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Abstract. We introduce a new notion of fuzzy r -interior which is an extension of Chang’s
fuzzy interior. Using fuzzy r -interior, we define fuzzy r -semiopen sets and fuzzy r -
semicontinuous maps which are generalizations of fuzzy semiopen sets and fuzzy semi-
continuous maps in Chang’s fuzzy topology, respectively. Some basic properties of fuzzy
r -semiopen sets and fuzzy r -semicontinuous maps are investigated.
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1. Introduction. Chang [2] introduced fuzzy topological spaces. Some authors

[3, 5, 6, 7, 8] introduced other definitions of fuzzy topology as generalizations of

Chang’s fuzzy topology.

In this note, we introduce a new notion of fuzzy r -interior in a similar method

by which Chattopadhyay and Samanta [4] introduced the notion of fuzzy closure. It

determines a fuzzy topology and it is an extension of Chang’s fuzzy interior.

Using fuzzy r-interior, we define fuzzy r -semiopen sets and fuzzy r-semicontinuous

maps which are generalizations of fuzzy semiopen sets and fuzzy semicontinuous

maps in Chang’s fuzzy topology, respectively. Some basic properties of fuzzy r -

semiopen sets and fuzzy r -semicontinuous maps are investigated.

2. Preliminaries. In this note, let I denote the unit interval [0,1] of the real line

and I0 = (0,1]. A member µ of IX is called a fuzzy subset of X. For any µ ∈ IX , µc

denotes the complement 1−µ. By 0̃ and 1̃ we denote constant maps on X with value

0 and 1, respectively. All other notation are standard notation of fuzzy set theory.

Recall that a Chang’s fuzzy topology (see [2]) on X is a family T of fuzzy sets in X
which satisfies the following properties:

(1) 0̃, 1̃∈ T ;

(2) if µ1,µ2 ∈ T , then µ1∧µ2 ∈ T ;

(3) if µi ∈ T for each i, then
∨
µi ∈ T .

The pair (X,T) is called a Chang’s fuzzy topological space.

Hence a Chang’s fuzzy topology onX can be regarded as a map T : IX → {0,1}which

satisfies the following three conditions:

(1) T(0̃)= T(1̃)= 1;

(2) if T(µ1)= T(µ2)= 1, then T(µ1∧µ2)= 1;

(3) if T(µi)= 1 for each i, then T(
∨
µi)= 1.

But fuzziness in the concept of openness of a fuzzy subset is absent in the above

Chang’s definition of fuzzy topology. So for fuzzifying the openness of a fuzzy subset,

some authors [3, 5, 6] gave other definitions of fuzzy topology.
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Definition 2.1 (see [3, 7, 8]). A fuzzy topology on X is a map � : IX → I which

satisfies the following properties:

(1) �(0̃)=�(1̃)= 1,

(2) �(µ1∧µ2)≥�(µ1)∧�(µ2),
(3) �(

∨
µi)≥

∧
�(µi).

The pair (X,�) is called a fuzzy topological space.

Definition 2.2 (see [3]). A family of closed sets in X is a map � : IX → I satisfying

the following properties:

(1) �(0̃)=�(1̃)= 1,

(2) �(µ1∨µ2)≥�(µ1)∧�(µ2),
(3) �(

∧
µi)≥

∧
�(µi).

Let � be a fuzzy topology on X and �� : IX → I a map defined by ��(µ) = �(µc).
Then �� is a family of closed sets in X. Also, let � be a family of closed sets in X and

�� : IX → I a map defined by ��(µ)=�(µc). Then �� is a fuzzy topology on X.

The notions of fuzzy semiopen, semiclosed sets and the weaker forms of fuzzy

continuity which are related to our discussion, can be found in [1, 9].

