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THE GAME OF DOUBLE-SILVER ON INTERVALS
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Abstract. Silverman’s game on intervals was analyzed in a special case by Evans, and later
more extensively by Heuer and Leopold-Wildburger, who found that optimal strategies
exist (and gave them) quite generally when the intervals have no endpoints in common.
They exist in about half the parameter plane when the intervals have a left endpoint or a
right endpoint, but not both, in common, and (as Evans had earlier found) exist only on a set
ofmeasure zero in this plane if the intervals are identical. The game of Double-Silver, where
each player has its own threshold and penalty, is examined. There are several combinations
of conditions on relative placement of the intervals, the thresholds and penalties under
which optimal strategies exist and are found. The indications are that in the other cases
no optimal strategies exist.

2000 Mathematics Subject Classification. 91A05.

1. Introduction. The game of Double-Silver is a generalization of Silverman’s game,

so we begin with a brief description of the latter and a brief survey of the literature on

it. Silverman’s game is a two-person zero-sum game in which, roughly speaking, the

player with the higher number wins, unless it is too much higher than the other, in

which case the high number loses. More precisely, players I and II have pure strategy

sets SI and SII which may be somewhat arbitrary sets of positive real numbers. There
are two parameters, the threshold, T > 1, and the penalty, ν > 0. In a play of the game,
player I chooses a number x from SI, player II chooses a number y from SII, and the
higher number wins 1, unless it is at least T times as large as the other number, in
which case it loses ν . Thus, the payoff function Ks(x,y) is given by

Ks(x,y) :=




ν if y ≥ Tx,
−1 if x <y < Tx,

0 if x =y,
1 if y <x < Ty,

−ν if x ≥ Ty.

(1.1)

A special case of this game with SI = SII equal to the positive integers, with ν =
1 and special values of T , was introduced in the 1970s by David Silverman. Evans
[1] analyzed the game for SI = SII = (A,B), an open interval, finding that optimal
mixed strategies exist only under very stringent conditions on the parameters, and

obtaining optimal strategies when these conditions are fulfilled. Evans and Heuer [2]

examined the symmetric game (SI = SII) on discrete strategy sets (no accumulation
points) and obtained explicit optimal mixed strategies except for some cases when
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the penalty ν is too near to zero. The asymmetric game on discrete sets is studied
in [3, 5, 6, 8, 9, 11, 12], and the game on intervals is studied in [5, 7, 10, 11]. The

monograph [11] is the best and most complete reference on the subject, superseding

much of the earlier work.

In the game on intervals, it turns out that it is precisely the equality of the two

intervals which makes it difficult for optimal mixed strategies to exist. The quadrant

{(T ,ν) : T > 1, ν > 0} roughly divides into two parts (each of unbounded measure), in
one of which no optimal strategies exist when the left endpoints are equal, and in the

other of which none exist when the right endpoints are equal. When both are equal

(i.e., SI = SII), optimal strategies exist only on the boundary between these two parts.
When the intervals have no endpoints in common, optimal strategies nearly always

exist. In all cases when they are known to exist, explicit optimal mixed strategies and

game value are known (see [11, Chapters 2, 3, 4]).

In [4], a similar game on equal intervals is examined. Here the payoff is again a

function of y/x, but instead of a step function, it is a continuous, piecewise linear
function. The paper [13] reports on some experiments with a very simple case of

Silverman’s game, using university students as subjects.

In the game Double-Silver, each player has its own threshold and penalty. We use T
and ν for the threshold and penalty for player I; U and µ for player II. Thus the payoff
function is

K(x,y) :=




µ if y ≥Ux,
−1 if x <y <Ux,

0 if x =y,
1 if y <x < Ty,

−ν if x ≥ Ty.

(1.2)

The thresholds T and U are any numbers larger than 1, and the penalties µ and ν can
be any positive numbers. Let

u= µ+1, v = ν+1. (1.3)

We adopt the usual convention that player I has the interval with the minimum left

endpoint, which, without loss of generality, we may take to be 1. Thus the interval for

player I will be SI = (1,B) and that for player II, SII = (A,D), with 1≤A. We denote by
E(F,G) the expected payoff when player I uses strategy F and player II uses G.

2. The case U < A. Note that if U < A, player I can force player II to “bust” by
choosing from the interval (1,A/U]. We normally assume that U > A, but we first
treat briefly the case U <A, which parallels [11, Theorem 3.32].

