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ABSTRACT. We introduce a new notion of fuzzy r-interior which is an extension of Chang’s
fuzzy interior. Using fuzzy r-interior, we define fuzzy r-semiopen sets and fuzzy r-
semicontinuous maps which are generalizations of fuzzy semiopen sets and fuzzy semi-
continuous maps in Chang’s fuzzy topology, respectively. Some basic properties of fuzzy
r-semiopen sets and fuzzy r-semicontinuous maps are investigated.
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1. Introduction. Chang [2] introduced fuzzy topological spaces. Some authors
[3, 5, 6, 7, 8] introduced other definitions of fuzzy topology as generalizations of
Chang’s fuzzy topology.

In this note, we introduce a new notion of fuzzy r-interior in a similar method
by which Chattopadhyay and Samanta [4] introduced the notion of fuzzy closure. It
determines a fuzzy topology and it is an extension of Chang’s fuzzy interior.

Using fuzzy r-interior, we define fuzzy r-semiopen sets and fuzzy r-semicontinuous
maps which are generalizations of fuzzy semiopen sets and fuzzy semicontinuous
maps in Chang’s fuzzy topology, respectively. Some basic properties of fuzzy -
semiopen sets and fuzzy r-semicontinuous maps are investigated.

2. Preliminaries. In this note, let I denote the unit interval [0,1] of the real line
and Iy = (0,1]. A member u of IX is called a fuzzy subset of X. For any u € IX, u¢
denotes the complement 1 —pu. By 0 and I we denote constant maps on X with value
0 and 1, respectively. All other notation are standard notation of fuzzy set theory.

Recall that a Chang’s fuzzy topology (see [2]) on X is a family T of fuzzy sets in X
which satisfies the following properties:

(1 0,ierT;

(2) if pyy,up € T, then py A € T,

(3) if u; € T for each i, then \/ ; € T.

The pair (X, T) is called a Chang'’s fuzzy topological space.

Hence a Chang’s fuzzy topology on X can be regarded as amap T : IX — {0,1} which
satisfies the following three conditions:

M TO)=TA)=1;

(2) if T(py) =T(uz) =1, then T (py Apz) = 15

(3) if T(u;) =1 for each i, then T(\/ u;) = 1.

But fuzziness in the concept of openness of a fuzzy subset is absent in the above
Chang’s definition of fuzzy topology. So for fuzzifying the openness of a fuzzy subset,
some authors [3, 5, 6] gave other definitions of fuzzy topology.
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DEFINITION 2.1 (see [3, 7, 8]). A fuzzy topology on X is a map 7 : IX — I which
satisfies the following properties:

1) O =91) =1,

(2) T Ap2) =T () AT (U2),

) TNV i) = AT ().
The pair (X, 7) is called a fuzzy topological space.

DEFINITION 2.2 (see [3]). A family of closed sets in X is a map % : IX — I satisfying
the following properties:

(1) FO) =F1) =1,

(2) F(urVp2) = F(u) AF(U2),

) F(Api) = NF ().

Let J be a fuzzy topology on X and %4 : IX — I a map defined by F4(u) = T (u°).
Then g is a family of closed sets in X. Also, let % be a family of closed sets in X and
T4 : IX — I amap defined by T4 (u) = F(uc). Then I is a fuzzy topology on X.

The notions of fuzzy semiopen, semiclosed sets and the weaker forms of fuzzy
continuity which are related to our discussion, can be found in [1, 9].

DEFINITION 2.3 (see [4]). Let (X,9J) be a fuzzy topological space. For each r € I
and for each u € IX, the fuzzy r-closure is defined by

dp,r)=N{pel* lu=p, Fz(p) =7} (2.1)

From now on, for » € Iy we will call u a fuzzy r-open set of X if I (u) = r, u a fuzzy
v-closed set of X if F(u) > r. Note that u is fuzzy r-closed if and only if y = cl(u,r).