Definition 2.3 (see [4]). Let (X,�) be a fuzzy topological space. For each r ∈ I0
and for each µ ∈ IX , the fuzzy r -closure is defined by

cl(µ,r)=
∧{

ρ ∈ IX | µ ≤ ρ, ��(ρ)≥ r
}
. (2.1)

From now on, for r ∈ I0 we will call µ a fuzzy r -open set of X if �(µ)≥ r , µ a fuzzy

r -closed set of X if �(µ)≥ r . Note that µ is fuzzy r -closed if and only if µ = cl(µ,r).
Let (X,�) be a fuzzy topological space. For an r -cut �r = {µ ∈ IX |�(µ)≥ r}, it is

obvious that (X,�r ) is a Chang’s fuzzy topological space for all r ∈ I0.

3. Fuzzy r -interior. Now, we are going to define the fuzzy interior operator in

(X,�).

Definition 3.1. Let (X,�) be a fuzzy topological space. For each µ ∈ IX and each

r ∈ I0, the fuzzy r -interior of µ is defined as follows:

int(µ,r)=
∨{

ρ ∈ IX | µ ≥ ρ, �(ρ)≥ r}. (3.1)

The operator int : IX×I0 → IX is called the fuzzy interior operator in (X,�).

Obviously, int(µ,r) is the greatest fuzzy r -open set which is contained in µ and

int(µ,r)= µ for any fuzzy r -open set µ. Moreover, we have the following results.

Theorem 3.2. Let (X,�) be a fuzzy topological space and int : IX×I0 → IX the fuzzy

interior operator in (X,�). Then for µ,ρ ∈ IX and r ,s ∈ I0,

(1) int(0̃,r )= 0̃, int(1̃,r )= 1̃,

(2) int(µ,r)≤ µ,

(3) int(µ,r)≥ int(µ,s) if r ≤ s,
(4) int(µ∧ρ,r)= int(µ,r)∧ int(ρ,r),
(5) int(int(µ,r),r)= int(µ,r),
(6) if r =∨{s ∈ I0 | int(µ,s)= µ}, then int(µ,r)= µ.
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Proof. (1), (2), and (5) are obvious. (3) Let r ≤ s. Then every fuzzy s-open set is

also fuzzy r -open. Hence we have

int(µ,r)=
∨{

ρ ∈ IX | µ ≥ ρ, �(ρ)≥ r}

≥
∨{

ρ ∈ IX | µ ≥ ρ, �(ρ)≥ s}

= int(µ,s).

(3.2)

(4) Since µ∧ρ ≤ µ and µ∧ρ ≤ ρ, int(µ∧ρ,r)≤ int(µ,r) and int(µ∧ρ,r)≤ int(ρ,r).
Thus int(µ∧ρ,r) ≤ int(µ,r)∧ int(ρ,r). Conversely, it is clear that µ∧ρ ≥ int(µ,r)∧
int(ρ,r). Also,

�
(
int(µ,r)∧ int(ρ,r)

)≥�
(
int(µ,r)

)∧�
(
int(ρ,r)

)≥ r ∧r = r . (3.3)

So, by the definition of fuzzy r -interior, int(µ ∧ ρ,r) ≥ int(µ,r)∧ int(ρ,r). Hence

int(µ∧ρ,r)= int(µ,r)∧ int(ρ,r).
(6) Note that �(µ) ≥ r if and only if int(µ,r) = µ. Suppose that int(µ,r) �= µ. Then

�(µ) < r and hence there is an α ∈ I such that �(µ) < α < r . Since r = ∨{s ∈ I0 |
int(µ,s) = µ}, there is an s ∈ I such that �(µ) < α < s ≤ r and int(µ,s) = µ. Since

�(µ) < s, int(µ,s) �= µ. This is a contradiction.

Theorem 3.3. Let int : IX × I0 → IX be a map satisfying (1), (2), (3), (4), (5), and (6)

of Theorem 3.2. Let � : IX → I be a map defined by

�(µ)=
∨{

r ∈ I0 | int(µ,r)= µ}. (3.4)

Then � is a fuzzy topology on X such that int= int�.