Theorem 2.1. Suppose that

1<U <A, B ≤D. (2.1)

(i) If a game value V exists, then V = µ, and every strategy on (1,A/U] is optimal

for player I.

(ii) If µ ≥ 1, then V = µ, and every strategy for player II is optimal.

(iii) If D > B, then V = µ and pure strategy B is optimal for player II.
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Proof. If 1 < x ≤ A/U , then for every y in SII = (A,D) we have y > A ≥ Ux and
therefore K(x,y) = µ. If µ ≥ 1 there are no payoffs larger than µ, and (ii) clearly
follows. To prove (i) we show that player I has no strategy F for which E(F,G) > µ
for every strategy G on SII. To this end, let F be any mixed strategy on (1,B), and let
f1,f2, and f3 be the probabilities which F assigns to (1,A/U],(A/U,A], and (A,B),
respectively. If f3 = 0, then E(F,G) ≤ µ for every strategy G on SII since K(x,y) ≤ µ
whenever x < y . Thus, suppose that f3 > 0. Let F0 be the mixed strategy on (A,B)
obtained by multiplying the density for the part of F on (A,B) by 1/f3. Since it cannot
be the case that E(F0,G) > 0 for every strategy G on (A,B), there is a strategy G0
on (A,B) such that E(F0,G0) ≤ 0. (Indeed, E(F0,F0) = 0.) For x in (A/U,A] and y in

[A,B), K(x,y) is µ, 0, or −1, so K(x,y)≤ µ. Thus

E
(
F,G0

)≤ µf1+µf2+0f3 ≤ µ, (2.2)

and (i) follows. For (iii), note that for every x in (1,B), K(x,B) ≤ µ. Since player I has
a strategy F with E(F,y)= µ for all y in (A,D), (iii) follows.

3. Games with A > 1 in which penalty ν does not occur. In our next group of

theorems, we shall have optimal strategies for player I all lying within the interval

(1,AT). This means that the penalty payoff ν does not occur, since with y > A and
x < AT we always have x < Ty . The following probability vectors Pn and Qn will

occur in describing optimal strategies.

Pn =
(
pn,1,pn,2, . . . ,pn,n

)

= 1
un−1+2un−2+···+2n−1

(
2n−1,2n−2u,. . . ,2un−2,un−1

)
,

(3.1)

(recall from (1.3) that u= µ+1), and

Qn =
(
qn,1,qn,2, . . . ,qn,n

)= (pn,n,pn,n−1, . . . ,pn,1). (3.2)

These are optimal strategies for a certain finite matrix game, as stated in the following

lemma.

Lemma 3.1. For the n×n game with payoff matrix

H =




−1 µ µ ··· µ µ
1 −1 µ ··· µ µ
1 1 −1 ··· µ µ
...

...
...

. . .
...

...

1 1 1 ··· −1 µ
1 1 1 ··· 1 −1



, (3.3)

the game value is

Vn = un−1+2un−2+···+2n−2u−2n−1
un−1+2un−2+···+2n−2u+2n−1 , (3.4)
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and optimal strategies for players I and II are given by the vectors Pn and Qn, respec-

tively, of (3.1) and (3.2). In fact, the dot product of Pn with each column of H is equal

to Vn, as is the dot product of Qn with each row of H.

Proof. It suffices to prove the last statement. The dot product of Pn with the first
column of H is clearly equal to Vn. For 1 ≤ r ≤ n, the difference H·r+1−H·r of the
(r +1)th and the r th columns of H is

(
0, . . . ,0,u,−2,0, . . . ,0)t , (3.5)

where u= µ+1 is in the r th position. The dot product

P ·(H·r+1−H·r )=upn,r −2pn,r+1 = 0, (3.6)

so PH·r = V for each r , 1 ≤ r ≤ n. The corresponding fact for Q is clear from the

symmetry.

