COMPACITY IN NARROW LIMIT TOWER SPACES

LIVIU C. FLORESCU

(Received January 2000 and in revised form 4 May 2000)

ABSTRACT. We introduce a limit tower structure on the space of all bounded Radon measures on a completely regular space and we extend the Prohorov's theorem of narrow compactness. In the particular case of Polish spaces, we give a sequential version of this extension.

2000 Mathematics Subject Classification. 28A33, 46E27, 54E70, 54A20, 60B10.

1. Introduction. Let *T* be a completely regular space, \mathfrak{B} the boreliens of *T*, and $\mathfrak{M}^b(T)$ the set of all bounded Radon measures on (T, \mathfrak{B}) (i.e., the real bounded measures $\mu : \mathfrak{B} \to \mathbb{R}$ such that $|\mu|(A) = \sup\{|\mu|(K) : K \text{ is compact}, K \subseteq A\}$, for all $A \in \mathfrak{B}$, where $|\mu|$ is the variation of μ). Denote by $\mathscr{C}^b(T)$ the space of all bounded continuous real functions on *T* and let $||f|| = \sup\{|f(t)| : t \in T\}$, for every $f \in \mathscr{C}^b(T)$. We recall that a filter \mathfrak{F} on $\mathfrak{M}^b(T)$ is narrowly convergent to μ if and only if $V_{\varepsilon,f}(\mu) \in \mathfrak{F}$, for all $f \in \mathscr{C}^b(T), \varepsilon > 0$, where $V_{\varepsilon,f}(\mu) = \{\nu : |\mu(f) - \nu(f)| < \varepsilon\}$.

We say that a set $H \subseteq \mathfrak{M}^b(T)$ is *relatively narrowly compact* if, for every filterbase $\mathfrak{B} \subseteq 2^H$ there exist a filter \mathfrak{f} on $\mathfrak{M}^b(T)$ and $\mu \in \mathfrak{M}^b(T)$ such that \mathfrak{f} converges to μ .

Prohorov's classical theorem states that *a bounded set* $H \subseteq \mathfrak{M}^b(T)$ *is relatively narrowly compact if the following condition is satisfied*:

$$\forall \varepsilon > 0, \quad \exists K_{\varepsilon} \text{ compact} \subseteq T : |\mu| (T \setminus K_{\varepsilon}) < \varepsilon, \ \forall \mu \in H.$$
(1.1)

A set *H* as in (1.1) is called *tight*.

We remark that, if T is a Polish space (i.e., T is a separable, completely metrizable space) or T is a locally compact space, the converse is also true (relative narrow compactness implies tightness) (see [2, Section 5, Theorems 1 and 2]).

Limit tower spaces were first defined in 1997 by Kent and Brock [3] as an isomorphic gradated variant of convergence approach spaces of Löwen [8].

In this paper, we introduce on $\mathfrak{W}^b(T)$ a limit tower structure $\bar{p} = \{p_a : a \in [0, +\infty]\}$ (see [3]), where p_0 is the narrow convergence structure. Then, for every bounded set $H \subseteq \mathfrak{W}^b(T)$, there exists a number $t = t(H) \ge 0$ such that, for every filterbase $\mathfrak{B} \subseteq 2^H$ there exists a filter \mathfrak{f} on $\mathfrak{W}^b(T)$, $\mathfrak{B} \subseteq \mathfrak{f}$, p_t -convergent in $\mathfrak{W}^b(T)$ (see Theorem 3.8); we say that H is p_t -relatively compact. The number t(H) estimates the degree of tightness of H. If H is tight then t(H) = 0, so we obtain Prohorov's theorem.

If *T* is a locally compact space we extend also the converse of Prohorov's theorem (see Theorem 3.12).

We give some examples in the particular case of $T = \mathbb{N}$ when $\mathfrak{M}^{b}(\mathbb{N}) = \ell^{1}$.

In Section 4, we obtain a sequential version of Theorem 3.8 on the subset $\mathfrak{W}^1(T) \subseteq \mathfrak{W}^b(T)$ of all probabilities on the Polish space *T*. So, every sequence $(\mu_n)_{n \in \mathbb{N}} \subseteq \mathfrak{W}^1(T)$ contains a subsequence p_{2t} -convergent in $\mathfrak{W}^1(T)$, where $t = t(\{\mu_n : n \in \mathbb{N}\})$ (see Theorem 4.9). In particular, we prove that the limit tower structure \bar{p} on the set of probabilities is induced by a probabilistic metric on this space.

2. Limit tower structures. Let *X* be a set, $\mathbb{B}(X)$ the set of all filterbases on *X*, and 2^X the power set of *X*; for every $\mathfrak{f} \in \mathbb{B}(X)$, \mathfrak{f}' is the filter generated by \mathfrak{f} . For $x \in X$, let \dot{x} denote the fixed ultrafilter generated by $\{x\}$.

DEFINITION 2.1 (see [3, Definition 1]). A *limit structure* on X is a function $q : \mathbb{B}(X) \rightarrow 2^X$ satisfying

$$x \in q(\dot{x}), \quad x \in X,$$
 (2.1)

$$q(\mathfrak{f}) = q(\mathfrak{f}'), \quad \forall \mathfrak{f} \in \mathbb{B}(X), \tag{2.2}$$

$$q(\mathfrak{f}' \cap \mathfrak{G}') = q(\mathfrak{f}) \cap q(\mathfrak{G}), \quad \forall \mathfrak{f}, \mathfrak{G} \in \mathbb{B}(X).$$

$$(2.3)$$

A pair (X,q), where q is a limit structure on X is called a *limit space*.

REMARK 2.2. The statement " $x \in q(f)$ " will be written $f \xrightarrow{q} x$ and we say that f *q*-converges to *x*.

REMARK 2.3. In [3], a *limit structure* is a function $q : \mathbb{F}(X) \to 2^X$, where $\mathbb{F}(X)$ denotes the set of all filters on *X*, satisfying

$$x \in q(\dot{x}), \quad x \in X,$$

$$\mathfrak{f} \subseteq \mathfrak{G} \Longrightarrow q(\mathfrak{f}) \subseteq q(\mathfrak{G}),$$

$$x \in q(\mathfrak{f}) \Longrightarrow x \in q(\mathfrak{f} \cap \dot{x}),$$

$$x \in q(\mathfrak{f}) \cap q(\mathfrak{G}) \Longrightarrow x \in q(\mathfrak{f} \cap \mathfrak{G}).$$

(2.4)

If we extend such a function q to $\mathbb{B}(X)$ letting $q(\mathfrak{f}) = q(\mathfrak{f}')$, then (2.4) is equivalent to (2.1), (2.2), and (2.3).