Proof. (i) By (1), �(0̃)= 1=�(1̃).
(ii) Suppose that �(µ1 ∧ µ2) < �(µ1)∧�(µ2). Then there is an α ∈ I such that

�(µ1∧µ2) < α < �(µ1)∧�(µ2). So, there are s1,s2 ∈ I such that α < si ≤ �(µi) and

int(µi,si) = µi for each i = 1,2. Let s = s1∧ s2. Then int(µi,s) ≥ int(µi,si) = µi and

hence int(µi,s) = µi for each i = 1,2. By (4), int(µ1∧µ2,s) = int(µ1,s)∧ int(µ2,s) =
µ1∧µ2. Thus

α>�
(
µ1∧µ2

)=
∨{

r ∈ I0 | int
(
µ1∧µ2,r

)= µ1∧µ2
}≥ s = s1∧s2 >α. (3.5)

This is a contradiction. Therefore �(µ1∧µ2)≥�(µ1)∧�(µ2).
(iii) Suppose �(

∨
µi) <

∧
�(µi). Then there is an α ∈ I such that �(

∨
µi) < α <∧

�(µi). So for each i, there is an si ∈ I such that α < si ≤ �(µi) and int(µi,si) = µi.
Let s =∧si. Then int(µi,s)≥ int(µi,si)= µi and hence int(

∨
µi,s)≥ int(µi,s)= µi for

each i. Thus int(
∨
µi,s)≥

∨
µi and hence int(

∨
µi,s)=

∨
µi. Hence

α>�
(∨

µi
)
≥ s ≥α. (3.6)

This is a contradiction. Therefore �(
∨
µi)≥

∧
�(µi).

Next we will show that int= int�. Note that for s ≤ r ,

int(µ,r)= int
(
int(µ,r),r

)≤ int
(
int(µ,r),s

)≤ int(µ,r). (3.7)



56 S. J. LEE AND E. P. LEE

So int(µ,r)= int(int(µ,r),s) for s ≤ r and int(µ,r)≤ µ. Thus

int�(µ,r)=
∨{

ρ ∈ IX | ρ ≤ µ, �(ρ)≥ r}

=
∨{

ρ ∈ IX | ρ ≤ µ,
∨{

s ∈ I0 | int(ρ,s)= ρ}≥ r
}

=
∨{

ρ ∈ IX | ρ ≤ µ, int(ρ,s)= ρ for s ≤ r}

≥ int(µ,r).

(3.8)

On the other hand, let ρ ≤ µ and int(ρ,s) = ρ for s ≤ r . Then by (6), ρ = int(ρ,r) ≤
int(µ,r). Thus

int�(µ,r)=
∨{

ρ ∈ IX | ρ ≤ µ, int(ρ,s)= ρ for s ≤ r}≤ int(µ,r). (3.9)

Therefore, int�(µ,r)= int(µ,r). Hence the theorem follows.

If int : IX×I0 → IX is a fuzzy interior operator onX, then for each r ∈ I0, intr : IX → IX
defined by

intr (µ)= int(µ,r) (3.10)

is a Chang’s fuzzy interior operator on X.

Fuzzy r -interior is an extension of the Chang’s fuzzy interior.

Theorem 3.4. An operator int : IX×I0 → IX is a fuzzy interior for the fuzzy topolog-

ical space (X,�) if and only if for any r ∈ I0, intr : IX → IX is a Chang’s fuzzy interior

for the Chang’s fuzzy topological space (X,�r ).

Proof. (⇒). This direction (⇒) is obvious.

(⇐). (1), (2), (4), and (5) are obvious.

(3) Let r ≤ s. Then �r ⊇�s and hence int(µ,r)= intr (µ)=
∨{ρ∈IX | ρ≤µ, ρ∈�r}≥∨{ρ ∈ IX | ρ ≤ µ, ρ ∈�s} = ints(µ)= int(µ,s).