Let (X,J) be a fuzzy topological space. For an v-cut 7, = {u € IX | I (u) = v}, it is
obvious that (X,J,) is a Chang’s fuzzy topological space for all € I.

3. Fuzzy r-interior. Now, we are going to define the fuzzy interior operator in
(X,9).

DEFINITION 3.1. Let (X, ) be a fuzzy topological space. For each u € IX and each
v € Iy, the fuzzy v-interior of u is defined as follows:

int(u,7) =\/{p eI* lu=p, T(p) =7} 3.1)
The operator int: I* x Iy — I¥ is called the fuzzy interior operator in (X,7).

Obviously, int(u,7) is the greatest fuzzy r-open set which is contained in y and
int(u,r) = u for any fuzzy r-open set u. Moreover, we have the following results.

THEOREM 3.2. Let (X,J) be a fuzzy topological space andint : I*X x Iy — IX the fuzzy
interior operator in (X,J). Then for u,p € IX andr,s € I,

(1) int(0,7) =0, int(1,7) =1,

(2) int(p,7) <y,

(3) int(u,r) =int(u,s) ifr <s,

4) int(uAp,r)=int(u,r) Aint(p,r),

(5) int(int(u,r),r) =int(u,r),

6) ifr=\{sely|int(u,s) = u}, thenint(u,r) = .
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PROOF. (1), (2), and (5) are obvious. (3) Let ¥ < s. Then every fuzzy s-open set is
also fuzzy r-open. Hence we have

int(u,r) =\/{pel* lu=p, T(p) =7}

>\/{pelXluz=p, T(p)=s} (3.2)
=int(y,s).

4)Sinceurp<pand urp <p,int(uap,r) <int(u,r) andint(u A p,r) <int(p,r).
Thus int(u A p,v) <int(u,r) Aint(p,r). Conversely, it is clear that u A p > int(u,7r) A
int(p,r). Also,

I (int(u,r) Aint(p,r)) = T (int(u,r)) AT (int(p,r)) = Av =7. (3.3)

So, by the definition of fuzzy r-interior, int(u A p,v) > int(u,r) A int(p,7). Hence
int(u A p,r) =int(u,r) Aint(p,r).

(6) Note that I (u) > v if and only if int(u,r) = u. Suppose that int(u,r) # y. Then
J(u) < v and hence there is an « € I such that J(u) < & < r. Since v = \/{s € I |
int(u,s) = u}, there is an s € I such that J(u) < ¢ < s <7 and int(u,s) = u. Since
T (u) <s,int(u,s) # y. This is a contradiction. O

THEOREM 3.3. Let int: X x Iy — IX be a map satisfying (1), (2), (3), (4), (5), and (6)
of Theorem 3.2. Let J : I* — I be a map defined by

T (u) =\/{r € Iy | int(p, 7) = u}. (3.4)

Then J is a fuzzy topology on X such that int = intg.

PROOF. (i) By (1), 7(0) =1=9(1).

(ii) Suppose that T (uy A p2) < T(u1) A T (u2). Then there is an « € I such that
Ty Ap2) < X < I (u1) AT (u2). So, there are s1,s» € I such that & < s; < J(y;) and
int(u;,s;) = p; for each i = 1,2. Let s = 57 A s2. Then int(u;,s) = int(u;,s;) = y; and
hence int(u;,s) = y; for each i = 1,2. By (4), int(u; A y2,8) = int(uy,s) Aint(uz,s) =
Ui A p2. Thus

o> T (g Au2) =\/{relo l[int (L A, 7) =i A2} =S =851 AS2 > K. (3.5)

This is a contradiction. Therefore J (u; A ) = T (u1) AT (u2).