REMARK 2.4. If τ is a topology on X and we define $f \xrightarrow{q_{\tau}} x$ if and only if $\mathcal{V}_{\tau}(x) \subseteq f'$, then q_{τ} is a limit structure on X (here $\mathcal{V}_{\tau}(x)$ denotes the neighborhood filter of x in (X, τ)). More exactly we have the following proposition.

PROPOSITION 2.5 (see [3, Proposition 2]). Let q be a limit structure on X; the necessary and sufficient condition for a topology τ to exist on X, such that $q = q_{\tau}$, is that q fulfills the following condition:

(F) Let $\{\mathfrak{f}_j : j \in J\}$ be a family of filterbases on X and $\{x_j : j \in J\} \subset X$ be such that $\mathfrak{f}_j \xrightarrow{q} x_j$ for all $j \in J$.

If $\Phi \in \mathbb{B}(J)$ is such that $\mathfrak{f} \xrightarrow{q} x$, where $\mathfrak{f} = \{\{x_j : j \in \phi\} : \phi \in \Phi\}$, then

$$\bigcup_{\phi \in \Phi} \bigcap_{j \in \phi} \mathfrak{f}'_j \xrightarrow{q} x. \tag{2.5}$$

DEFINITION 2.6 (see [3, Definition 4]). A *limit tower* \bar{p} on a set X is a family $\bar{p} = \{p_a : a \in [0, +\infty]\}$ of limit structures on X satisfying the following conditions:

$$p_a(\mathfrak{f}) \subseteq p_b(\mathfrak{f}), \quad \forall a \le b, \ \forall \mathfrak{f} \in \mathbb{B}(X),$$

$$(2.6)$$

$$p_{\infty}(\mathfrak{f}) = X, \quad \forall \mathfrak{f} \in \mathbb{B}(X),$$
(2.7)

$$p_{a}(\mathfrak{f}) = \bigcap_{b>a} p_{b}(\mathfrak{f}), \quad \forall a \in [0, +\infty), \ \forall \mathfrak{f} \in \mathbb{B}(X).$$

$$(2.8)$$

If $x \in p_a(\mathfrak{f})$, we say that \mathfrak{f} is p_a -convergent to x and we denote this by $\mathfrak{f} \xrightarrow{p_a} x$. If \bar{p} is a limit tower on X, (X, \bar{p}) is called a *limit tower space*.

The axiom (F) defined in Proposition 2.5 has a natural extension to a limit tower space (X, \bar{p}) :

(F) Let $a, b \in [0, +\infty]$, $\{\mathfrak{f}_j : j \in J\} \subseteq \mathbb{B}(X)$, and $\{x_j : j \in J\} \subseteq X$ such that $\mathfrak{f}_j \xrightarrow{p_a} x_j$, for all $j \in J$. If $\Phi \in \mathbb{B}(J)$ is such that $\mathfrak{f} \xrightarrow{p_b} x$, where $\mathfrak{f} = \{\{x_j : j \in \phi\} : \phi \in \Phi\}$, then

$$\bigcup_{\phi \in \Phi} \bigcap_{j \in \phi} \mathfrak{f}'_j \xrightarrow{p_{a+b}} x.$$
(2.9)

DEFINITION 2.7. A limit tower \bar{p} on *X* which satisfies (F) is called a *topological limit tower*.

REMARK 2.8. From [3, Theorems 9, 13 and Proposition 12(b)] we know that a topological limit tower is an isomorphic form of a Löwen's approach structure (see [8]).

3. Narrow limit tower on $\mathfrak{W}^b(T)$ **.** In this section, we introduce a topological limit tower $\bar{p} = \{p_a : a \in [0, +\infty]\}$ on the space of bounded Radon measures on a completely regular space such that p_0 -convergence is just the narrow convergence; then we extend the Prohorov's theorem of narrow compactness.

Let *T* be a completely regular space, let \mathfrak{B} be the σ -algebra of Borel subsets of *T*, and let $\mathfrak{M}^b(T)$ be the set of all bounded Radon measures on (T,\mathfrak{B}) . Denote by $C^b(T)$ the set of all bounded continuous real functions on *T*. For every $f \in C^b(T)$ and $\mu \in \mathfrak{M}^b(T)$, we denote $\mu(f) = \int_T f d\mu$.

Now, for every $a \in [0, +\infty]$, $\mu \in \mathfrak{M}^b(T)$, and $f \in C^b(T)$, we denote

$$V_{a,f}(\mu) = \left\{ \nu \in \mathfrak{M}^b(T) : \left| \mu(f) - \nu(f) \right| \le a \|f\| \right\}.$$
(3.1)

Then, for every $a \in [0, +\infty)$, let $p_a : \mathbb{B}(\mathfrak{M}^b(T)) \to 2^{\mathfrak{M}^b(T)}$ defined by

$$p_{a}(\mathfrak{f}) = \left\{ \mu \in \mathfrak{M}^{b}(T) : \forall b > a, \forall \in C^{b}(T), V_{b,f}(\mu) \in \mathfrak{f}' \right\},$$
(3.2)

for all filterbases \mathfrak{f} on $\mathfrak{M}^b(T)$; let p_{∞} be the indiscrete convergence structure on $\mathfrak{M}^b(T)$ $(p_{\infty}(\mathfrak{f}) = \mathfrak{M}^b(T)$, for all $\mathfrak{f} \in \mathbb{B}(\mathfrak{M}^b(T))$).

We remark that $\mathfrak{f} \xrightarrow{p_a} \mu$ if and only if for all b > a, for all $f \in C^b(T), V_{b,f}(\mu) \in \mathfrak{f}'$.

PROPOSITION 3.1. The limit tower $\bar{p} = \{p_a : a \in [0, +\infty]\}$ is a topological limit tower on $\mathfrak{M}^b(T)$.

PROOF. For every $a \in [0, +\infty)$, $\mu \in \mathfrak{M}^b(T)$, and $f \in C^b(T)$, we have $\mu \in V_{a,f}(\mu)$, so that we have (2.1).