(6) Suppose that int(µ,r) �= µ. Then intr (µ) = int(µ,r) �= µ. So µ ∉ �r and hence

�(µ) < r . Thus there is anα∈I such that �(µ)<α<r . Since r =∨{s∈I0 | int(µ,s)=µ},
there is an s ∈ I0 such that �(µ) < α< s ≤ r and int(µ,s)= ints(µ)= µ. Since �(µ) < s,
µ ∉�s and hence ints(µ) �= µ. It is a contradiction.

For a family {µi}i∈Γ of fuzzy sets in a fuzzy topological spaceX and r ∈ I0,
∨

cl(µi,r)
≤ cl(

∨
µi,r), and the equality holds when Γ is a finite set. Similarly

∧
int(µi,r) ≥

int(
∧
µi,r) and

∧
int(µi,r)= int(

∧
µi,r) for a finite set Γ .

Theorem 3.5. For a fuzzy set µ in a fuzzy topological space X and r ∈ I0,

(1) int(µ,r)c = cl(µc,r).
(2) cl(µ,r)c = int(µc,r).

Proof.

int(µ,r)c =
(∨{

ρ ∈ IX | ρ ≤ µ, �(ρ)≥ r}
)c

=
∧{

ρc ∈ IX | ρc ≥ µc, ��(ρc)≥ r
}

= cl
(
µc,r

)
.

(3.11)

Similarly we can show (2).
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4. Fuzzy r -semiopen sets

Definition 4.1. Let µ be a fuzzy set in a fuzzy topological space (X,�) and r ∈ I0.

Then µ is said to be

(1) fuzzy r -semiopen if there is a fuzzy r -open set ρ inX such that ρ ≤ µ ≤ cl(ρ,r),
(2) fuzzy r -semiclosed if there is a fuzzy r -closed set ρ in X such that int(ρ,r)≤

µ ≤ ρ.

Theorem 4.2. Let µ be a fuzzy set in a fuzzy topological space (X,�) and r ∈ I0.

Then the following statements are equivalent:

(1) µ is a fuzzy r -semiopen set.

(2) µc is a fuzzy r -semiclosed set.

(3) cl(int(µ,r),r)≥ µ.

(4) int(cl(µc,r),r)≤ µc .

Proof. (1)�(2). The proof follows from Theorem 3.5.

(1)⇒(3). Let µ be a fuzzy r -semiopen set of X. Then there is a fuzzy r -open set

ρ in X such that ρ ≤ µ ≤ cl(ρ,r). Since �(ρ) ≥ r and µ ≥ ρ, int(µ,r) ≥ ρ. Hence

cl(int(µ,r),r)≥ cl(ρ,r)≥ µ.
(3)⇒(1). Let cl(int(µ,r),r) ≥ µ and take ρ = int(µ,r). Since �(int(µ,r)) ≥ r , ρ is a

fuzzy r -open set. Also, ρ = int(µ,r)≤ µ ≤ cl(int(µ,r),r)= cl(ρ,r). Hence µ is a fuzzy

r -semiopen set.

(2)�(4). The proof is similar to the proof of (1)�(3).

Theorem 4.3. (1) Any union of fuzzy r -semiopen sets is fuzzy r -semiopen.

(2) Any intersection of fuzzy r -semiclosed sets is fuzzy r -semiclosed.

Proof. (1) Let {µi} be a collection of fuzzy r -semiopen sets. Then for each i, there

is a fuzzy r -open set ρi such that ρi ≤ µi ≤ cl(ρi,r). Since �(
∨
ρi)≥

∧
�(ρi)≥ r ,

∨
ρi

is a fuzzy r -open set. Moreover,
∨
ρi ≤

∨
µi ≤

∨
cl
(
ρi,r

)≤ cl
(∨

ρi,r
)
. (4.1)

Hence
∨
µi is a fuzzy r -semiopen set.

(2) It follows from (1) using Theorem 4.2.