Theorem 3.2. With SI = (1,B), SII = (A,D), let n be the (positive) integer such that

Un−1 < T ≤Un, (3.7)

and assume that

1<A<U ≤Un <min{B,AT}, (3.8)

D >AT, (3.9)

unv ≥ 2n+1. (3.10)

Then the value of the game is Vn+1 (see (3.4)), and the following piecewise uniform

mixed strategies F and G are optimal for players I and II, respectively:

F = Pn+1 on
(
(1,ρ),(U,Uρ), . . . ,

(
Un,Unρ

))
,

G =Qn+1 on
(
(A,Aρ),(AU,AUρ), . . . ,

(
AUn−1,AUn−1ρ

)
,(AT ,ATρ)

)
,

(3.11)

where ρ > 1 but small enough that ρ <A, Aρ <U , Unρ ≤min{B,AT}, and ATρ <D.
The piecewise uniform strategies are to be understood as follows: the strategy F

distributes the probability pn+1,1 uniformly over the interval (1,ρ), pn+1,2 uniformly
over interval (U,Uρ), and so forth.
Note that (3.10) is satisfied, in particular, whenever µ ≥ 1 and ν ≥ 1.
Proof. Figure 3.1 depicts the interval layout and probability distributions for the

case n = 3. We first show that E(F,y) ≥ Vn+1 for all y > A, where E(F,y) denotes


................................................................................................................................................................................................................................( ( ( ( ( ( ( () ) ) ) ) ) ) )

1 ρ A Aρ U Uρ AU AUρ U2 U2ρ AU2 AU2ρ
T
U3 U3ρ AT

AU3

ATρ

q4,4q4,3q4,2q4,1

p4,1 p4,2 p4,3 p4,4

Figure 3.1. The distributions F and G of Theorem 3.2, with n= 3.
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the expected payoff of mixed strategy F against pure strategy y . For A < y ≤ U ,
E(F,y)=−pn+1,1+pn+1,2+···+pn+1,n+1 = Vn+1. For Uk−1ρ ≤y ≤Uk, 2≤ k≤n+1,

E(F,y)= µ
k−1∑
j=1

pn+1,j−pn+1,k+
n+1∑
j=k+1

pn+1,j = Vn+1 (3.12)

by Lemma 3.1, and for Uk ≤ y ≤ Ukρ, 1 ≤ k ≤ n, E(F,y) is linear in y and therefore

constant at Vn+1, since that is the value at each endpoint. Thus E(F,y) = Vn+1 for
A< y ≤ Un+1, and for y > Un+1, E(F,y) can only increase or remain constant. Thus
E(F,y)≥ Vn+1 for all y >A.
Now we show that E(x,G) ≤ Vn+1 for all x > 1. For 1 < x ≤ A, E(x,G) = −qn+1,1+

µ
∑n+1
j=2 qn+1,j = Vn+1. For AUk−1ρ ≤ x ≤AUk, 1≤ k≤n−2,

E(x,G)=
k∑
j=1

qn+1,j−qn+1,k+1+µ
n+1∑
j=k+2

qn+1,j = Vn+1 (3.13)

by Lemma 3.1. In particular,

E
(
AUn−2,G

)= qn+1,1+···+qn+1,n−2−qn+1,n−1+µqn+1,n+µqn+1,n+1,
E
(
AUn−2ρ,G

)= qn+1,1+···+qn+1,n−1−qn+1,n+µqn+1,n+1 = Vn+1,
E
(
AUn−1,G

)≤ qn+1,1+···+qn+1,n−1−qn+1,n+µqn+1,n+1 = Vn+1;
(3.14)

(if AT < AUn, then not all of qn+1,n+1 is penalized). For AUk ≤ x ≤ AUkρ, 0 ≤ k ≤
n−2, E(x,G) is linear in x and therefore constant at Vn+1. For AUn−1ρ ≤ x ≤ AT ,
E(x,G)= qn+1,1+···+qn+1,n−qn+1,n+1 = Vn+1, and since again E(x,G) is linear in x
for AUn−1 ≤ x ≤ AUn−1ρ, it follows that E(x,G) ≤ Vn+1 throughout this interval as
well. At x =ATρ, we have

E(ATρ,G)=−νqn+1,1+qn+1,2+···+qn+1,n+1

= −νu
n+2un−1+4un−2+···+2n−1u+2n

un+2un−1+4un−2+···+2n−1u+2n

=
[
2n+1−(ν+1)un]+(un+2un−1+4un−2+···+2n−1u−2n)

un+2un−1+4un−2+···+2n−1u+2n

= 2n+1−unv
un+2un−1+4un−2+···+2n−1u+2n +Vn+1 ≤ Vn+1,

(3.15)

since unv ≥ 2n+1 by hypothesis (3.10). For x ≤AT ≤ATρ, E(x,G) is linear in x so it
remains less than or equal to Vn+1. Finally, for x > AUnρ, E(x,G) can only decrease
or remain constant, so we have E(x,G)≤ Vn+1 for all x > 1.
If we change condition (3.8) to make B ≤ Un instead of Un < B, and require B < D,

we get a similar result, but using the probability vectors Pn andQn instead of Pn+1 and
Qn+1, and with game value Vn in place of Vn+1. This result is given in the next theorem.