Equations (2.2), (2.3), (2.6), and (2.7) are consequences of the definition of \bar{p} . From (2.6), $p_a(\mathfrak{f}) \subseteq \bigcap_{b>a} p_b(\mathfrak{f})$, for all $\mathfrak{f} \in \mathbb{B}(\mathfrak{M}^b(T))$. If $\mathfrak{f} \xrightarrow{p_c} \mu$, for all c > a, then for all b > a, there exists c such that a < c < b hence $V_{b,f}(\mu) \in \mathfrak{f}$, for all $f \in C^b(T)$. Therefore $\mathfrak{f} \xrightarrow{p_a} \mu$ and so we have (2.8).

(F) Let $a, b \ge 0, \{\mathfrak{f}_j : j \in J\} \subseteq \mathbb{B}(\mathfrak{M}^b(T))$, and $\{\mu_j : j \in J\} \subseteq \mathfrak{M}^b(T)$ such that (1) $\mathfrak{f}_j \xrightarrow{p_a} \mu_j$, for all $j \in J$. Let Φ be a filterbase on J such that (2) $\mathfrak{f} \xrightarrow{b} \mu$, where $\mathfrak{f} = \{\{\mu_j\}_{j \in \Phi} : \phi \in \Phi\}$. Then for all u > a + b, there exist d > a, e > b such that u = d + e. Then for all $f \in C^b(T)$, from (2), $V_{e,f}(\mu) \in \mathfrak{f}'$ hence, there exists $\phi \in \Phi$ such that $\{\mu_j\}_{j \in \phi} \subseteq V_{e,f}(\mu)$. Then (3) $|\mu_j(f) - \mu(f)| \le e ||f||$, for all $j \in \phi$.

From (1), for all $j \in J$, $V_{d,f}(\mu_j) \in \mathfrak{f}'_j$. But, from (3), $V_{d,f}(\mu_j) \subseteq V_{u,f}(\mu)$, so that $V_{u,f} \in \mathfrak{f}'_j$, for all $j \in \phi$. Therefore,

$$V_{u,f}(\mu) \in \bigcap_{j \in \phi} \mathfrak{f}'_{j} \subseteq \bigcup_{\phi \in \Phi} \bigcap_{j \in \phi} \mathfrak{f}'_{j}.$$
(3.3)

It follows that $\mu \in p_{a+b}(\bigcup_{\phi \in \Phi} \bigcap_{j \in \phi} \mathfrak{f}'_j)$, so that $\bar{p} = \{p_a : a \in [0, +\infty]\}$ is a topological limit tower on $\mathfrak{W}^b(T)$.

DEFINITION 3.2. We say that $\bar{p} = \{p_a : a \in [0, +\infty]\}$ is the *narrow limit tower* on $\mathfrak{W}^b(T)$.

REMARK 3.3. Note that p_0 is the narrow convergence structure on $\mathfrak{M}^b(T)$. Indeed, $\mathfrak{F} \xrightarrow{p_0} \mu$ if and only if for all $\varepsilon > 0$, for all $f \in C^b(T), V_{\varepsilon,f} \in \mathfrak{f}'$. But the sets $V_{\varepsilon,f}(\mu) = \{\nu : |\mu(f) - \nu(f)| \le \varepsilon ||f||\}$ form a subbase for the neighbourhood system of μ in the narrow topology on $\mathfrak{M}^b(T)$; so that \mathfrak{f} is narrowly convergent to μ .

REMARK 3.4. If $\mathfrak{f} \xrightarrow{p_a} \mu$ then $\mathfrak{f} \xrightarrow{p_b} \mu$, for all $b \ge a$. Thus p_0 is the finest limit structure of \overline{p} .

REMARK 3.5. We may interpret $\inf \{a : \mathfrak{f} \xrightarrow{p_a} \mu\}$ as the degree of narrow convergence of filterbase \mathfrak{f} to μ .

REMARK 3.6. For every net $(\mu_i)_{i \in I} \subseteq \mathfrak{M}^b(T)$ $((I, \leq)$ is a directed set) let $\mathfrak{f} = \{\{x_j : j \geq i\} : i \in I\}$ be the filterbase generated by $(\mu_i)_{i \in I}$.

If $\bar{p} = \{p_a : a \in [0, +\infty]\}$ is the narrow limit tower on $\mathfrak{M}^b(T)$, then we say that $\mu_i \xrightarrow{a} \mu$ if $\mathfrak{f} \xrightarrow{p_a} \mu$. Therefore, $\mu_i \xrightarrow{a} \mu$ if and only if

$$\limsup_{i} |\mu_i(f) - \mu(f)| \le a \cdot ||f||, \quad \forall f \in C^b(T).$$
(3.4)

DEFINITION 3.7. We say that a subset $H \subseteq \mathfrak{M}^b(T)$ is *a*-relatively compact if for every filterbase $\mathfrak{B} \subseteq 2^H$, there exist a filter \mathfrak{f} on $\mathfrak{M}^b(T)$ and $\mu \in \mathfrak{M}^b(T)$ such that $\mathfrak{B} \subseteq \mathfrak{f}$ and $\mathfrak{f} \xrightarrow{p_a} \mu$.

We remark that H is 0-relatively compact if and only if H is relatively narrowly compact.

A subset $H \subseteq \mathfrak{M}^b(T)$ is bounded if $\sup\{|\mu|(T) : \mu \in H\} < +\infty$, where $|\mu|$ is the variation of μ . The mapping $\mu \mapsto |\mu|(T) = ||\mu||$ is a norm on $\mathfrak{M}^b(T)$.

Let $\mathscr{K}(T)$ be the family of all compact sets on *T*; for every bounded set $H \subseteq \mathfrak{W}^b(T)$

we denote

$$t(H) = \inf_{K \in \mathcal{H}(T)} \sup_{\mu \in H} |\mu|(T \setminus K).$$
(3.5)

We remark that $t(H) \in [0, +\infty)$ and t(H) = 0 if and only if *H* is tight. We say that t(H) is the *degree of tightness* of *H*.

Now we give an extension of Prohorov's theorem.

THEOREM 3.8. Every bounded set $H \subseteq \mathfrak{M}^{b}(T)$ is t(H)-relatively compact.

PROOF. Let *X* be the Stone-Čech compactification of *T* and $i: T \to X$ be the canonical injection of *T* in *X*. We remark that $C^b(X) = C(X)$ (*X* is compact); so $(\mathfrak{M}^b(X), \|\cdot\|)$ is the topological dual of the Banach space $(C(X), \|\cdot\|)$ and the narrow topology on $\mathfrak{M}^b(X)$ is the weak*-topology, w^* , of this dual space.