Definition 4.4. Let (X,�) be a fuzzy topological space. For each r ∈ I0 and for

each µ ∈ IX , the fuzzy r -semiclosure is defined by

scl(µ,r)=
∧{

ρ ∈ IX | µ ≤ ρ, ρ is fuzzy r -semiclosed
}

(4.2)

and the fuzzy r -semi-interior is defined by

sint(µ,r)=
∨{

ρ ∈ IX | µ ≥ ρ, ρ is fuzzy r -semiopen
}
. (4.3)

Obviously scl(µ,r) is the smallest fuzzy r -semiclosed set which contains µ and

sint(µ,r) is the greatest fuzzy r -semiopen set which is contained in µ. Also, scl(µ,r)=µ
for any fuzzy r -semiclosed set µ and sint(µ,r) = µ for any fuzzy r -semiopen set µ.

Moreover, we have

int(µ,r)≤ sint(µ,r)≤ µ ≤ scl(µ,r)≤ cl(µ,r). (4.4)
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Also, we have the following results:

(1) scl(0̃,r )= 0̃, scl(1̃,r )= 1̃, sint(0̃,r )= 0̃, sint(1̃,r )= 1̃.

(2) scl(µ,r)≥ µ, sint(µ,r)≤ µ.

(3) scl(µ∨ρ,r)≥ scl(µ,r)∨scl(ρ,r), sint(µ∧ρ,r)≤ sint(µ,r)∧sint(ρ,r).
(4) scl(scl(µ,r),r)= scl(µ,r), sint(sint(µ,r),r)= sint(µ,r).

Remark 4.5. It is obvious that every fuzzy r -open (r -closed) set is fuzzy r -

semiopen (r -semiclosed). The converse does not hold as in Example 4.6. It also shows

that the intersection (union) of any two fuzzy r -semiopen (r -semiclosed) sets need

not be fuzzy r -semiopen (r -semiclosed). Even the intersection (union) of a fuzzy r -

semiopen (r -semiclosed) set with a fuzzy r -open (r -closed) set may fail to be fuzzy

r -semiopen (r -semiclosed).

Example 4.6. Let X = I and µ1,µ2 and µ3 be fuzzy sets of X defined as

µ1(x)=




0, if 0≤ x ≤ 1
2
,

2x−1, if
1
2
≤ x ≤ 1;

µ2(x)=




1, if 0≤ x ≤ 1
4
,

−4x+2, if
1
4
≤ x ≤ 1

2
,

0, if
1
2
≤ x ≤ 1;

µ3(x)=




0, if 0≤ x ≤ 1
4
,

1
3
(4x−1), if

1
4
≤ x ≤ 1.

(4.5)

Define � : IX → I by

�(µ)=




1 if µ = 0̃, 1̃,
1
2

if µ = µ1,µ2, µ1∨µ2,

0 otherwise.

(4.6)

Then clearly � is a fuzzy topology on X.

(1) Note that cl(µ1,1/2) = µc2. Since µ1 ≤ µ3 ≤ cl(µ1,1/2) and µ1 is a fuzzy 1/2-

open set, µ3 is a fuzzy 1/2-semiopen set. But µ3 is not a fuzzy 1/2-open set, because

�(µ3)= 0.

(2) In view of Theorem 4.2, µc3 is a fuzzy 1/2-semiclosed set which is not a fuzzy

1/2-closed set.

(3) Note that µ2 is fuzzy 1/2-open and hence fuzzy 1/2-semiopen. Since 0̃ is the

only fuzzy 1/2-open set contained in µ2∧µ3 and cl(0̃,1/2)= 0̃, µ2∧µ3 is not a fuzzy

1/2-semiopen set.

(4) Clearly µc2 and µc3 are fuzzy 1/2-semiclosed sets, but µc2∨µc3 = (µ2∧µ3)c is not

a fuzzy 1/2-semiclosed set.
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The next two theorems show the relation between r -semiopenness and semiopen-

ness.

Theorem 4.7. Let µ be a fuzzy set in a fuzzy topological space (X,�) and r ∈ I0.

Then µ is fuzzy r -semiopen (r -semiclosed) in (X,�) if and only if µ is fuzzy semiopen

(semiclosed) in (X,�r ).

Proof. The proof is straightforward.

