measures, W2 (X), is closed in the narrow topology of
MY (X) (see [2, Section 5, Remark 2]) so that, if H = 7‘0{1 (T) is a bounded subset, then
I(H) is w*-relatively compact in 202 (X). Then we follow the proof of Theorem 3.8
and we obtain that every bounded subset H € W (T) is t(H)-relatively compact in
P (T). Also, we have

[t(H),+0o0) c {a > 0: H is a-relatively compact in mf(T)}. (3.14)

In the particular case where T is locally compact, we have the converse of Theorem
3.8 in the subspace % (T).

THEOREM 3.12. Let T be a locally compact space and H an a-relatively compact set
inML(T); thent(H) < a.

PROOE. We suppose that H is an a-relatively compact subset of Y02 (T) and t (H) =
infxes(r) Supy ey (T \K) > a. Then, for every € > 0 and K € #(T), there exists ux € H
such that (1) ug (T\K) > a+¢.

ForeveryK € #(T)wedenote By = {u; : L€ H(T),K < L}. Then® = {Bx : K € H(T)}
is a filterbase on H so that there exist a filter § on 02 (T) and yu € W% (T) such that
Bcsand 2) § Pa, u, in W2 (T) (see Remark 3.11). Since u is a Radon measure, there
exists Ko € H(T) such that (3) u(T\Kp) < &/2.

Let U be a relatively compact neighborhood of K and f : T — [0,1] a continuous
function such that (4) flx, = 0 and flnv = 1.

We remark that f € C?(T) and || f|l = 1. Now let b = a+¢/2 > a and f € CY'(T);
from (2), Vp,r (1) € § 2% so that (5) Vi, s (1) N By + @.

Hence, there exists K € ¥(T), K 2 U such that (6) |ux(f) —u(f)| <b-||fIl = b.

From (1), (3), (4), and (6) we obtain the following contradiction:

_ £
a+ée<pg(T\K) < ug (T\U) < px (f) <pu(f) +a+ 5
. (3.15)
su(T\K0)+a+§<a+s. -

REMARK 3.13. If H is arelatively narrowly compact subset of W (T) (i.e., O-relatively
compact set), then t(H) = 0 so that H is tight. Therefore, we obtain the converse of

Prohorov’s theorem; so Theorem 3.12 is an extension of [2, Section 5, Theorem 2].

REMARK 3.14. From Remark 3.11 and Theorem 3.12, we obtain (in the case of lo-
cally compact spaces)

[t(H),+0) = {a > 0: H is a-relatively compact in )‘OK(T)}. (3.16)

EXAMPLE 3.15. Let T = N be the set of natural numbers and» = ®(N). Then20? (N) =
£" (the space of all sequences of real numbers (x,) ey such that >;_; |x,| < +0) and
C?(T) = £ (the space of all bounded sequences of real numbers). Indeed,

Vx = (xn), €', x:3—R, x(A) = Z X,

neA

(3.17)
x(y)= anyny Vy=(n)nel®.
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Let (xP)pen € WP(N) and x € MP(N), where x? = (x})n, for every p € N and
X = (xn)n. Then x? % x if and only if (1) limsup,, I3 nen(Xh —Xn) - ynl < a-sup, [yal,
for all (), € £~ (see Remark 3.6).

For every bounded set H = {x? :p € N} c WP (N) (2) t(H) = inf, sup, S IxP].

Let (xp)pen € [0,1] be a sequence; we define

1-xp, n=0,
= 1x,, n=p, (3.18)
0, otherwise.

Then x? = (x5) ey € WP (N) and, from (2), we obtain

t({x"’:peN}) =limsupx, =t. (3.19)
n

We easily remark that x? LR X, where x = (x,,), and

1, n=0,
Xn = (3.20)
0, n>0.

From Remark 3.14, inf{a > 0: x? % x} = limsup,, x,. If x, — 0, then (x?), is
narrowly convergent to x. In the particular case where x,, = 1, for every n € N, x? is
the Dirac measure 6, and 6, L. 5.

We remark that

inf {a>0:5, " 5o} =1. (3.21)

4. Probabilistic metric on ! (T). Let (T,d) be a Polish space and let W' (T) <
mﬁ(T) be the subset of all probabilities on T. We say that a net (u;)ie; € W (T) is
pa-convergent to u € W (T) (a = 0) if

limsup | pi (f) —u(f)| <a-Ifl, Vfech (D). (4.1)

We denote this by y; 2, U.So,p =1{pas:ac[0,+x]} is the narrow limit tower induced
on M (T) (see Remark 3.6). If X is the Stone-Cech compactification of T, the subset
ML (X) is a compact set of 07 (X) (see [2, Section 5, Proposition 11]). So, with a similar
argument to that of Remark 3.11, we deduce that every subset H < W (T) is t(H)-
relatively compact in 20! (T) (i.e., every net (u;);c; has a subnet p,-convergent).

Theorem 4.1 has a similar proof to that of Portmanteau’s theorem (see [1, Theorem
2.1, Appendix III, Theorem 3]) which we omit.

THEOREM 4.1. Let (u;)ie; be a net in Y01 (T), u € WH(T) and a = 0; the following

statements are equivalent:

i = u, 4.2)
limsup | p; (f) —u(f)| <a, VfeCl(T) with|fl <1, (4.3)
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limsupuy;(F) < u(F), VF=FcT, (4.4)
i
liminfy; (D) =z u(D), VD=D°cT, (4.5)
limsup |u;(A) —u(A)| <a, VAeB withu(A-A°)=0. (4.6)
i

In Theorem 4.1, A and A° denote the closure and the interior of A in the topological
space (T,T,4), respectively.

REMARK 4.2. In Theorem 4.1, we can suppose that a € [0,1].
REMARK 4.3. R. Lowen gave a similar result in [7, Theorem 6].