(iii) Suppose T (\/ u;) < AT (u;). Then there is an o € I such that J(\/ ;) < « <
AT (u;). So for each i, there is an s; € I such that & < 5; < J(y;) and int(u;,s;) = y;.
Let s = As;. Then int(u;,s) > int(y;,s;) = y; and hence int(\/ y;,s) = int(u;,s) = y; for
each i. Thus int(\/ y;,s) = \/ y; and hence int(\/ u;,s) =\ ;. Hence

a>T(\Vpi)=zs=za (3.6)

This is a contradiction. Therefore I (\/ u;) = AT (u;).
Next we will show that int = inty. Note that for s <7,

int(u,r) = int (int(y,v),r) <int (int(y,r),s) <int(u,r). (3.7)
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So int(u,r) = int(int(u,r),s) for s <+ and int(u,r) < u. Thus
inty(u,r)=\/{pelXlp<u T(p) =7}
=\Vi]peXip<p \/{sehlint(p,s)=p} =7}

=\/{pel*|p=u, int(p,s)=p fors<r}
> int(u,7).

(3.8)

On the other hand, let p < u and int(p,s) = p for s < ». Then by (6), p = int(p,7r) <
int(u,r). Thus

intg (u,r) = \/ {pelX|p<up,int(p,s) =p for s <¥} <int(u,r). (3.9)
Therefore, inty (u,7) = int(u,r). Hence the theorem follows. O

Ifint: I*¥ x Iy — IX is a fuzzy interior operator on X, then for each » € Iy, int, : I¥ — ¥
defined by
int, (u) = int(u,r) (3.10)

is a Chang’s fuzzy interior operator on X.
Fuzzy v-interior is an extension of the Chang’s fuzzy interior.

THEOREM 3.4. An operatorint:IX xIy — IX is a fuzzy interior for the fuzzy topolog-
ical space (X,7) if and only if for any v € Iy, int, : IX — IX is a Chang’s fuzzy interior
for the Chang’s fuzzy topological space (X, T ).

PROOF. (=). This direction (=) is obvious.

(). (1), (2), (4), and (5) are obvious.

(3)Letr <s.ThenJ, 2 Iy and henceint(u,r) =int, (u)=V{pelX |p<u, peT,}=
VipelX | p<pu, ped}=int(u) =int(y,s).

(6) Suppose that int(u,7) # u. Then int, (u) = int(u,r) # u. So u ¢ I, and hence
J(u) < r.Thus thereisan eI suchthatJ (u) <x<r.Sincer =\/{sely | int(u,s)=pu},
thereisans € Iy suchthat 7 (u) < ¢ < s <r andint(u,s) = intg(u) = p. Since I (u) < s,
u ¢ I, and hence intg (p) # p. It is a contradiction. O

For a family {u;};cr of fuzzy sets in a fuzzy topological space X and v € Iy, \/ cl(u;,7)
< cl(Vuy,7), and the equality holds when T is a finite set. Similarly Aint(u;,r) >
int(Aupi,v) and Aint(u;,v) =int(A p;,v) for a finite set I'.

THEOREM 3.5. For a fuzzy set u in a fuzzy topological space X and v € I,
(1) int(p, 7)€ = cl(u,7).
(2) cl(p,¥)¢ =int(uc,r).

PROOF.
int(p,v)° = (\/{p elp=u J(p) = r})c
= N\{pc el* | p° = u, F5(p) 27} (3.11)
=cl(u,7).

Similarly we can show (2). O
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4. Fuzzy r-semiopen sets

DEFINITION 4.1. Let u be a fuzzy setin a fuzzy topological space (X,7) and v € Ij.
Then p is said to be
(1) fuzzyr-semiopen if there is a fuzzy r-open set p in X such that p <y < cl(p,r),
(2) fuzzy r-semiclosed if there is a fuzzy 7r-closed set p in X such that int(p,7) <
u<p.

THEOREM 4.2. Let u be a fuzzy set in a fuzzy topological space (X,T) and v € I.
Then the following statements are equivalent:

(1) u is a fuzzy r-semiopen set.

(2) uc is a fuzzy r-semiclosed set.

3) cl(int(u,r),r) = u.

(4) int(cl(uc,r),r) < uc.

PROOF. (1)<(2). The proof follows from Theorem 3.5.