Let (X,T) be a Chang’s fuzzy topological space and r ∈ I0. Recall [3] that a fuzzy

topology Tr : IX → I is defined by

Tr (µ)=




1 if µ = 0̃, 1̃,

r if µ ∈ T −{0̃, 1̃},
0 otherwise.

(4.7)

Theorem 4.8. Let µ be a fuzzy set in a Chang’s fuzzy topological space (X,T) and

r ∈ I0. Then µ is fuzzy semiopen (semiclosed) in (X,T) if and only if µ is fuzzy r -

semiopen (r -semiclosed) in (X,T r ).

Proof. The proof is straightforward.

5. Fuzzy r -continuous and fuzzy r -semicontinuous maps

Definition 5.1. Let f : (X,�)→ (Y ,�) be a map from a fuzzy topological space X
to another fuzzy topological space Y and r ∈ I0. Then f is called

(1) a fuzzy r -continuous map if f−1(µ) is a fuzzy r -open set of X for each fuzzy

r -open set µ of Y , or equivalently, f−1(µ) is a fuzzy r -closed set of X for each

fuzzy r -closed set µ of Y ,

(2) a fuzzy r -open map if f(µ) is a fuzzy r -open set of Y for each fuzzy r -open

set µ of X,

(3) a fuzzy r -closed map if f(µ) is a fuzzy r -closed set of Y for each fuzzy r -closed

set µ of X,

(4) a fuzzy r -homeomorphism if f is bijective, fuzzy r -continuous and fuzzy r -

open.

Theorem 5.2. Let f : (X,�) → (Y ,�) be a map and r ∈ I0. Then the following

statements are equivalent:

(1) f is a fuzzy r -continuous map.

(2) f(cl(ρ,r))≤ cl(f (ρ),r) for each fuzzy set ρ of X.

(3) cl(f−1(µ),r)≤ f−1(cl(µ,r)) for each fuzzy set µ of Y .

(4) f−1(int(µ,r))≤ int(f−1(µ),r) for each fuzzy set µ of Y .

Proof. (1)⇒(2). Let f be fuzzy r -continuous and ρ any fuzzy set of X. Since

cl(f (ρ),r) is fuzzy r -closed of Y , f−1(cl(f (ρ),r)) is fuzzy r -closed of X. Thus

cl(ρ,r)≤ cl
(
f−1f(ρ),r

)≤ cl
(
f−1(cl

(
f(ρ),r

))
,r
)= f−1(cl

(
f(ρ),r

))
. (5.1)

Hence

f
(
cl(ρ,r)

)≤ ff−1(cl
(
f(ρ),r

))≤ cl
(
f(ρ),r

)
. (5.2)
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(2)⇒(3). Let µ be any fuzzy set of Y . By (2),

f
(
cl
(
f−1(µ),r

))≤ cl
(
ff−1(µ),r

)≤ cl(µ,r). (5.3)

Thus

cl
(
f−1(µ),r

)≤ f−1f
(
cl
(
f−1(µ),r

))≤ f−1(cl(µ,r)
)
. (5.4)

(3)⇒(4). Let µ be any fuzzy set of Y . Then µc is a fuzzy set of Y . By (3),

cl
(
f−1(µ)c,r

)= cl
(
f−1(µc),r)≤ f−1(cl

(
µc,r

))
. (5.5)

By Theorem 3.5,

f−1( int(µ,r)
)= f−1(cl

(
µc,r

))c ≤ cl
(
f−1(µ)c,r

)c = int
(
f−1(µ),r

)
. (5.6)

(4)⇒(1). Let µ be any fuzzy r -open set of Y . Then int(µ,r)= µ. By (4),

f−1(µ)= f−1( int(µ,r)
)≤ int

(
f−1(µ),r

)≤ f−1(µ). (5.7)

So f−1(µ) = int(f−1(µ),r) and hence f−1(µ) is fuzzy r -open of X. Thus f is fuzzy

r -continuous.