For every $\mu \in \mathfrak{M}^b(T)$ we define $\nu = I(\mu) \in \mathfrak{M}^b(X)$, where $I(\nu)(F) = \mu(F \circ i)$, for every $F \in C(X)$; $\|\nu\| = |\nu|(X) = |\mu|(T) = \|\mu\|$ so that $I : \mathfrak{M}^b(T) \to \mathfrak{M}^b(X)$, $\mu \mapsto I(\mu)$, is an isometric embedding.

Let *H* be a bounded subset of $\mathfrak{W}^b(T)$; then I(H) is a bounded subset of $\mathfrak{W}^b(X)$. Therefore I(H) is w^* -relatively compact. For every filterbase $\mathfrak{B} \subseteq 2^H$, $I(\mathfrak{B}) = \{I(B) : B \in \mathfrak{B}\}$ is a filterbase on I(H). So that, there exists a filter \mathfrak{G} on $\mathfrak{W}^b(X)$ w^* -convergent to a measure $v_0 \in \mathfrak{W}^b(X)$ such that $I(\mathfrak{B}) \subseteq \mathfrak{G}$. From the definition of t(H), there exists a sequence $(K_n)_n \subseteq \mathfrak{H}(T)$ such that $(1) |\mu|(T \setminus K_n) < t(H) + 1/n$, for all $n \in \mathbb{N}$, for all $\mu \in H$. We denote $T_0 = \bigcup_{n=1}^{\infty} K_n$ and $(2) X_0 = \bigcup_{n=1}^{\infty} i(K_n) = i(T_0)$.

For every $n \in \mathbb{N}$, $i(K_n) \in \mathcal{X}(X)$, so that X_0 is a Borel set of X. On the other hand, for every $n \in \mathbb{N}$, $X \setminus i(K_n)$ is an open subset of X so that the mapping $\lambda \mapsto |\lambda|(X \setminus i(K_n))$ is a w^* -lower semi-continuous mapping on $\mathfrak{W}^b(X)$ (see [2, Section 5, Proposition 6(a)]).

From $\mathfrak{G} \xrightarrow{w^*} v_0$, for all $n \in \mathbb{N}$, there exists $G_n \in \mathfrak{G}$ such that (3) $|v_0|(X \setminus i(K_n)) - 1/n < |\lambda|(X \setminus i(K_n))$, for all $\lambda \in G_n$.

The filterbase \mathfrak{B} is a filterbase on H so that $\mathfrak{B} \neq \emptyset$. Let B_0 be a set in \mathfrak{B} ; then $I(B_0) \in I(\mathfrak{B}) \subseteq \mathfrak{G}$.

For every $n \in \mathbb{N}$, there exists $\mu_n \in B_0$ such that $I(\mu_n) \in G_n$ ($I(B_0) \cap G_n \neq \emptyset$). Therefore, from (1) and (3), for every $n \in \mathbb{N}$,

$$|\nu_{0}|(X \setminus X_{0}) \leq |\nu_{0}|(X \setminus i(K_{n})) < |I(\mu_{n})|(X \setminus i(K_{n})) + \frac{1}{n}$$

= $|\mu_{n}|(i^{-1}(X \setminus i(K_{n}))) + \frac{1}{n} = |\mu_{n}|(T \setminus K_{n}) + \frac{1}{n} < t(H) + \frac{2}{n}.$ (3.6)

Hence (4) $|v_0|(X \setminus X_0) \le t(H)$.

Now, *X* being the Stone-Čech compactification of *T*, for every $f \in C^b(T)$ there exists $F \in C(X)$ such that $F \circ i = f$ and ||F|| = ||f|| (see [10, Theorem 1.4.6, page 25]). Now we define $J : C^b(T) \to \mathbb{R}$ letting

$$J(f) = v_0 \left(F \cdot \chi_{\chi_0} \right) = \int_{\chi_0} F \, dv_0. \tag{3.7}$$

Obviously, *J* is a continuous linear mapping on $C^b(T)$. For every $\varepsilon > 0$, from (2), there exists $K \in \mathcal{K}(T)$ such that $|v_0|(X_0 \setminus i(K)) < \varepsilon$ and $i(K) \subseteq X_0$. Then, for every $g \in C^b(T)$

with $|g| \le 1$ and $g|_K = 0$, let $G \in C(X)$ such that $G \circ i = g$. Therefore, we have

$$|J(g)| = |v_0(G \cdot \chi_{X_0})| \le |v_0(G \cdot \chi_{X_0 \setminus i(K)})| + |v_0(G \cdot \chi_{i(K)})| \le |v_0|(X_0 \setminus i(K)) < \varepsilon.$$
(3.8)

Hence, *J* is a linear mapping satisfying the condition (*M*) from [2, Section 5, Proposition 5] so that there exists exactly one measure $\mu_0 \in \mathfrak{M}^b(T)$ such that $\mu_0(f) = J(f)$, for every $f \in C^b(T)$. Then we have (5) $\mu_0(f) = \nu_0(F \cdot \chi_{\chi_0})$, for all $f \in C^b(T)$, where *F* is the continuous extension of *f* to *X*.

Now, for every $f_1, \ldots, f_n \in C^b(T)$ with $||f_k|| > 0$, for all $k = 1, \ldots, n$, let $F_1, \ldots, F_n \in C(X)$ such that $F_k \circ i = f_k$ and $||F_k|| = ||f_k||$, for every $k = 1, \ldots, n$.

For all b > t(H), let $\varepsilon = (b - t(H)) \cdot \min\{||f_k|| : k = 1, ..., n\} > 0$. The set

$$G = \bigcap_{k=1}^{n} \left\{ \lambda \in \mathfrak{M}^{b}(X) : \left| \lambda(F_{k}) - \nu_{0}(F_{k}) \right| < \varepsilon \right\}$$
(3.9)

is a w^* -neighborhood of v_0 and so is a member of \mathfrak{G} ($\mathfrak{G} \xrightarrow{w^*} v_0$). Therefore, for every $B \in \mathfrak{B}$, $G \cap I(B) \neq \emptyset$ ($I(\mathfrak{B}) \subseteq \mathfrak{G}$). Hence there exists $\mu \in B$ such that $I(\mu) \in G$. Then, for every k = 1, ..., n, from (4) and (5), we have