DEFINITION 4.4. For every F = F < T and € > 0 we denote F¢ = {t € T: d(t,F) < &}.
For every a € [0,1] we define L, : 0 (T) xM'(T) — R, letting

Lo(p,v) =inf {e> 0: pu(F) <v(Fé)+a+ev(F) <u(F)+a+eYF=F<T}. (47)

REMARK 4.5. L is the metric of Lévy-Prohorov on ! (T). Therefore, Ly induces the
narrow topology on 0! (T) and 0! (T),Lo) is a Polish space [2, Section 5, Examples
8 and 9].

REMARK 4.6. The family ¥ = {L, :a € [0,1]} has the following properties:
L,(u,v)=0, Va=z0<=u=v,
La(u,v) =La(v,u), VYu,vem(T), VYael0,1],
Lasb(U,v) < La(,A) +Lp(A,v), Vu,v,AeM(T), Va,bel0,1],
La(u,v) = sbupr(u,v), Yu,v eMY(T), Vael0,1).
>a

4.8)

In [4, Theorem 1] we proved that such a family & is an equivalent gradated form of a
probabilistic metric (F, T, ), where, for every u,v € Y01(T) and a > 0,

F(u,v)(a) = supinf{min [u(F“‘E) —v(F),v(F*¢%) —u(F)] +1 +a} Al (4.9)

&>0 F=F

and Ty, (a,b) = max{a + b —1,0}. For the space of distribution functions, equivalent
probabilistic metrics are introduced in [5, 6, 9].

In Theorem 4.7 we compare the narrow limit tower with the convergence structures
induced by the family of semi-pseudometrics £ = {L; : a € [0,1]}. So, this theorem is
an important step to obtain a sequential version of Theorem 3.8.

THEOREM 4.7. Let (u;)ic; be a net in W (T), u € W (T) and a € [0,1].
IfLa(pi,u) — 0, then p; = p, (4.10)
If pi =y, then Lag (ui,u) — O. (4.11)

PROOF. (i) We suppose that L, (u;, i) — 0; then, for every n € N*, there exists i,, € I
such that, for every i > i, Ls (Ui, ) < 1/n. Therefore,

i (F) <u(F”")+a+%, VF =F, 4.12)
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so that, for every F=F c T,

limsupui(F)ssqpui(F)su(F””)+a+%. (4.13)
i i>in
But pu(F'/™) — u(F), so that limsup; y;(F) < u(F) +a, for all F = F.

From (4.4) this is equivalent to p; - u.

(ii) Let now u; 2, puandlete>0.Foreveryr >0and t € T, let S, (t) = {s € T:
d(s,t) < r}. Then S, () \ Sp(t) < {s € T:d(s,t) =r} = Cr. But Gy, NCy, = D, for
all 1 # 1o and p(U,-oC,) < 1. It follows that there exists a countable set N < (0, +)
such that u(C,) =0, forall v € (0,+0o0)\N. Therefore, T being separable, there exists a
countable family {S,, (t;) : n € N} such that (1) T = UTS, (tn), u(Sy, (t2)\ Sy, (tn)) =
0 and 7, < £/6, for all n € N.

We denote for all n € N, S, = Sy, (tn). Let K = T be a compact set such that u(T\
K) < &/3 and let p € N such that K < U"_;S,, = Ap; then (2) u(T\ Ag) < /3.

We denote o = {u‘f:lSki :q €N, kq,...,ky < p}; obviously, Ay € A. For every A € A,
H(A\ A°) =0 so that, from (4.6),

limsup |ui(A) —u(A)| < a. (4.14)

Therefore there exists iy € I such that, for every i > ig and A € o, (3) |u; (A) —u(A)| <
a+é&/3.
Now, for every F = F c T, let

Ap={Snin<p, SunF+ 0} eq. (4.15)

Then (4) F < Ar U (T \ Ag), Ar < F&/3.

Indeed, F = (FNAg) U (F\Ag) € AFU(T\ Ap). For every t € Ar there exists S, such
thatt € S, and S, NF # @. Then, from (1), d(t,F) <2-v, < £/3, so that t € F¢/3. Then,
from (2), (3), and (4), we have

[Ji(F) <[Ji(AF)+[Ji(T\A0) <u(F)+a+§+1—ui(Ao)

<u(AF)+a+§+1—u(A0)+a+§ =[J(AF)+H(T\A0)+2'Q+%

<u(FEPY+2-a+e<u(FS)+2-a+e, (4.16)
&

U(F) < pu(Af) +u(T\ Ag) <ui(AF)+,;l+§+§

<u,—(F5/3)+a+% <ui(F&)+2-a+e,

for every F = F = T. Then Ly, (u;, 1) < &, for every i > ip. Therefore Lo, (ui,u) — 0. O

COROLLARY 4.8. Let H be an a-relatively compact subset in W) (T); then, for every
sequence (Uy)nen S H, there exist a subsequence (U, )nen and u € WH(T) such that
2.
Mk, — U
PROOEF. For every sequence (Uy)nen S H, there exist a subnet (uy,)ic; and u €
MW (T) such that py, = p. From (4.11), Loa(pin,, ) — 0. So, for every p € N, there
exists i, € I such that n;, > p and L2a(ump,u) <1/p.
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Therefore, we can choose a subsequence (L) nen Of (Un)nen such that Ly, (¢, 1) —
0. From (4.10) it follows that p, =% p. O

Now we are able to give the sequential version of Theorem 3.8.

THEOREM 4.9. Let (Uy)neny S (T) and t = t ({u, : 1 € N}) be the degree of tight-
ness of (Un)nen. Then there exist a subsequence (Ui, )nen and p € W'(T) such that

iy — g, (4.17)
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