Theorem 5.3. Let (X,�), (Y ,�) and (Z,�) be three fuzzy topological spaces and

r ∈ I0. If f : (X,�) → (Y ,�) and g : (Y ,�) → (Z,�) are fuzzy r -continuous (r -open,

r -closed) maps, then so is g◦f : (X,�)→ (Z,�).

Proof. The proof is straightforward.

Definition 5.4. Let f : (X,�)→ (Y ,�) be a map from a fuzzy topological space X
to another fuzzy topological space Y and r ∈ I0. Then f is called

(1) a fuzzy r -semicontinuous map if f−1(µ) is a fuzzy r -semiopen set of X for each

fuzzy r -open set µ of Y , or equivalently, f−1(µ) is a fuzzy r -semiclosed set of

X for each fuzzy r -closed set µ of Y ,

(2) a fuzzy r -semiopen map if f(µ) is a fuzzy r -semiopen set of Y for each fuzzy

r -open set µ of X,

(3) a fuzzy r -semiclosed map if f(µ) is a fuzzy r -semiclosed set of Y for each

fuzzy r -closed set µ of X.

Theorem 5.5. Let f : (X,�) → (Y ,�) be a map and r ∈ I0. Then the following

statements are equivalent:

(1) f is a fuzzy r -semicontinuous map.

(2) f(scl(ρ,r))≤ cl(f (ρ),r) for each fuzzy set ρ of X.

(3) scl(f−1(µ),r)≤ f−1(cl(µ,r)) for each fuzzy set µ of Y .

(4) f−1(int(µ,r))≤ sint(f−1(µ),r) for each fuzzy set µ of Y .

Proof. The proof is similar to Theorem 5.2.

Remark 5.6. Let f : (X,�) → (Y ,�) and g : (Y ,�) → (Z,�) be maps and r ∈ I0.

Then the following statements are true.
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(1) If f is fuzzy r -semicontinuous and g is fuzzy r -continuous then g◦f is fuzzy

r -semicontinuous.

(2) If f is fuzzy r -open and g is fuzzy r -semiopen then g◦f is fuzzy r -semiopen.

(3) If f is fuzzy r -closed andg is fuzzy r -semiclosed theng◦f is fuzzy r -semiclosed.

Remark 5.7. In view of Remark 4.5, a fuzzy r -continuous (r -open, r -closed, resp.)

map is also a fuzzy r -semicontinuous (r -semiopen, r -semiclosed, resp.) map for each

r ∈ I0. The converse does not hold as in the following example.

Example 5.8. (1) A fuzzy r -semicontinuous map need not be a fuzzy r -continuous

map.

Let (X,�) be a fuzzy topological space as described in Example 4.6 and let

f : (X,�) → (X,�) be defined by f(x) = x/2. Note that f−1(0̃) = 0̃, f−1(1̃) = 1̃,

f−1(µ1)= 0̃ and f−1(µ2)= µc1 = f−1(µ1∨µ2). Since cl(µ2,1/2)= µc1, µc1 is a fuzzy 1/2-

semiopen set and hence f is a fuzzy 1/2-semicontinuous map. On the other hand,

�(f−1(µ2)) = �(µc1) = 0 < 1/2, and hence f−1(µ2) is not a fuzzy 1/2-open set. Thus

f is not a fuzzy 1/2-continuous map.

(2) A fuzzy r -semiopen map need not be a fuzzy r -open map.

Let (X,�) be as in (1). Define �1 : IX → I by

�1(µ)=




1 if µ = 0̃, 1̃,
1
2

if µ = µ3,

0 otherwise.

(5.8)

Consider the map f : (X,�1)→ (X,�) defined by f(x) = x. Then f(0̃) = 0̃, f(1̃) = 1̃

and f(µ3) = µ3 are fuzzy 1/2-semiopen sets of (X,�) and hence f is a fuzzy 1/2-

semiopen map. On the other hand, �(f (µ3)) = �(µ3) = 0 < 1/2, and hence f(µ3) is

not a fuzzy 1/2-open set. Thus f is not a fuzzy 1/2-open map.

