A NOTE ON MINIMAL ENVELOPES OF DOUGLAS ALGEBRAS, MINIMAL SUPPORT SETS, AND RESTRICTED DOUGLAS ALGEBRAS

CARROLL GUILLORY

(Received 9 December 2000)

ABSTRACT. We characterize the interpolating Blaschke products of finite type in terms of their support sets. We also give a sufficient condition on the restricted Douglas algebra of a support set that is invariant under the Bourgain map, and its minimal envelope is singly generated.

2000 Mathematics Subject Classification. 46J15, 46J30.

1. Introduction. Let H^{∞} be the Banach algebra of bounded analytic functions on the open unit disk D. We denote by $M(H^{\infty})$ the set of nonzero complex valued homomorphism of H^{∞} . With the weak^{*}-topology, $M(H^{\infty})$ is a compact Hausdorff space. We identify a function in H^{∞} with the Gelfand transform and consider H^{∞} the supremum norm closed subalgebra of the space of continuous functions on $M(H^{\infty})$. By Carleson's corona theorem, D is dense in $M(H^{\infty})$ in the weak^{*}-topology. For $f \in H^{\infty}$, put

$$Z(f) = \{ x \in M(H^{\infty}) \setminus D : f(x) = 0 \}, \{ |f| < 1 \} = \{ x \in M(H^{\infty}) \setminus D : |f(x)| < 1 \}.$$
(1.1)

For two points x, y in $M(H^{\infty})$, the pseudohyperbolic distance is given by

$$\rho(x, y) = \sup\{|f(y)|: f \in H^{\infty}, \|f\|_{\infty} \le 1, f(x) = 0\}.$$
(1.2)

Then, $0 \le \rho(x, y) \le 1$ and put

$$P(x) = \{ m \in M(H^{\infty}) : \rho(x,m) < 1 \}.$$
(1.3)

The set P(x) is called the Gleason part containing x. For $z, x \in D$, $\rho(z, w) = |(z - w)/(1 - \overline{w}z)|$, and P(z) = D. When $P(x) \neq \{x\}$, both x and P(x) are called nontrivial. We denote by G the set of nontrivial points in $M(H^{\infty})$.

For an infinite sequence $\{z_n\}_n$ in D with $\sum_{n=1}^{\infty}(1-|z_n|) < \infty$, the corresponding Blaschke product is defined by

$$b(z) = \prod_{n=1}^{\infty} \frac{-\bar{z}_n}{|z_n|} \frac{z - z_n}{1 - \bar{z}_n z}, \quad z \in D.$$
(1.4)

In addition, we have

$$\inf_{n} \left(1 - |z_{n}|^{2} \right) \left| b'(z_{n}) \right| > 0, \tag{1.5}$$

both *b* and $\{z_n\}_n$ are called interpolating. When *b* is interpolating and

$$\lim_{n \to \infty} \left(1 - |z_n|^2 \right) \left| b'(z_n) \right| = 1, \tag{1.6}$$

both *b* and $\{z_n\}_n$ are called sparse. An interpolating Blaschke product *b* is said to be unimodular on trivial points if $\{x : |b(x)| < 1\} \subset G$. In [4], Hoffman proved that for $x \in M(H^{\infty}), x \in G$ if and only if $x \in Z(b)$ for some interpolating Blaschke product *b*. He also proved that for a point $x \in G$, there exists a one-to-one continuous onto map $L_x : D \to P(x)$ such that $L_x(0) = x$ and $f \circ L_x \in H^{\infty}$ for every $f \in H^{\infty}$. The map L_x , which is called the Hoffman map for the point *x*, is given by

$$L_{x}(z) = \lim_{\alpha} \frac{z+z_{0}}{1+\bar{z}_{\alpha}z}, \quad z \in D,$$

$$(1.7)$$

where $\{Z_{\alpha}\}_{\alpha}$ is a net in *D* which converges to *x*. A part P(x) is called sparse if there is a sparse Blaschke product *b* such that b(x) = 0. In this case we have $|(b \circ L_x)'(0)| = 1$. Therefore, *b* is a sparse Blaschke product if and only if $|(b \circ L_x)'(0)| = 1$ for every $x \in Z(b)$. A part is called locally sparse if there is an interpolating Blaschke product *b* such that b(x) = 0 and $|(b \circ L_x)'(0)| = 1$.

For an interpolating Blaschke product *b* with zeros $\{z_n\}_n$, let

$$\delta_0(b) = \liminf_{n \to \infty} \inf_{k \neq n} \rho(z_n, z_k).$$
(1.8)

An interpolating Blaschke product *b* is called spreading if $\delta_0(b) = 1$. By considering boundary function, we may consider H^{∞} , as a closed subalgebra of L_{∞} , the Banach algebra of essentially bounded Lebesgue measurable functions on the unit circle *T*. It is known that $M(L^{\infty}) \subset M(H^{\infty})$ and $M(L^{\infty})$ is the Shilov boundary for H^{∞} . Any uniformly closed subalgebra *B* with $H^{\infty} \subset B \subset L^{\infty}$ is called a Douglas algebra. For a point $x \in M(H^{\infty})$, there exists a probability measure μ_x on $M(L^{\infty})$ such that

$$f(x) = \int_{M(L^{\infty})} f d\mu_x \quad \forall f \in H^{\infty}.$$
 (1.9)