Theorem 3.3. Let SI and SII be strategy sets andn be defined as in (3.7). Assume that

1<A<min{T ,U}, Un−1 < T < B ≤Un,

B ≤AT, B <D.
(3.16)
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Then the value of the game is Vn, and the following piecewise uniform mixed strategies

F and G are optimal for players I and II, respectively:

F = Pn on
(
(1,ρ),(U,Uρ), . . . ,

(
Un−2,Un−2ρ

)
,
(
B
ρ
,B
))
,

G =Qn on
((

U
ρ
,U
)
,
(
U2

ρ
,U2

)
, . . . ,

(
Un−1

ρ
,Un−1

)
,{B}

)
, if B < Un,

(3.17)

and if B =Un, replace {B} by (B/ρ,B), where ρ > 1 but small enough that ρ <A<U/ρ,
Un−1ρ < T , and if B < Un then B < Un/ρ.

Proof. Figure 3.2 depicts the layout for n= 4.


...........................................................................................................................................

...( ( ( ( ( ( () ) ) ) ) ) )

1 ρ A U/ρ U Uρ U2/ρ U2 U2ρ U3/ρ U3 U3ρ T B U4≤AT
q4,4q4,3q4,2q4,1

p4,1 p4,2 p4,3 p4,4
•

Figure 3.2. The distributions F and G of Theorem 3.3, with n= 4.

We show first that E(F,y)≥ Vn for all y >A. For A<y ≤U ,
E(F,y)=−pn,1+pn,2+···+pn,n = Vn. (3.18)

For Uk−1ρ ≤y ≤Uk, 2≤ k≤n,

E(F,y)= µ
k−1∑
j=1

pn,j−pn,k+
n∑

j=k+1
pn,j = Vn. (3.19)

For Uk ≤ y ≤ Ukρ, 1 ≤ k ≤ n−1, E(F,y) is linear in y , and is equal to Vn at both
ends, so it has constant value Vn. For y >Un−1ρ, E(F,y) can only increase or remain
constant. Thus E(F,y)≥ Vn for all y >A.
Now we show that E(x,G) ≥ Vn for all x in (1,B). Assume first that B = Un. For

Uk−1 ≤ x ≤Uk/ρ, 1≤ k≤n−1,

E(x,G)=
k−1∑
j=1

qn,j−qn,k+µ
n∑

j=k+1
qn,j = Vn, (3.20)

and for Un−1 ≤ x < B,
E(x,G)= qn,1+···+qn,n−1−qn,n = Vn. (3.21)

For Uk/ρ ≤ x ≤ Uk, 1 ≤ k ≤ n−1, E(x,G) is linear in x, and is equal to Vn at both
ends, so it has constant value Vn. Thus we have E(x,G) = Vn for all x,1 < x < B. If
B < Un, then in the case of k=n−1 in (3.20) instead of

E(x,G)=
n−2∑
j=1

qn,j−qn,n−1+µqn,n, (3.22)

part of qn,n might be multiplied by (−1) instead of µ, making E(x,G) < Vn. Then as
x moves across (Un−1/ρ,Un−1), E(x,G) is increasing linearly to the value Vn at the
right end. Again we have E(x,G)≤ Vn for all x with 1<x < B.
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We may also drop condition (3.9) in Theorem 3.2 if we require D > B. We give the
details in the next theorem.