(3) A fuzzy r -open (hence r -semiopen) map need not be a fuzzy r -semiclosed map.

Let X = I and µ, ρ, and λ be fuzzy sets of X defined as

µ(x)= 1−x;

ρ(x)=




−2x+1 if 0≤ x ≤ 1
2
,

0 if
1
2
≤ x ≤ 1;

λ(x)=




1 if 0≤ x ≤ 1
2
,

0 if
1
2
<x ≤ 1.

(5.9)

Define �1 : IX → I and �2 : IX → I by

�1(ν)=




1 if ν = 0̃, 1̃,
1
2

if ν = µ,
0 otherwise;

�2(ν)=




1 if ν = 0̃, 1̃,λ,
1
2

if ν = ρ,
0 otherwise.

(5.10)
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Then clearly �1 and �2 are fuzzy topologies on X. Consider the map f : (X,�1) →
(X,�2) defined by f(x)= x/2. It is easy to see that f(0̃)= 0̃, f(µ)= ρ and f(1̃)= λ.

Thus f is a fuzzy 1/2-open map and hence a fuzzy 1/2-semiopen map. On the other

hand, because the only fuzzy 1/2-closed set containing λ is 1̃, λ= f(1̃) is not a fuzzy

1/2-semiclosed set of (X,�2). Thus f is not a fuzzy 1/2-semiclosed map.

(4) A fuzzy r -closed (hence r -semiclosed) map need not be a fuzzy r -semiopen

map.

Let X = I and µ, ρ, and λ be fuzzy sets of X defined as

µ(x)= 1−x;

ρ(x)=




−2x+1 if 0≤ x ≤ 1
2
,

1 if
1
2
<x ≤ 1;

λ(x)=




0 if 0≤ x ≤ 1
2
,

1 if
1
2
<x ≤ 1.

(5.11)

Define �1 : IX → I and �2 : IX → I by

�1(ν)=




1 if ν = 0̃, 1̃,
1
2

if ν = µ,
0 otherwise;

�2(ν)=




1 if ν = 0̃, 1̃,λ,
1
2

if ν = ρ,
0 otherwise.

(5.12)

Then clearly �1 and �2 are fuzzy topologies on X. Consider the map f : (X,�1) →
(X,�2) defined by f(x)= x/2. It is easy to see that f(0̃)= 0̃, f(µc)= ρc and f(1̃)= λc .
Thus f is a fuzzy 1/2-closed map and hence a fuzzy 1/2-semiclosed map. On the other

hand, the only fuzzy 1/2-open set contained in λc is 0̃, hence λc = f(1̃) is not a fuzzy

1/2-semiopen set of (X,�2). Thus f is not a fuzzy 1/2-semiopen map.

The next two theorems show that a fuzzy continuous (open, closed, semicontin-

uous, semiopen, semiclosed, resp.) map is a special case of a fuzzy r -continuous

(r -open, r -closed, r -semicontinuous, r -semiopen, r -semiclosed, resp.) map.

Theorem 5.9. Let f : (X,�)→ (Y ,�) be a map from a fuzzy topological space X to

another fuzzy topological space Y and r ∈ I0. Then f is fuzzy r -continuous (r -open,

r -closed, r -semicontinuous, r -semiopen, r -semiclosed, resp.) if and only if f : (X,�r )→
(Y ,�r ) is fuzzy continuous (open, closed, semicontinuous, semiopen, semiclosed, resp.).

Proof. The proof is straightforward.

Theorem 5.10. Let f : (X,T) → (Y ,U) be a map from a Chang’s fuzzy topolog-

ical space X to another Chang’s fuzzy topological space Y and r ∈ I0. Then f is

fuzzy continuous (open, closed, semicontinuous, semiopen, semiclosed, resp.) if and

only if f : (X,T r )→ (Y ,Ur ) is fuzzy r -continuous (r -open, r -closed, r -semicontinuous,

r -semiopen, r -semiclosed, resp.).

Proof. The proof is straightforward.
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