(1)=>(3). Let u be a fuzzy r-semiopen set of X. Then there is a fuzzy r-open set
p in X such that p < u < cl(p,r). Since J(p) = r and u = p, int(u,) > p. Hence
cl(int(u,r),r) = cl(p,r) = .

(3)=(1). Let cl(int(u,r),r) = u and take p = int(u, ). Since J (int(u,7)) =7, p is a
fuzzy r-open set. Also, p = int(u,r) < u < cl(int(u,7),r) = cl(p,r). Hence u is a fuzzy
r-semiopen set.

(2)<(4). The proof is similar to the proof of (1)< (3). O

THEOREM 4.3. (1) Any union of fuzzy v-semiopen sets is fuzzy v -semiopen.
(2) Any intersection of fuzzy v -semiclosed sets is fuzzy v -semiclosed.

PROOF. (1)Let {u;} be a collection of fuzzy r-semiopen sets. Then for each i, there
is a fuzzy r-open set p; such that p; < u; < cl(p;,7). Since T (\/ p;) = AT (pi) =7, \ pi
is a fuzzy r-open set. Moreover,

Vi <\Vui<\cpir)<d(\pir). 4.1)

Hence \/ u; is a fuzzy r-semiopen set.
(2) It follows from (1) using Theorem 4.2. O

DEFINITION 4.4. Let (X,7) be a fuzzy topological space. For each » € I and for
each u € I%, the fuzzy r-semiclosure is defined by

scl(u,r) = /\ {peI*|u<p, pisfuzzy r-semiclosed} (4.2)
and the fuzzy r-semi-interior is defined by
sint(u,r) = \/ {pel*|u=p, pisfuzzy r-semiopen}. (4.3)

Obviously scl(u,r) is the smallest fuzzy »-semiclosed set which contains y and
sint(u,7) is the greatest fuzzy r-semiopen set which is contained in u. Also, scl(u,7)=u
for any fuzzy r-semiclosed set u and sint(u,r) = u for any fuzzy r-semiopen set p.
Moreover, we have

int(u,r) <sint(u,r) < u < scl(u,r) <cl(u,r). (4.4)
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Also, we have the following results:
(1) scl(0,7) =0, scl(1,r) =1, sint(0,r) = 0, sint(1,7) = 1.
(2) scl(u,r) = u, sint(u,r) < p.
(3) scl(u v p,r) = scl(u,r) vscl(p,r), sint(u A p,r) < sint(u,r) Asint(p,r).
(4) scl(scl(u,r),r) = scl(u,r), sint(sint(u,r),r) = sint(u,r).

REMARK 4.5. It is obvious that every fuzzy r-open (r-closed) set is fuzzy v-
semiopen (r-semiclosed). The converse does not hold as in Example 4.6. It also shows
that the intersection (union) of any two fuzzy r-semiopen (-semiclosed) sets need
not be fuzzy v-semiopen (-semiclosed). Even the intersection (union) of a fuzzy r-
semiopen (r-semiclosed) set with a fuzzy 7-open (r-closed) set may fail to be fuzzy
r-semiopen (v-semiclosed).

EXAMPLE 4.6. Let X =1 and pq, ue and p3 be fuzzy sets of X defined as

0, ifOsxs%,
M1 (x) = 1
2x—1, 1f§sxsl;
1
1 if0<x <=
s i 0<x<4,
_ el 1
U2 (x) =1 —-4x+2, 1fzsxs§, 4.5)
1
0 i 2<x<
. 1
0, 1f0sxsg,
pz(x) = 1 1
§(4x—1), 1fzsxsl.
Define J : IX — I by
1 ifu=0,1,
1 .
T () = > if p=p,p2, 1V 2, (4.6)
0 otherwise.

Then clearly I is a fuzzy topology on X.

(1) Note that cl(u;,1/2) = pS. Since py < p3 < cl(py,1/2) and py is a fuzzy 1/2-
open set, u3 is a fuzzy 1/2-semiopen set. But u3 is not a fuzzy 1/2-open set, because
I (u3) =0.