Theorem 3.4. Let SI and SII be strategy sets and let n be as defined in (3.7). Assume,

as in Theorem 3.2, that

1<A<U ≤Un <min{B,AT}, unv ≥ 2n+1, (3.23)

but in place of (3.9), that

B <D ≤UnA. (3.24)

Then the value of the game is Vn+1, and the following piecewise uniform mixed strate-

gies F and G are optimal for players I and II, respectively:

F = Pn+1 on
(
(1,ρ),(U,Uρ), . . . ,

(
Un,Unρ

))
,

G =Qn+1 on
(
(A,Aρ),(AU,AUρ), . . . ,

(
AUn−1,AUn−1ρ

)
,{B}), (3.25)

where ρ > 1 but small enough that ρ <A, ρ < U , Unρ ≤min{B,AT}.
Proof. The proof of Theorem 3.2 applies with only minimal change. Strategy F is

unchanged, and that E(F,y) ≥ Vn+1, for all y > A, did not depend on (3.9), so this
remains true here. For strategy G, only the placement of the probability qn+1,n+1 has
changed. So long as this lies at or above B and below Un+1, E(x,G) remains less than
or equal to Vn+1 for all x in (1,B).

4. The case of equal left endpoints. The next theorem is the version of Theorem

3.3 with equal left endpoints, that is, A= 1.
Theorem 4.1. Let SI and SII be strategy sets, and assume that

1=A<U ≤Un−1 < T ≤Un, B > Un−1, (4.1)

and either

D ≥Un or B <D <Un. (4.2)

Let Pn, Qn, and Vn be as defined by (3.1), (3.2), and (3.4). Then the game value is Vn
and the following piecewise uniform mixed strategies F and G are optimal for players

I and II, respectively:

F = Pn on
(
(1,ρ),(U,Uρ), . . . ,

(
Un−1,Un−1ρ

))
,

G =Qn on
((

U
ρ
,U
)
,
(
U2

ρ
,U2

)
, . . . ,

(
Un

ρ
,Un

))
, if D ≥Un;

(4.3)

if B <D <Un, replace the last interval in the G distribution with (D/ρ,D), where ρ > 1
but is small enough that 1< ρ <

√
U , Un−1ρ ≤ T , and if B <D <Un, then B <D/ρ.

Proof. Figure 4.1 depicts the layout for n = 4. We first show that E(F,y) ≥ Vn
for all y > 1. We use the expression E(F,1+) to denote limy→1+E(F,y). Starting
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from E(F,1+) = pn,1 +···+pn,n > Vn, E(F,y) decreases linearly for 1 < y < ρ to
E(F,ρ)=−pn,1+pn,2+···+pn,n = Vn, and this value remains constant for ρ ≤y ≤U .


...( ( ( ( ( ( ( () ) ) ) ) ) ) )

1 ρ U/ρ U Uρ U2/ρ U2 U2ρ U3/ρ U3 U3ρ U4/ρT U4

q4,4q4,3q4,2q4,1

p4,1 p4,2 p4,3 p4,4

Figure 4.1. The distributions F and G of Theorem 4.1, with n= 4.

For Uk−1ρ ≤ y ≤ Uk with 2 ≤ k ≤ n, E(F,y) = µ(pn,1+···+pn,k−1)−pn,k+pn,k+1+
··· +pn,n = Vn. For Uk ≤ y ≤ Ukρ with 1 ≤ k ≤ n− 1, E(F,y) is linear in y , and
therefore constant at Vn, since that is its value at both ends. For y > Un, E(F,y) ≥
E(F,Un)= Vn. Thus we have E(F,y)≥ Vn for all y > 1.
Now we show that E(x,G) ≤ Vn for all x in (1,B). For 1 < x < U/ρ, E(x,G) =

−qn,1+µ(qn,2+···+qn,n) = Vn. For Uk−1 ≤ x ≤ Uk/ρ, 2 ≤ k ≤ n, E(x,G) = qn,1+
···+qn,k−1−qn,k+µ(qn,k+1+···+qn,n)= Vn. For Uk/ρ ≤ x ≤ Uk, 1≤ k≤ n, E(x,G)
is linear in x and is equal to Vn at each end, so it has constant value Vn. The case
k = n here assumes that D ≥ Un. If B < D < Un, then B < Un/ρ, and the case k = n
does not occur. Thus E(x,G)≤ Vn for all x in (1,B).
We recall from [1], or [11, Theorems 3.21, 3.24], that in Silverman’s game on identical

intervals (A = 1, B = D), optimal strategies exist when for some integer n ≥ 2, ν is
precisely equal to a certain value νn = sec(π/(n+1))−1 and B > Tn−1. With n = 2
these conditions are ν = 1 and B > T . The optimal strategies and game value are
unchanged if B ≠D and both are larger than Tn−1 (cf. [11, Theorem 3.29]). There is a

theorem similar to this one for the game of Double-Silver. Suppose that U is a rational
power of T ; say, for some a > 1, U = am, and T = an, where m and n are relatively
prime positive integers, and that min{B,D} ≥ am+n. If unvm = (µ+1)n(ν +1)m =
2m+n, then optimal strategies exist for the game of Double-Silver on (1,B)× (1,D)
and a simple algorithm for obtaining the optimal strategies may be given. We illustrate

first with the special case wherem= 3 and n= 2. Then B and D are each greater than
or equal to a5, and the optimal strategies are played on the interval (1,a5).
Let