We denote by $\sup \mu_x$ the closed support set of μ_x . Since $\sup \mu_x$ is a weak peak set of $M(L^{\infty})$ for H^{∞} , we have $H^{\infty}_{\sup p \mu_x} = \{f \in L^{\infty} : f_{| \sup p \mu_x} \in H^{\infty}_{| \sup p \mu_x}\}$ is a Douglas algebra. For $E \subset M(H^{\infty})$, a point $x \in E$ is called a minimal support point for *E* if

$$\operatorname{supp} \mu_x \subset \operatorname{supp} \mu_y \quad \text{or} \quad \operatorname{supp} \mu_x \cap \operatorname{supp} \mu_y = \phi \quad \forall y \in E.$$
 (1.10)

If x is a minimal support point for E, $\operatorname{supp} \mu_x$ is called a minimal support set for E. For an interpolating Blaschke product b, we denote by m(Z(b)) the set of minimal support points for the set $\{x : |b(x)| < 1\}$. Let X be a Banach algebra with identity and let B be a closed subalgebra of X. The Bourgain algebra B_b of B relative to X is defined by the set of f in X such that $||ff_n + B|| \to 0$ for every sequence $\{f_n\}_n$ in B with $f_n \to 0$ weakly. If A and B are Douglas algebras with $A \subseteq B$ and properly contained, then B is a minimal superalgebra of A if and only if $\operatorname{supp} \mu_X = \operatorname{supp} \mu_Y$ for every $x, y \in M(A) \setminus M(B)$. We denote by B_m the smallest Douglas algebra which contains all minimal superalgebras of B. We note that $B_b \subset B_m$. An interpolating Blaschke product b such that $\{x : |b(x)| < 1\} \subset G$, with $Z(b) \cap P(x)$ being a finite set for every $x \in Z(b)$, is said to be of finite type.

2. Proofs of the theorems

THEOREM 2.1. An interpolating Blaschke product *b* that is unimodular on trivial parts is of finite type if and only if $m(Z(b)) = \{z : |b(z)| < 1\}$.

PROOF. Suppose *b* is an interpolating Blaschke product that is unimodular on the trivial points and of finite type. Let $z \in M(H^{\infty} + C)$ such that |b(z)| < 1. By [1, Theorems 1 and 2], there is an $x \in m(Z(b))$ such that $\supp\mu_x \subset \supp\mu_z$. By [3, Theorem 3.1], the set $\supp\mu_x$ is a maximal support set. Hence $\supp\mu_x = \supp\mu_z$. This implies that *z* is a minimal support point for *b*, that is, $z \in m(Z(b))$. So $\{z : |b(z)| < 1\} \subset m(Z(b))$. Since $m(Z(b)) \subset \{z : |b(z)| < 1\}$, we have $\{z : |b(z)| < 1\} = m(Z(b))$. Conversely, suppose $m(Z(b)) = \{z : |b(z)| < 1\}$ and assume that *b* is unimodular on trivial points but not of finite type. Then there is a $y \in Z(b)$ such that the set $Z(b) \cap P(y)$ is an infinite set. By [2, Theorems 1 and 2], there is an $x \in M(H^{\infty} + C)$ such that |b(x)| < 1, an uncountable index set *I* such that for $\alpha, \beta \in I$, $\alpha \neq \beta$, $\supp\mu_{x_{\alpha}} \cap supp\mu_{x_{\beta}} = \phi$, $x_{\alpha}, x_{\beta} \in m(Z(b))$, and $\supp\mu_{x_{\alpha}} \subset supp\mu_x$ for all $\alpha \in I$. Since $\supp\mu_{x_{\alpha}}$ is properly contained in $\supp\mu_x$, this implies that $x \notin m(Z(b))$ but |b(x)| < 1. This contradicts our assumption that $\{z : |b(z)| < 1\} = m(Z(b))$. Thus, *b* is of finite type.

THEOREM 2.2. Suppose that *b* is a spreading nonsparse Blaschke product, and $x \in m(Z(b))$ such that $|(b \circ L_x)'(0)| \neq 1$. Then

- (i) $(H^{\infty}_{\operatorname{supp}\mu_{x}})_{b} = H_{\operatorname{supp}\mu_{x}}$,
- (ii) $(H^{\infty}_{\operatorname{supp}\mu_{x}})_{m} = H^{\infty}_{\operatorname{supp}\mu_{x}}[\bar{b}].$

PROOF. By [5, Lemma 2.1], we have that P_x is a nonlocally sparse part. Hence, by [6, Theorem 5] we have that (i) holds.