$$\begin{aligned} \left| \mu(f_{k}) - \mu_{0}(f_{k}) \right| &= \left| \mu(F_{k} \circ i) - \mu_{0}(f_{k}) \right| = \left| I(\mu)(F_{k}) - \nu_{0}\left(F_{k} \cdot \chi_{X_{0}}\right) \right| \\ &\leq \left| I(\mu)(F_{k}) - \nu_{0}(F_{k}) \right| + \left| \nu_{0}\left(F_{k} \cdot \chi_{X \setminus X_{0}}\right) \right| < \varepsilon + ||F_{k}|| \cdot |\nu_{0}| \left(X \setminus X_{0}\right) \\ &< \varepsilon + ||f_{k}|| \cdot t(H) \le \left(b - t(H)\right) \cdot ||f_{k}|| + ||f_{k}|| \cdot t(H) = b \cdot ||f_{k}||. \end{aligned}$$

$$(3.10)$$

Therefore, $\mu \in \bigcap_{k=1}^{n} V_{b,f_k}(\mu_0)$. So, for every b > t(H), $n \in \mathbb{N}$, $f_1, \ldots, f_n \in C^b(T)$ and $B \in \mathfrak{B}$,

$$\bigcap_{k=1}^{n} V_{b,f_k}(\mu_0) \cap B \neq \emptyset.$$
(3.11)

Let f be the filter generated by the filterbase

$$\left\{\bigcap_{k=1}^{n} V_{b,f_{k}}(\mu_{0}) \cap B : b > t(H), f_{1}, \dots, f_{n} \in C^{b}(T), B \in \mathfrak{B}\right\}.$$
(3.12)

Then $\mathfrak{B} \subseteq \mathfrak{f}$ and $\mathfrak{f} \xrightarrow{p_{t(H)}} \mu_0$, so that *H* is a t(H)-relatively compact set.

REMARK 3.9. If *H* is tight in $20^{b}(T)$ then t(H) = 0, so that *H* is a relatively narrowly compact set and we obtain Prohorov's theorem.

REMARK 3.10. Let $a \ge b \ge 0$; then, every *b*-relatively compact set is *a*-relatively compact set, also. Therefore, for every bounded set $H \subseteq \mathfrak{M}^b(T)$

$$[t(H), +\infty) \subseteq \{a \ge 0 : H \text{ is } a \text{-relatively compact}\}.$$
(3.13)

REMARK 3.11. We say that $H \subseteq \mathfrak{M}^b_+(T)$ is *a*-relatively compact in $\mathfrak{M}^b_+(T)$ if, for every filterbase $\mathfrak{B} \subseteq 2^H$, there exist a filter \mathfrak{f} on $\mathfrak{M}^b_+(T)$ and $\mu \in \mathfrak{M}^b_+(T)$ such that $\mathfrak{B} \subseteq \mathfrak{f}$ and for all b > a, for all $f \in C^b(T)$, $V_{b,f}(\mu) \cap \mathfrak{M}^b_+(T) \in \mathfrak{f}$; we say in this case that $\mathfrak{f} \stackrel{p_a}{\longrightarrow} \mu$ in $\mathfrak{M}^b_+(T)$.

The subset of all positive measures, $\mathfrak{W}^{b}_{+}(X)$, is closed in the narrow topology of $\mathfrak{W}^{b}(X)$ (see [2, Section 5, Remark 2]) so that, if $H \subseteq \mathfrak{W}^{b}_{+}(T)$ is a bounded subset, then I(H) is w^* -relatively compact in $\mathfrak{W}^{b}_{+}(X)$. Then we follow the proof of Theorem 3.8 and we obtain that every bounded subset $H \subseteq \mathfrak{W}^{b}_{+}(T)$ is t(H)-relatively compact in $\mathfrak{W}^{b}_{+}(T)$. Also, we have

$$[t(H), +\infty) \subseteq \{a \ge 0 : H \text{ is } a \text{-relatively compact in } \mathfrak{M}^b_+(T) \}.$$
(3.14)

In the particular case where *T* is locally compact, we have the converse of Theorem 3.8 in the subspace $\mathfrak{W}^b_+(T)$.

THEOREM 3.12. Let *T* be a locally compact space and *H* an *a*-relatively compact set in $\mathfrak{W}^b_+(T)$; then $t(H) \leq a$.

PROOF. We suppose that *H* is an *a*-relatively compact subset of $\mathfrak{W}^{b}_{+}(T)$ and $t(H) = \inf_{K \in \mathcal{H}(T)} \sup_{\mu \in H} \mu(T \setminus K) > a$. Then, for every $\varepsilon > 0$ and $K \in \mathcal{H}(T)$, there exists $\mu_{K} \in H$ such that (1) $\mu_{K}(T \setminus K) > a + \varepsilon$.

For every $K \in \mathcal{H}(T)$ we denote $B_K = \{\mu_L : L \in \mathcal{H}(T), K \subseteq L\}$. Then $\mathfrak{B} = \{B_K : K \in \mathcal{H}(T)\}$ is a filterbase on H so that there exist a filter \mathfrak{f} on $\mathfrak{M}^b_+(T)$ and $\mu \in \mathfrak{M}^b_+(T)$ such that $\mathfrak{B} \subseteq \mathfrak{f}$ and (2) $\mathfrak{f} \xrightarrow{p_a} \mu$, in $\mathfrak{M}^b_+(T)$ (see Remark 3.11). Since μ is a Radon measure, there exists $K_0 \in \mathcal{H}(T)$ such that (3) $\mu(T \setminus K_0) < \varepsilon/2$.

Let *U* be a relatively compact neighborhood of *K* and $f : T \rightarrow [0,1]$ a continuous function such that (4) $f|_{K_0} = 0$ and $f|_{T \setminus U} = 1$.

We remark that $f \in C^b(T)$ and ||f|| = 1. Now let $b = a + \varepsilon/2 > a$ and $f \in C^b(T)$; from (2), $V_{b,f}(\mu) \in \mathfrak{f} \supseteq \mathfrak{B}$ so that (5) $V_{b,f}(\mu) \cap B_{\bar{U}} \neq \emptyset$.

Hence, there exists $K \in \mathcal{K}(T)$, $K \supseteq \overline{U}$ such that (6) $|\mu_K(f) - \mu(f)| \le b \cdot ||f|| = b$. From (1), (3), (4), and (6) we obtain the following contradiction:

$$a + \varepsilon < \mu_{K}(T \setminus K) \le \mu_{K}(T \setminus \bar{U}) \le \mu_{K}(f) \le \mu(f) + a + \frac{\varepsilon}{2}$$

$$\le \mu(T \setminus K_{0}) + a + \frac{\varepsilon}{2} < a + \varepsilon.$$
(3.15)

REMARK 3.13. If *H* is a relatively narrowly compact subset of $\mathfrak{W}^{b}_{+}(T)$ (i.e., 0-relatively compact set), then t(H) = 0 so that *H* is tight. Therefore, we obtain the converse of Prohorov's theorem; so Theorem 3.12 is an extension of [2, Section 5, Theorem 2].