(2) In view of Theorem 4.2, p§ is a fuzzy 1/2-semiclosed set which is not a fuzzy
1/2-closed set.

(3) Note that p» is fuzzy 1/2-open and hence fuzzy 1/2-semiopen. Since 0 is the
only fuzzy 1/2-open set contained in p» A p3 and cl(0,1/2) = 0, u» A u3 is not a fuzzy
1/2-semiopen set.

(4) Clearly p$ and p§ are fuzzy 1/2-semiclosed sets, but ps v u§ = (U2 A p3)€ is not
a fuzzy 1/2-semiclosed set.
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The next two theorems show the relation between r-semiopenness and semiopen-
ness.

THEOREM 4.7. Let u be a fuzzy set in a fuzzy topological space (X,7) and v € Iy.
Then u is fuzzy v-semiopen (v -semiclosed) in (X,9) if and only if u is fuzzy semiopen
(semiclosed) in (X,T,).

PROOF. The proof is straightforward. O

Let (X,T) be a Chang’s fuzzy topological space and » € Ij. Recall [3] that a fuzzy
topology T" : IX — I is defined by

1 ifu=0,1,
T" () =4r ifpueT-{0,1}, 4.7)
0 otherwise.

THEOREM 4.8. Let u be a fuzzy set in a Chang'’s fuzzy topological space (X,T) and
v € Iy. Then u is fuzzy semiopen (semiclosed) in (X,T) if and only if u is fuzzy r-
semiopen (v -semiclosed) in (X, T").

PROOF. The proof is straightforward. O

5. Fuzzy 7-continuous and fuzzy 7-semicontinuous maps

DEFINITION 5.1. Let f: (X,9) — (Y,) be a map from a fuzzy topological space X
to another fuzzy topological space Y and v € Iy. Then f is called

(1) a fuzzy r-continuous map if f~1(u) is a fuzzy r-open set of X for each fuzzy
r-open set u of Y, or equivalently, f~!(u) is a fuzzy r-closed set of X for each
fuzzy v-closed set y of Y,

(2) a fuzzy r-open map if f(u) is a fuzzy r-open set of Y for each fuzzy r-open
set u of X,

(3) afuzzyv-closed mapif f(u)is afuzzyr-closed set of Y for each fuzzy r-closed
set u of X,

(4) a fuzzy r-homeomorphism if f is bijective, fuzzy »-continuous and fuzzy -
open.

THEOREM 5.2. Let f : (X,9) — (Y,U) be a map and v € Iy. Then the following
statements are equivalent:

(1) f is a fuzzy v -continuous map.

2) f(cl(p,r)) <cl(f(p),r) for each fuzzy set p of X.

3) cl(f~1(u),r) < f~1(cl(u,r)) for each fuzzy set y of Y.

4) f~1(nt(u,r)) <int(f~1(u),r) for each fuzzy set u of Y.

PROOF. (1)=(2). Let f be fuzzy r-continuous and p any fuzzy set of X. Since
cd(f(p),r) is fuzzy r-closed of Y, f~1(cl(f(p),r)) is fuzzy r-closed of X. Thus

cd(p, ) <c(f ' f(p),r) <cd(f 1 (A(f(p),r)),7) = f 1 (cl(f(p)7)).  (5.1)

Hence

f(cp,m) < ff 1 (f(p),r)) <cl(f(p),7). (5.2)



60 S. J. LEE AND E. P. LEE

(2)=(3). Let u be any fuzzy set of Y. By (2),

S w),r)) <d (Ff 1), r) < cu,r). (5.3)

Thus
A(f ), ) < (A ), r)) < (). (5.4)