P = (p1,p2,p3,p4,p5)

= 1
16+8v+4v2+2uv2+uv3

(
4v2,uv3,8v,2uv2,16

)
,

Q= (q1,q2,q3,q4,q5)= (p5,p4,p3,p2,p1).
(4.4)

Then the piecewise uniform mixed strategies F and G which assign P and Q, respec-
tively, to ((1,a)(a,a2),(a2,a3),(a3,a4),(a4,a5)) are optimal, and the game value is

V = 16−8v−4v
2+2uv2−uv3

16+8v+4v2+2uv2+uv3 . (4.5)
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To see this, note first (bearing in mind that U = a3, T = a2) that
E(F,1)= p1+p2−νp3−νp4−νp5 =U0;
E(F,a)=−p1+p2+p3−νp4−νp5 =U1;
E
(
F,a2

)=−p1−p2+p3+p4−νp5 =U2;
E
(
F,a3

)=−p1−p2−p3+p4+p5 =U3 = V ;
E
(
F,a4

)= µp1−p2−p3−p4+p5 =U4;
E
(
F,a5

)= µp1+µp2−p3−p4−p5 =U5.

(4.6)

Now U0 −U1 = 2p1 −vp3 = 0; U1 −U2 = 2p2 −vp4 = 0; U2 −U3 = 2p3 −vp5 = 0;
U3−U4 = −up1+2p4 = 0; and U4−U5 = −up2+2p5 = −u2v3+32, which we have
assumed to be 0. Thus each Uk = V , 0 ≤ k ≤ 5. For ak−1 ≤ y ≤ ak, 1 ≤ k ≤ 5, E(F,y)
is linear in y , and therefore has constant value V , since that is the value at each
endpoint. Thus E(F,y) = V for 1 ≤ y ≤ a5, and for y > a5, E(F,y) ≥ E(F,a5), so we
have E(F,y)≥ V for all y ≥ 1.
For strategy G we have

E(1,G)=−q1−q2−q3+µq4+µq5 =U5;
E(a,G)= q1−q2−q3−q4+µq5 =U4;
E
(
a2,G

)= q1+q2−q3−q4−q5 =U3;
E
(
a3,G

)=−νq1+q2+q3−q4−q5 =U2;
E
(
a4,G

)=−νq1−νq2+q3+q4−q5 =U1;
E
(
a5,G

)=−νq1−νq2−νq3+q4+q5 =U0.

(4.7)

Thus E(x,G) = V at each of the interval endpoints, and by linearity, E(x,G) = V for
all x with 1≤ x ≤ a5. For x > a5, E(x,G)≤ E(a5,G), so E(x,G)≤ V for all x ≥ 1.
We note that P and Q in (4.4) are the optimal strategies for the matrix game with

payoff matrix

K =




1 −1 −1 −1 µ
1 1 −1 −1 −1
−ν 1 1 −1 −1
−ν −ν 1 1 −1
−ν −ν −ν 1 1



. (4.8)

We now give the general theorem.

Theorem 4.2. Let A = 1, and suppose that for some real number a > 1 we have

U = am and T = an, wherem and n are relatively prime positive integers. If

min{B,D} ≥ am+n, (4.9)

unvm = (µ+1)n(ν+1)m = 2m+n, (4.10)

then optimal strategies and game value exist, and an algorithm may be given for cal-

culating them. (The game value and optimal strategies are obtained in the proof.)
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Proof. Mixed strategies F and G will be defined as in the example preceding the
theorem. Let

P = (p1,p2, . . . ,pm+n),
Q= (q1,q2, . . . ,qm+n)= (pm+n,pm+n−1, . . . ,p1)

(4.11)

be the probability vectors, with the idea that F will assign the probability pi to be
distributed uniformly over the interval (ai−1,ai) for each i with 1≤ i≤m+n. Then

E(F,1)= p1+···+pn−ν
(
pn+1+···+pn+m

)
,

E(F,a)=−p1+p2+···+pn+1−ν
(
pn+2+···+pn+m

)
,

...