Since *b* is spreading and $x \in m(Z(b))$,

$$M(H_{\operatorname{supp}\mu_{X}}^{\infty}) = M(H_{\operatorname{supp}\mu_{X}}^{\infty}[\bar{b}]) \cup E_{X}, \qquad (2.1)$$

where $E_x = \{y \in M(H^{\infty} + C) : \operatorname{supp} \mu_x = \operatorname{supp} \mu_y\}$. This implies that $H^{\infty}_{\operatorname{supp} \mu_x}$ is properly contained in $(H^{\infty}_{\operatorname{supp} \mu_x})_m$. Since $H^{\infty}_{\operatorname{supp} \mu_x}$ is a maximal subalgebra of $H^{\infty}_{\operatorname{supp} \mu_x}[\bar{b}]$, $H^{\infty}_{\operatorname{supp} \mu_x}[\bar{b}]$ is contained in $(H^{\infty}_{\operatorname{supp} \mu_x})_m$. Since

$$M(H_{\operatorname{supp}\mu_{X}}^{\infty}) = M(L^{\infty}) \cup \{ \mathcal{Y} \in M(H^{\infty} + C) : \operatorname{supp}\mu_{\mathcal{Y}} \subseteq \operatorname{supp}\mu_{X} \},$$
(2.2)

we show that if q is an interpolating Blaschke product such that $\bar{q} \in (H^{\infty}_{\operatorname{supp}\mu_{x}})_{m}$, then $H^{\infty}_{\operatorname{supp}\mu_{x}}[\bar{q}] = H^{\infty}_{\operatorname{supp}\mu_{x}}[\bar{b}]$. This proves (ii). Suppose that we have $H^{\infty}_{\operatorname{supp}\mu_{x}}[\bar{b}]$ properly contained in

 $(H^{\infty}_{\mathrm{supp}\mu_{X}})_{m}$, then we have $M((H^{\infty}_{\mathrm{supp}\mu_{X}})_{m})$ properly contained in $M(H^{\infty}_{\mathrm{supp}\mu_{X}}[\bar{b}])$. So there is a $\mathcal{Y} \in M(H^{\infty}_{\mathrm{supp}\mu_{X}}[\bar{b}])$, an interpolating Blaschke product q with $\bar{q} \in (H^{\infty}_{\mathrm{supp}\mu_{X}})_{m}$ and $q(\mathcal{Y}) = 0$. By (2.2) we have $\mathcal{Y} \in M(H^{\infty}_{\mathrm{supp}\mu_{X}})$ but $\mathcal{Y} \notin E_{X}$. Again, by (2.2), this implies that $\mathrm{supp}\mu_{Y}$ is properly contained in the $\mathrm{supp}\mu_{X}$. By [2, Theorems 1 and 2], there is an uncountable index set I such that if $\alpha, \beta \in I$, $\alpha \neq \beta$, there are $x_{\alpha}, x_{\beta} \in Z(q)$ with $\mathrm{supp}\mu_{\alpha} \cap \mathrm{supp}\mu_{X_{\beta}} = \phi$ and $\mathrm{supp}\mu_{\alpha}$, $\mathrm{supp}\mu_{X_{\beta}}$ are both properly contained in $\mathrm{supp}\mu_{X}$. This implies that

$$\cup_{\alpha \in I} E_{x_{\alpha}} \subset \Big\{ m \in M\Big(H^{\infty}_{\operatorname{supp}\mu_{x}}\Big) : |q(m)| < 1 \Big\}.$$

$$(2.3)$$

CARROLL GUILLORY

But this contradicts [2, Theorem 3] since $\alpha \neq \beta$ implies that $E_{\chi_{\alpha}} \cap E_{\chi_{\beta}} = \phi$. Thus, no such γ exists and we have $H^{\infty}_{\text{supp}\mu_{\chi}}[\bar{b}] = H^{\infty}_{\text{supp}\mu_{\chi}}[\bar{q}]$. So (ii) holds.

References

- C. Guillory and K. Izuchi, *Maximal Douglas subalgebras and minimal support points*, Proc. Amer. Math. Soc. **116** (1992), no. 2, 477-481. MR 92m:46075. Zbl 760.46046.
- [2] _____, Minimal envelopes of Douglas algebras and Bourgain algebras, Houston J. Math. 19 (1993), no. 2, 201–222. MR 94i:46067. Zbl 816.46048.
- [3] _____, Interpolating Blaschke products of type G, Complex Variables Theory Appl. 31 (1996), no. 1, 51-64. MR 97i:46090. Zbl 865.30054.
- [4] K. Hoffman, Bounded analytic functions and Gleason parts, Ann. of Math. (2) 86 (1967), 74-111. MR 35#5945. Zbl 192.48302.
- [5] K. Izuchi, Spreading Blaschke products and homeomorphic parts, Complex Variables Theory Appl. 40 (2000), no. 4, 359–369. MR 2001c:46103.
- [6] R. Mortini and R. Younis, *Douglas algebras which are invariant under the Bourgain map*, Arch. Math. (Basel) 59 (1992), no. 4, 371–378. MR 94c:46105. Zbl 760.46050.

CARROLL GUILLORY: DEPARTMENT OF MATHEMATICS, UNIVERSITY OF LOUISIANA AT LAFAYETTE, LAFAYETTE, LA 70504, USA

E-mail address: cjg2476@louisiana.edu