(3)=(4). Let u be any fuzzy set of Y. Then u¢ is a fuzzy set of Y. By (3),
A (fH ) = (f 71 (u),r) < fH (el (1, 7). (5.5)
By Theorem 3.5,
FH(int(, 1)) = £ (A (ue, 7)) <d (fF () =int(f (), 7). (5.6)
(4)=(1). Let u be any fuzzy r-open set of Y. Then int(u,v) = u. By (4),
SN = £ (int(u, ) <int (7 (), 7) < f7H ). (5.7)

So f~1(u) = int(f~1(u),r) and hence f~1(u) is fuzzy r-open of X. Thus f is fuzzy
r-continuous. O

THEOREM 5.3. Let (X,9), (Y,U) and (Z,V) be three fuzzy topological spaces and
vel.If f:(X,9) - (Y, W) and g : (Y,W) — (Z,V) are fuzzy v-continuous (v-open,
v-closed) maps, then soisgo f : (X,7) — (Z,V).

PROOF. The proof is straightforward. O

DEFINITION 5.4. Let f:(X,9) — (Y,) be amap from a fuzzy topological space X
to another fuzzy topological space Y and v € Iy. Then f is called

(1) afuzzyr-semicontinuous map if f~1(u) is a fuzzy r-semiopen set of X for each
fuzzy r-open set u of Y, or equivalently, f~!(u) is a fuzzy r-semiclosed set of
X for each fuzzy r-closed set u of Y,

(2) a fuzzy r-semiopen map if f(u) is a fuzzy v-semiopen set of Y for each fuzzy
r-open set u of X,

(3) a fuzzy r-semiclosed map if f(u) is a fuzzy r-semiclosed set of Y for each
fuzzy r-closed set u of X.

THEOREM 5.5. Let f: (X,9) — (Y,U) be a map and v € Iy. Then the following
statements are equivalent:

(1) f is a fuzzy v -semicontinuous map.

(2) f(scl(p,r)) <cl(f(p),r) for each fuzzy set p of X.

(3) scl(f~t(w),r) < f~H(cl(u,7)) for each fuzzy set u of Y.

4) f~1@nt(p,r)) < sint(f~1(u),r) for each fuzzy set u of Y.

PROOF. The proof is similar to Theorem 5.2. O

REMARK 5.6. Let f:(X,9) — (Y,qU) and g : (Y,U) — (Z,V) be maps and r € I,.
Then the following statements are true.
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(1) If f is fuzzy r-semicontinuous and g is fuzzy r-continuous then go f is fuzzy
r-semicontinuous.

(2) If f is fuzzy r-open and g is fuzzy r-semiopen then go f is fuzzy r-semiopen.

(3)If fis fuzzy r-closed and g is fuzzy r-semiclosed then go f is fuzzy r-semiclosed.

REMARK 5.7. In view of Remark 4.5, a fuzzy 7-continuous (r-open, v-closed, resp.)
map is also a fuzzy r-semicontinuous (¥-semiopen, v-semiclosed, resp.) map for each
v € Iy. The converse does not hold as in the following example.

EXAMPLE 5.8. (1) A fuzzy r-semicontinuous map need not be a fuzzy »-continuous
map.

Let (X,9) be a fuzzy topological space as described in Example 4.6 and let
f:(X,9) - (X,9) be defined by f(x) = x/2. Note that f~1(0) = 0, f~1(I) = 1,
Sf V) =0and f~1(up) = u§ = £~ (u1 V). Since cl(up,1/2) = p§, u is afuzzy 1/2-
semiopen set and hence f is a fuzzy 1/2-semicontinuous map. On the other hand,
T(f () =T (u$) =0 < 1/2, and hence f~!(up) is not a fuzzy 1/2-open set. Thus
f is not a fuzzy 1/2-continuous map.

(2) A fuzzy v-semiopen map need not be a fuzzy r-open map.

Let (X,7) be as in (1). Define 9, : IX — I by

1 ifu=0,1,
1 .

gl (u) = E if H = U3, (58)
0 otherwise.