REMARK 3.14. From Remark 3.11 and Theorem 3.12, we obtain (in the case of locally compact spaces)

$$[t(H), +\infty) = \left\{ a \ge 0 : H \text{ is } a \text{-relatively compact in } \mathfrak{M}^b_+(T) \right\}.$$
(3.16)

EXAMPLE 3.15. Let $T = \mathbb{N}$ be the set of natural numbers and $\mathfrak{B} = \mathfrak{P}(\mathbb{N})$. Then $\mathfrak{W}^b(\mathbb{N}) = \ell^1$ (the space of all sequences of real numbers $(x_n)_{n \in \mathbb{N}}$ such that $\sum_{n=1}^{\infty} |x_n| < +\infty$) and $C^b(T) = \ell^{\infty}$ (the space of all bounded sequences of real numbers). Indeed,

$$\forall x = (x_n)_n \in \ell^1, \ x : \mathfrak{B} \longrightarrow \mathbb{R}, \quad x(A) = \sum_{n \in A} x_n,$$

$$x(y) = \sum_n x_n y_n, \quad \forall y = (y_n)_n \in \ell^{\infty}.$$

$$(3.17)$$

Let $(x^p)_{p\in\mathbb{N}} \subseteq \mathfrak{M}^b(\mathbb{N})$ and $x \in \mathfrak{M}^b(\mathbb{N})$, where $x^p = (x_n^p)_n$, for every $p \in \mathbb{N}$ and $x = (x_n)_n$. Then $x^p \xrightarrow{a} x$ if and only if (1) $\limsup_p |\sum_{n \in \mathbb{N}} (x_n^p - x_n) \cdot y_n| \le a \cdot \sup_n |y_n|$, for all $(y_n)_n \in \ell^{\infty}$ (see Remark 3.6).

For every bounded set $H = \{x^p : p \in \mathbb{N}\} \subseteq \mathfrak{W}^b(\mathbb{N})$ (2) $t(H) = \inf_m \sup_p \sum_{n=m}^{\infty} |x_n^p|$.

Let $(x_p)_{p \in \mathbb{N}} \subseteq [0,1]$ be a sequence; we define

$$x_{n}^{p} = \begin{cases} 1 - x_{p}, & n = 0, \\ x_{p}, & n = p, \\ 0, & \text{otherwise.} \end{cases}$$
(3.18)

Then $x^p = (x_n^p)_{n \in \mathbb{N}} \in \mathfrak{M}^b(\mathbb{N})$ and, from (2), we obtain

$$t\left(\left\{x^{p}: p \in \mathbb{N}\right\}\right) = \limsup_{n} x_{n} = t.$$
(3.19)

We easily remark that $x^p \xrightarrow{t} x$, where $x = (x_n)_n$ and

From Remark 3.14, $\inf\{a \ge 0 : x^p \xrightarrow{a} x\} = \limsup_n x_n$. If $x_n \to 0$, then $(x^p)_p$ is narrowly convergent to x. In the particular case where $x_n = 1$, for every $n \in \mathbb{N}$, x^p is the Dirac measure δ_p and $\delta_p \xrightarrow{1} \delta_0$.

We remark that

$$\inf\left\{a \ge 0 : \delta_p \xrightarrow{a} \delta_0\right\} = 1. \tag{3.21}$$

4. Probabilistic metric on $\mathfrak{W}^1(T)$. Let (T,d) be a Polish space and let $\mathfrak{W}^1(T) \subseteq \mathfrak{W}^b_+(T)$ be the subset of all probabilities on *T*. We say that a net $(\mu_i)_{i \in I} \subseteq \mathfrak{W}^1(T)$ is p_a -convergent to $\mu \in \mathfrak{W}^1(T)$ $(a \ge 0)$ if

$$\limsup_{i} |\mu_i(f) - \mu(f)| \le a \cdot ||f||, \quad \forall f \in C^b(T).$$

$$(4.1)$$

We denote this by $\mu_i \xrightarrow{a} \mu$. So, $\bar{p} = \{p_a : a \in [0, +\infty]\}$ is the narrow limit tower induced on $\mathfrak{W}^1(T)$ (see Remark 3.6). If *X* is the Stone-Čech compactification of *T*, the subset $\mathfrak{W}^1(X)$ is a compact set of $\mathfrak{W}^b(X)$ (see [2, Section 5, Proposition 11]). So, with a similar argument to that of Remark 3.11, we deduce that every subset $H \subseteq \mathfrak{W}^1(T)$ is t(H)relatively compact in $\mathfrak{W}^1(T)$ (i.e., every net $(\mu_i)_{i \in I}$ has a subnet p_a -convergent).

Theorem 4.1 has a similar proof to that of Portmanteau's theorem (see [1, Theorem 2.1, Appendix III, Theorem 3]) which we omit.

THEOREM 4.1. Let $(\mu_i)_{i \in I}$ be a net in $\mathfrak{M}^1(T)$, $\mu \in \mathfrak{M}^1(T)$ and $a \ge 0$; the following statements are equivalent:

$$\mu_i \xrightarrow{a} \mu, \tag{4.2}$$

$$\limsup_{i} |\mu_i(f) - \mu(f)| \le a, \quad \forall f \in C^b(T) \text{ with } ||f|| \le 1,$$

$$(4.3)$$

$$\limsup \mu_i(F) \le \mu(F), \quad \forall F = \overline{F} \subseteq T, \tag{4.4}$$

$$\liminf_{i} \mu_i(D) \ge \mu(D), \quad \forall D = D^\circ \subseteq T,$$
(4.5)

$$\limsup |\mu_i(A) - \mu(A)| \le a, \quad \forall A \in \mathcal{B} \text{ with } \mu(\bar{A} - A^\circ) = 0.$$

$$(4.6)$$

In *Theorem 4.1,* \overline{A} and A° denote the closure and the interior of A in the topological space (T, τ_d) , respectively.

REMARK 4.2. In Theorem 4.1, we can suppose that $a \in [0, 1]$.

REMARK 4.3. R. Löwen gave a similar result in [7, Theorem 6].

