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ON THE RECURSIVE SEQUENCE xn+1 =−1/xn+A/xn−1

STEVO STEVIĆ
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Abstract. We investigate the periodic character of solutions of the nonlinear difference
equationxn+1 =−1/xn+A/xn−1. We give sufficient conditions under which every positive
solution of this equation converges to a period two solution. This confirms a conjecture
in the work of DeVault et al. (2000).
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1. Introduction. The behaviour of solutions of the difference equation

xn+1 = A
xn
+ B
xn−1

, (1.1)

where A,B ∈ R and the initial conditions are arbitrary real numbers, has not been

thoroughly understood yet.

It was shown in [9], see also [3], that in the case A,B > 0 every positive solution of

this equation converges to the positive equilibrium
√
A+B. Clearly in this case every

negative solution of this equation converges to the negative equilibrium −√A+B.
In this paper, we consider the equation

xn+1 =− 1
xn
+ A
xn−1

, (1.2)

where A> 0.

As it was observed in [2] for any initial conditions x0 and x1 with x0x1 < 0, (1.2) is

well defined for all n∈N and xnxn−1 < 0, n∈N.

Furthermore the sequence

. . . ,−
√
A+1,

√
A+1,−

√
A+1,

√
A+1, . . . (1.3)

is two periodic solution of (1.2). It is easy to see that this two cycle is locally asymp-

totically stable. When A> 1, (1.2) has the equilibrium
√
A−1, which is unstable.

Recently there has been a lot of interest in studying the global attractivity, the

boundedness character and the periodic nature of nonlinear difference equations. For

some recent results concerning, among other problems, the periodic nature of scalar

nonlinear difference equations see, for example, [1, 3, 4, 5, 6, 9, 10, 11]. For several

open problems and conjectures in this area see [2, 7, 8]. In [5, 10] two closely related,

global convergence results, were established which can be applied in considerations

of nonlinear difference equations for proving that every solution of these difference

equations converges to a period two solution.
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In [2], the following conjecture was stated.

Conjecture 1.1. Let (xn) be a nonequilibrium solution of (1.2) which is well de-

fined for all n∈N. Show that (xn) converges to the two cycle (1.3).

The main purpose of this paper is to confirm this conjecture when A∈ (0,1].

2. A global convergence result. In proving the main result we need a global con-

vergence result, which is contained in the following theorem.

Theorem 2.1. Let the sequences (yn) and (zn) of positive numbers satisfy the fol-

lowing system

yn+1 = F1
(
yn,zn,yn−1,zn−1

)
,

zn+1 = F2
(
yn,zn,yn−1,zn−1

)
.

(2.1)

Assume that for i= 1,2,

(a) Fi(u1,u2,u3,u4) is continuous on R4
+;

(b) Fi, is nondecreasing in each of its variables and strictly increasing in the second

and third variable;

(c)

Fi
(
u1,u2,u3,u4

)≤max
{
u1,u2,u3,u4

}
, (2.2)

for u1,u2,u3,u4 ≥ 0.

Then the sequences (yn) and (zn) are convergent.

Proof. From (c) we can see that the sequences (yn) and (zn) are bounded. It follows

that
liminf
n→∞ yn = ly , limsup

n→∞
yn = Ly,

liminf
n→∞ zn = lz, limsup

n→∞
zn = Lz,

(2.3)

are finite.

Let L=max{Ly,Lz} and lz < Lz. Since Fi is strictly increasing in the second variable,

then there exists δ∈ (0,L) such that

Fi
(
L,lz,L,L

)+δ < Fi(L,L,L,L)−δ (2.4)

for i= 1,2.

Since Fi is continuous on R4
+, then for every δ > 0 there exists ε0 > 0 such that for

every ε ∈ (0,ε0) and i= 1,2

Fi
(
L+ε,lz+ε,L+ε,L+ε

)
< Fi

(
L,lz,L,L

)+δ. (2.5)

In view of the definition of inferior limit, for every ε > 0 and every n0 ∈N there is

n1 ≥n0 such that

zn1 < lz+ε. (2.6)
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Similarly, for every ε > 0 there is n2 ∈N such that

yn < L+ε, zn < L+ε, (2.7)

for all n≥n2 and i= 1,2.

Chooseδ∈(0,L) such that (2.4) holds. Choose ε=ε1 such that ε1<min{ε0,(L−lz)/2}
and find n2+1=n1 =n1(ε1) so that (2.6) and (2.7) hold. From (2.1), using (2.4), (2.5),

(2.6), (2.7) and by condition (b) we obtain

yn1+1 < F1
(
L+ε,lz+ε,L+ε,L+ε

)

< F1
(
L,lz,L,L

)+δ
< F1(L,L,L,L)−δ≤ L−δ.

(2.8)

In the same manner we obtain

zn1+1 < L−δ. (2.9)

Similarly, since Fi is strictly increasing in the second variable, there exists δ1 ∈ (0,δ)
such that

Fi(L,L−δ,L,L)+δ1 < Fi(L,L,L,L)−δ1 (2.10)

for i= 1,2.