Consider the map f: (X,J1) — (X,9) defined by f(x) = x. Then f(0) =0, f(I) =1
and f(u3) = us are fuzzy 1/2-semiopen sets of (X,J) and hence f is a fuzzy 1/2-
semiopen map. On the other hand, J(f(u3)) = 9(u3) =0 < 1/2, and hence f(u3) is
not a fuzzy 1/2-open set. Thus f is not a fuzzy 1/2-open map.
(3) A fuzzy r-open (hence r-semiopen) map need not be a fuzzy v-semiclosed map.
Let X =1 and u, p, and A be fuzzy sets of X defined as

ux) =1-x;
-2x+1 1f0§xs%,
p(x) = 1
0 if —<x<1;
Hp=x (5.9)
1 ifOsxs%,
Alx) = 1
0 if -<x<l1.
2
Define 7, :1X = T and 7, : I*¥ — I by
1 ifv=0,1, 1 ifv=0,1,a,
1 1
Ti(v) = 5 if v =u, To(v) = 5 if v=p, (5.10)
0 otherwise; 0 otherwise.
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Then clearly 7, and 7, are fuzzy topologies on X. Consider the map f: (X,7,) —
(X,9>) defined by f(x) = x/2. It is easy to see that f(0) =0, f(u) = p and f(I) = A.
Thus f is a fuzzy 1/2-open map and hence a fuzzy 1/2-semiopen map. On the other
hand, because the only fuzzy 1/2-closed set containing A is 1, A = f(1) is not a fuzzy
1/2-semiclosed set of (X,J>). Thus f is not a fuzzy 1/2-semiclosed map.

(4) A fuzzy r-closed (hence r-semiclosed) map need not be a fuzzy r-semiopen
mabp.

Let X =1 and u, p, and A be fuzzy sets of X defined as

u(x) =1-x;
—2x+1 ifOsxs%,
p(x) = 1
1 if = <x<1;
2 (5.11)
. 1
0 1f0sxs§,
Alx) = 1
1 if = <1.
i 2<x<
Define 7, :1X = T and 7, : I*¥ — I by
1 ifv=0,1, 1 ifv=0,1,A,
Ti(v) = % if v=u, Ta(v) = % if v=p, (5.12)
0 otherwise; 0 otherwise.

Then clearly 7, and 9, are fuzzy topologies on X. Consider the map f: (X,J,) —
(X,9>) defined by f(x) = x/2.1tis easy to see that £ (0) = 0, f (u¢) = p€ and f(I) = A°.
Thus fis afuzzy 1/2-closed map and hence a fuzzy 1/2-semiclosed map. On the other
hand, the only fuzzy 1/2-open set contained in A¢ is 0, hence A¢ = f(I) is not a fuzzy
1/2-semiopen set of (X,7,). Thus f is not a fuzzy 1/2-semiopen mabp.

The next two theorems show that a fuzzy continuous (open, closed, semicontin-
uous, semiopen, semiclosed, resp.) map is a special case of a fuzzy r-continuous
(r-open, r-closed, ¥-semicontinuous, ¥-semiopen, ¥-semiclosed, resp.) map.

THEOREM 5.9. Let f:(X,T) — (Y,U) be a map from a fuzzy topological space X to
another fuzzy topological space Y and v € Iy. Then f is fuzzy v-continuous (r -open,
v -closed, v -semicontinuous, v -semiopen, v -semiclosed, resp.) if and only if f : (X,T,) —
(Y,9,) is fuzzy continuous (open, closed, semicontinuous, semiopen, semiclosed, resp.).

PROOF. The proof is straightforward. O

THEOREM 5.10. Let f : (X,T) — (Y,U) be a map from a Chang’s fuzzy topolog-
ical space X to another Chang’s fuzzy topological space Y and v € Iy. Then f is
fuzzy continuous (open, closed, semicontinuous, semiopen, semiclosed, resp.) if and
only if f:(X,T") — (Y,U") is fuzzy v-continuous (r -open, v -closed, v -semicontinuous,
v -semiopen, v -semiclosed, resp.).

PROOF. The proof is straightforward. O
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