DEFINITION 4.4. For every $F = \overline{F} \subseteq T$ and $\varepsilon > 0$ we denote $F^{\varepsilon} = \{t \in T : d(t,F) < \varepsilon\}$. For every $a \in [0,1]$ we define $L_a : \mathfrak{W}^1(T) \times \mathfrak{W}^1(T) \to \mathbb{R}_+$ letting

$$L_{a}(\mu,\nu) = \inf\left\{\varepsilon > 0: \mu(F) < \nu(F^{\varepsilon}) + a + \varepsilon, \nu(F) < \mu(F^{\varepsilon}) + a + \varepsilon, \forall F = \bar{F} \subseteq T\right\}.$$
 (4.7)

REMARK 4.5. L_0 is the metric of Lévy-Prohorov on $\mathfrak{W}^1(T)$. Therefore, L_0 induces the narrow topology on $\mathfrak{W}^1(T)$ and $(\mathfrak{W}^1(T), L_0)$ is a Polish space [2, Section 5, Examples 8 and 9].

REMARK 4.6. The family $\mathcal{L} = \{L_a : a \in [0,1]\}$ has the following properties:

$$L_{a}(\mu,\nu) = 0, \quad \forall a \ge 0 \Longleftrightarrow \mu = \nu,$$

$$L_{a}(\mu,\nu) = L_{a}(\nu,\mu), \quad \forall \mu,\nu \in \mathfrak{M}^{1}(T), \quad \forall a \in [0,1],$$

$$L_{a+b}(\mu,\nu) \le L_{a}(\mu,\lambda) + L_{b}(\lambda,\nu), \quad \forall \mu,\nu,\lambda \in \mathfrak{M}^{1}(T), \quad \forall a,b \in [0,1],$$

$$L_{a}(\mu,\nu) = \sup_{b>a} L_{b}(\mu,\nu), \quad \forall \mu,\nu \in \mathfrak{M}^{1}(T), \quad \forall a \in [0,1].$$
(4.8)

In [4, Theorem 1] we proved that such a family \mathcal{L} is an equivalent gradated form of a probabilistic metric (F, T_m) , where, for every $\mu, \nu \in \mathfrak{M}^1(T)$ and a > 0,

$$F(\mu,\nu)(a) = \sup_{\varepsilon>0} \inf_{F=\tilde{F}} \left\{ \min\left[\mu(F^{a-\varepsilon}) - \nu(F), \nu(F^{a-\varepsilon}) - \mu(F)\right] + 1 + a \right\} \wedge 1$$
(4.9)

and $T_m(a,b) = \max\{a+b-1,0\}$. For the space of distribution functions, equivalent probabilistic metrics are introduced in [5, 6, 9].

In Theorem 4.7 we compare the narrow limit tower with the convergence structures induced by the family of semi-pseudometrics $\mathcal{L} = \{L_a : a \in [0,1]\}$. So, this theorem is an important step to obtain a sequential version of Theorem 3.8.

THEOREM 4.7. Let $(\mu_i)_{i \in I}$ be a net in $\mathfrak{W}^1(T)$, $\mu \in \mathfrak{W}^1(T)$ and $a \in [0,1]$.

If
$$L_a(\mu_i, \mu) \to 0$$
, then $\mu_i \xrightarrow{a} \mu$, (4.10)

If
$$\mu_i \xrightarrow{a} \mu$$
, then $L_{2a}(\mu_i, \mu) \to 0$. (4.11)

PROOF. (i) We suppose that $L_a(\mu_i, \mu) \to 0$; then, for every $n \in \mathbb{N}^*$, there exists $i_n \in I$ such that, for every $i \ge i_n$, $L_a(\mu_i, \mu) < 1/n$. Therefore,

$$\mu_i(F) < \mu(F^{1/n}) + a + \frac{1}{n}, \quad \forall F = \bar{F},$$
(4.12)

so that, for every $F = \overline{F} \subseteq T$,

$$\limsup_{i} \mu_{i}(F) \leq \sup_{i \geq i_{n}} \mu_{i}(F) \leq \mu(F^{1/n}) + a + \frac{1}{n}.$$
(4.13)

But $\mu(F^{1/n}) \to \mu(F)$, so that $\limsup_i \mu_i(F) \le \mu(F) + a$, for all $F = \overline{F}$. From (4.4) this is equivalent to $\mu_i \xrightarrow{a} \mu$.

(ii) Let now $\mu_i \xrightarrow{a} \mu$ and let $\varepsilon > 0$. For every $\gamma > 0$ and $t \in T$, let $S_{\gamma}(t) = \{s \in T : t \in S_{\gamma}(t) \}$ d(s,t) < r}. Then $\overline{S_r(t)} \setminus S_r^{\circ}(t) \subseteq \{s \in T : d(s,t) = r\} = C_r$. But $C_{r_1} \cap C_{r_2} = \emptyset$, for all $r_1 \neq r_2$ and $\mu(\bigcup_{r>0} C_r) \leq 1$. It follows that there exists a countable set $N \subseteq (0, +\infty)$ such that $\mu(C_r) = 0$, for all $r \in (0, +\infty) \setminus N$. Therefore, *T* being separable, there exists a countable family $\{S_{r_n}(t_n): n \in \mathbb{N}\}$ such that (1) $T = \bigcup_{1}^{\infty} S_{r_n}(t_n), \mu(\overline{S_{r_n}(t_n)} \setminus S_{r_n}^{\circ}(t_n)) =$ 0 and $r_n < \varepsilon/6$, for all $n \in \mathbb{N}$.

We denote for all $n \in \mathbb{N}$, $S_n = S_{r_n}(t_n)$. Let $K \subseteq T$ be a compact set such that $\mu(T \setminus I)$ K) < $\varepsilon/3$ and let $p \in \mathbb{N}$ such that $K \subseteq \bigcup_{n=1}^{p} S_n = A_0$; then (2) $\mu(T \setminus A_0) < \varepsilon/3$.

We denote $\mathcal{A} = \{ \bigcup_{i=1}^{q} S_{k_i} : q \in \mathbb{N}, k_1, \dots, k_n \le p \}$; obviously, $A_0 \in \mathcal{A}$. For every $A \in \mathcal{A}$, $\mu(\bar{A} \setminus A^\circ) = 0$ so that, from (4.6),

$$\limsup \left| \mu_i(A) - \mu(A) \right| \le a. \tag{4.14}$$

Therefore there exists $i_0 \in I$ such that, for every $i \ge i_0$ and $A \in \mathcal{A}$, (3) $|\mu_i(A) - \mu(A)| < i_0$ $a + \varepsilon/3$.