E
(
F,am−1

)=−p1−···−pm−1+pm+···+pm+n−1−νpm+n,
E
(
F,am

)=−p1−···−pm+pm+1+···+pm+n,
E
(
F,am+1

)= µp1−p2−···−pm+1+pm+2+···+pm+n,
E
(
F,am+2

)= µp1+µp2−p3−···−pm+2+pm+3+···+pm+n,
...

E
(
F,am+n−1

)= µ(p1+···+pn−1)−pn−···−pn+m−1+pn+m,
E
(
F,am+n

)= µ(p1+···+pn)−pn+1−···−pm+n.

(4.12)

Note that

E(F,1)−E(F,a)= 2p1−vpn+1,
E(F,a)−E(F,a2)= 2p2−vpn+2,

...

E
(
F,am−1

)−E(F,am)= 2pm−vpn+m,
E
(
F,am

)−E(F,am+1)=−up1+2pm+1,
...

E
(
F,am+n−1

)−E(F,am+n)=−upn+2pm+n.

(4.13)

Now in order to choose p1, . . . ,pm+n to make each of the differences in (4.13) equal
to 0, begin with pm+n = 2m+n−1. Then to make E(F,am−1)−E(F,am) = 0, put pm =
vpn+m/2 = 2m+n−2v ; then (if m > n) pm−n = 2m+n−3v2, and so forth. As soon as
subtracting n from the subscript of p results in a negative number, add m+n, and
multiply by u/2 instead of v/2. Sincem and n are relatively prime, we will use each
equation of (4.13) except the last exactly once in order to determine each ofp1 through
pm+n−1 from our original choice of pm+n. The last to be determined is pn =un−1vm,
and then one condition (4.10) is exactly what is needed to get 0 in the last equation

of (4.13). We then divide by the sum of the components of P to make it a probability
vector, and let V be the common value of E(F,ak). For ak−1 ≤ y ≤ ak, 1≤ k≤ n+m,
E(F,y) is linear in y and therefore E(F,y) = V for 1 ≤ y ≤ am+n. For y > am+n,
E(F,y)≥ E(F,am+n), so we have E(F,y)≥ V for all y ≥ 1.
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Now let G be the mixed strategy for player II which distributes probability qj uni-
formly over the interval (aj−1,aj), j = 1, . . . ,m+n. Then

E(1,G)=−q1−···−qm+µ
(
qm+1+···+qm+n

)= E(F,am+n)= V, (4.14)

and in general,

E
(
ak,G

)= E(F,am+n−k)= V, 0≤ k≤m+n, (4.15)

so we have, reasoning as above, that E(x,G)≤ V for all x ≥ 1.
Thus strategies F and G are optimal and the game value is

V = p1+···+pm−1−pm−···−pm+n, (4.16)

and the theorem is proved.

5. Other cases. In all the above theorems but the last (Theorem 4.2), the first player

has an optimal strategy in which the penalty ν never comes into play, and the game
value is independent of ν . (Note that Vn defined in (3.4), depends on u= µ+1 but not
on v = ν+1.)
The theorems above may well include all, or very nearly all, situations in which

optimal strategies exist. These theorems, like most of the theorems about Silverman’s

game on intervals in [10, 11], were discovered using a technique for producing, from

the game on a pair of intervals, a pair of (finite) matrix games, the solutions to which

give highly useful information about the game on intervals. The values of these matrix

games represent the best expected payoffs of which each of the two players can assure

themselves when restricting to certain special types of mixed strategy distributions.

Equality of the two values implies that optimal strategies exist and that the common

value is the game value. Inequality does not, on the face of it, imply that no optimal

strategies exist, but in the case of Silverman’s game, we were nearly always able to

use the information to prove nonexistence. This technique (for using certain matrix

games to elicit information about games on intervals) seems likely to be more widely

applicable, and we hope to examine this further in a future work. In every situation

where we alter the hypotheses in such a way that none of the theorems above applies,

we obtain different values for these two associated matrix games. This leads us to

strongly suspect that no optimal strategies exist, but proofs would be rather long and

technical and we have not actually carried out proofs in any of the cases.
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