Also, since Fi is continuous on R4
+, for every δ1 > 0 there is ε2 > 0 such that for

every ε ∈ (0,ε2) and i= 1,2

Fi(L+ε,L−δ,L+ε,L+ε) < Fi(L,L−δ,L,L)+δ1. (2.11)

We may assume that ε0 = ε2.
By (2.8), (2.9), (2.10), (2.11), and condition (b) we obtain

yn1+2 < F1(L+ε,L−δ,L+ε,L+ε)
< F1(L,L−δ,L,L)+δ1

< F1(L,L,L,L)−δ1 ≤ L−δ1,

zn1+2 < L−δ1.

(2.12)

From (2.8), (2.9), and (2.12), we obtain

yn1+3 < F1
(
L−δ1,L−δ1,L−δ,L−δ

)≤ L−δ1,

zn1+3 < F1
(
L−δ1,L−δ1,L−δ,L−δ

)≤ L−δ1.
(2.13)

It is easy to show by induction that

yn ≤ F1
(
L−δ1,L−δ1,L−δ1,L−δ1

)≤ L−δ1,

zn ≤ F2
(
L−δ1,L−δ1,L−δ1,L−δ1

)≤ L−δ1,
(2.14)

for all n≥n1.

From (2.14) we obtain

limsup
n→∞

yn ≤ L−δ1, limsup
n→∞

zn ≤ L−δ1, (2.15)

which is a contradiction with our choice of L. Thus lz = Lz and so the sequence

(zn) converges. The proof that the sequence (yn) converges is similar and will be

omitted.
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3. Main result. We are now in position to confirm Conjecture 1.1.

Theorem 3.1. Assume A∈ (0,1], then every nonequilibrium solution of (1.2), which

is well defined for all n∈N, converges to the two periodic solution (1.3).

Proof. First we prove that the sequence (xn) eventually satisfies the condition

xnxn−1 < 0. As it was observed in [2], if xn0xn0−1 < 0 for some n0 ∈N, then xnxn−1 <
0, n ≥ n0. Suppose the contrary, then we may suppose that xn > 0, n ∈N or xn < 0,

n∈N.

In the first case, by (1.2) we obtain

xn+1 = Axn−xn−1

xnxn−1
> 0, n∈N. (3.1)

Thus we have 0<xn−1 <Axn ≤ xn, n∈N. From that it follows that there exists finite

or infinite limn→∞xn = a> 0. Letting n→∞ in (1.2) we obtain a= (A−1)/a, which is

impossible. Thus the result follows in that case.

In the second case, we obtain 0 < −xn−1 < A(−xn) ≤ −xn, n ∈ N. The rest of the

proof is similar to the previous one and so we omit it.

In the sequel, we may suppose that x0 < 0 and x1 > 0. By induction we obtain

x2n < 0 and x2n−1 > 0 for all n∈N.

Set yn = x2n+1 and zn =−x2n, n∈N. Since

xn+1 =− 1
−1/xn−1+A/xn−2

+ A
−1/xn−2+A/xn−3

, (3.2)

we obtain

yn+1 = 1
1/yn+A/zn

+ A
1/zn+A/yn−1

, (3.3)

zn+1 = 1
1/zn+A/yn−1

+ A
1/yn−1+A/zn−1

. (3.4)

Let

F1
(
u1,u2,u3,u4

)=




1
1/u1+A/u2

+ A
1/u2+A/u3

, for u1u2u3 > 0;

A
1/u2+A/u3

, for u1 = 0, u2u3 > 0;

1
1/u1+A/u2

, for u3 = 0, u1u2 > 0;

0, for u2 = 0; u1 =u3 = 0, u2 > 0;

u1 =u2 =u3 = 0;
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F2
(
u1,u2,u3,u4

)=




1
1/u2+A/u3

+ A
1/u3+A/u4

, for u2u3u4 > 0;

A
1/u3+A/u4

, for u2 = 0, u3u4 > 0;

1
1/u2+A/u3

, for u4 = 0, u2u3 > 0;

0, for u3 = 0; u2 =u4 = 0, u3 > 0;

u2 =u3 =u4 = 0.
(3.5)

Since, for both F1 and F2, all the conditions of Theorem 2.1 are satisfied we have that

the sequences (yn) and (zn) converge. Let limn→∞yn =y ≥ 0 and limn→∞zn = z ≥ 0.

Letting n→∞ in (3.3), (3.4) we obtain

y = 1
1/y+A/z +

A
1/z+A/y , z = 1

1/z+A/y +
A

1/y+A/z . (3.6)

From (3.6) it follows that y = z. If y = 0 we see that xn→ 0 as n→∞. Letting n→∞
in (1.2) and by applying the condition xnxn−1 < 0 we get a contradiction. In the other

case we obtain y = z =√A+1. Thus the result follows.
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Stevo Stević: Matematički Fakultet, Studentski Trg 16, 11000 Beograd, Serbia,

Yugoslavia

E-mail address: sstevo@matf.bg.ac.yu

mailto:sstevo@matf.bg.ac.yu