Now, for every $F = \overline{F} \subseteq T$, let

$$A_F = \bigcup \left\{ S_n : n \le p, \ S_n \cap F \ne \emptyset \right\} \in \mathcal{A}.$$
(4.15)

Then (4) $F \subseteq A_F \cup (T \setminus A_0), A_F \subseteq F^{\varepsilon/3}$.

Indeed, $F = (F \cap A_0) \cup (F \setminus A_0) \subseteq A_F \cup (T \setminus A_0)$. For every $t \in A_F$ there exists S_n such that $t \in S_n$ and $S_n \cap F \neq \emptyset$. Then, from (1), $d(t,F) \leq 2 \cdot r_n < \varepsilon/3$, so that $t \in F^{\varepsilon/3}$. Then, from (2), (3), and (4), we have

$$\mu_{i}(F) < \mu_{i}(A_{F}) + \mu_{i}(T \setminus A_{0}) < \mu(F) + a + \frac{\varepsilon}{3} + 1 - \mu_{i}(A_{0})$$

$$< \mu(A_{F}) + a + \frac{\varepsilon}{3} + 1 - \mu(A_{0}) + a + \frac{\varepsilon}{3} = \mu(A_{F}) + \mu(T \setminus A_{0}) + 2 \cdot a + \frac{2\varepsilon}{3}$$

$$< \mu(F^{\varepsilon/3}) + 2 \cdot a + \varepsilon \le \mu(F^{\varepsilon}) + 2 \cdot a + \varepsilon,$$

$$\mu(F) \le \mu(A_{F}) + \mu(T \setminus A_{0}) < \mu_{i}(A_{F}) + a + \frac{\varepsilon}{3} + \frac{\varepsilon}{3}$$

$$< \mu_{i}(F^{\varepsilon/3}) + a + \frac{2\varepsilon}{3} < \mu_{i}(F^{\varepsilon}) + 2 \cdot a + \varepsilon,$$
(4.16)

for every $F = \overline{F} \subseteq T$. Then $L_{2a}(\mu_i, \mu) \leq \varepsilon$, for every $i \geq i_0$. Therefore $L_{2a}(\mu_i, \mu) \to 0$. \Box

COROLLARY 4.8. Let *H* be an *a*-relatively compact subset in $\mathfrak{M}^1(T)$; then, for every sequence $(\mu_n)_{n\in\mathbb{N}}\subseteq H$, there exist a subsequence $(\mu_{k_n})_{n\in\mathbb{N}}$ and $\mu\in\mathfrak{M}^1(T)$ such that $\mu_{k_n} \xrightarrow{2 \cdot a} \mu.$

PROOF. For every sequence $(\mu_n)_{n \in \mathbb{N}} \subseteq H$, there exist a subnet $(\mu_{n_i})_{i \in I}$ and $\mu \in$ $\mathfrak{W}^1(T)$ such that $\mu_{n_i} \xrightarrow{a} \mu$. From (4.11), $L_{2a}(\mu_{n_i},\mu) \to 0$. So, for every $p \in \mathbb{N}$, there exists $i_p \in I$ such that $n_{i_p} \ge p$ and $L_{2a}(\mu_{n_{i_n}}, \mu) < 1/p$.

Therefore, we can choose a subsequence $(\mu'_n)_{n \in \mathbb{N}}$ of $(\mu_n)_{n \in \mathbb{N}}$ such that $L_{2a}(\mu'_n, \mu) \rightarrow 0$. From (4.10) it follows that $\mu'_n \xrightarrow{2 \cdot a} \mu$.

Now we are able to give the sequential version of Theorem 3.8.

THEOREM 4.9. Let $(\mu_n)_{n \in \mathbb{N}} \subseteq \mathfrak{M}^1(T)$ and $t = t(\{\mu_n : n \in \mathbb{N}\})$ be the degree of tightness of $(\mu_n)_{n \in \mathbb{N}}$. Then there exist a subsequence $(\mu_{k_n})_{n \in \mathbb{N}}$ and $\mu \in \mathfrak{M}^1(T)$ such that

$$\mu_{k_n} \xrightarrow{2 \cdot t} \mu. \tag{4.17}$$

REFERENCES

- P. Billingsley, *Convergence of Probability Measures*, John Wiley & Sons, New York, 1968. MR 38 # 1718. Zbl 172.21201.
- [2] N. Bourbaki, Éléments de Mathématique. Fasc. XXXV. Livre VI: Intégration. Chapitre IX: Intégration sur les Espaces Topologiques Séparés, Actualités Scientifiques et Industrielles, no. 1343, Hermann, Paris, 1969 (French). MR 43#2183. Zbl 189.14201.
- [3] P. Brock and D. C. Kent, Approach spaces, limit tower spaces, and probabilistic convergence spaces, Appl. Categ. Structures 5 (1997), no. 2, 99–110. MR 98b:54017.
- [4] L. C. Florescu, *Probabilistic pseudometrics*, Mathematica (Cluj) 24(47) (1982), no. 1-2, 21–29. MR 85c:54047.
- [5] _____, A p-complete Menger structure for distribution functions space, An. Ştiinţ. Univ. Al. I. Cuza Iaşi Secţ. I a Mat. 34 (1988), no. 1, 1-6. MR 89m:54044. Zbl 656.60019.
- U. Höhle, Probabilistische Metriken auf der Menge der nicht negativen Verteilungs funktionen, Aequationes Math. 18 (1978), no. 3, 345–356 (German). MR 80k:54057.
- [7] R. Lowen, Convergence in a localizable fuzzy topology on spaces of probability measures, Convergence Structures 1984 (Bechyně, 1984), Math. Res., 24, Akademie-Verlag, Berlin, 1985, pp. 217-226. MR 87g:54017.
- [8] _____, Approach spaces: a common supercategory of TOP and MET, Math. Nachr. 141 (1989), 183–226. MR 90i:54025.
- [9] V. Radu, On obtaining Lévy's metric by probabilistic metrics, An. Univ. Timişoara Ser. Ştiinţ. Mat. 24 (1986), no. 1-2, 60–65. MR 88j:54046.
- [10] R. C. Walker, *The Stone-Čech Compactification*, Springer-Verlag, New York, 1974, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 83. MR 52 # 1595.

LIVIU C. FLORESCU: FACULTY OF MATHEMATICS, UNIVERSITY AL. I. CUZA, CAROL I, 11, RO-6600, ROMANIA

E-mail address: lflo@uaic.ro