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LINEAR RIGHT IDEAL NEARRINGS
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Abstract. We determine, up to isomorphism, all those topological nearrings �n whose
additive groups are the n-dimensional Euclidean groups, n> 1, and which contain n one-
dimensional linear subspaces {Ji}ni=1 which are also right ideals of the nearring satisfying
several additional properties. Specifically, for each w ∈ �n, we require that there exist
wi ∈ Ji, 1 ≤ i ≤ n, such that w =w1+w2+···+wn and multiplication on the left of w
yields the same result as multiplication by the same element on the left of wn. That is,
vw = vwn for each v ∈�n.

2000 Mathematics Subject Classification. 16Y30, 54H13.

1. Introduction. A topological nearring � here is a triplet (N,+,·) where (N,+) is

a (not necessarily commutative) topological group, (N,·) is a topological semigroup

and the following right distributive law holds:

(u+v)w =uw+vw ∀u,v,w ∈N. (1.1)

In particular, our nearrings are right nearrings. For information about abstract near-

rings, one should consult [2, 4, 5]. Ann-dimensional Euclidean nearring is any topolog-

ical nearring whose additive group is then-dimensional Euclidean groupRn. The main

result of this paper is in Section 2 where we determine, up to isomorphism, for n> 1,

all n-dimensional Euclidean nearrings �n which contain n distinct one-dimensional

linear subspaces {Ji}ni=1 which are also right ideals of �n such that for each w ∈�n,

there existwi ∈ Ji, 1≤ i≤n, such thatw =w1+w2+···+wn and vw = vwn for all

v ∈ �n. As a corollary to the latter result, we obtain the fact that a two-dimensional

Euclidean nearring �2 has two distinct nonzero proper closed, connected right ideals

J1 and J2 such that for every w ∈ �2, there exist w1 ∈ J1 and w2 ∈ J2 such that

w =w1+w2 and vw = vw2 for all v ∈ �2 if and only if �2 is isomorphic to one of

the seven two-dimensional Euclidean nearrings whose multiplications follow:

(1) vw = v for all v,w ∈�2,

(2) vw = 0 for all v,w ∈�2,

(3) vw = (v1,0) for all v,w ∈�2,

(4) vw = (0,v2) for all v,w ∈�2,

(5) vw = (v1|w2|r ,v2w2)

(6) vw =



(
v1wr

2 ,v2w2
)

for w2 ≥ 0,
(−v1

∣∣w2

∣∣r ,v2w2
)

for w2 < 0,
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(7) vw =


(
v1
(
aw2

)r ,av2w2
)

for w2 ≥ 0,(
v1
(
bw2

)r ,bv2w2
)

for w2 > 0,
where r > 0 in each case, a≤ 0, b ≥ 0, and a2+b2 ≠ 0.

2. The main theorem. An elementw ∈Rn will be represented as a row vector, that

is,w = (w1,w2, . . . ,wn) and it will be assumed throughout the remainder of the paper

that n > 1. For wi ∈ Ji where Ji is any subset of �n, we have wi = (wi
1,w

i
2, . . . ,wi

n).
Furthermore, for all v,w ∈�n, the ith coordinate of the product vw will be denoted

by (vw)i. In general, the function which maps all of a space X into a single point x
will be denoted by 〈x〉. Its domain will be apparent from context. Finally, for r > 0,

we define 0r = 0.

Definition 2.1. A linear right ideal nearring is any n-dimensional Euclidean near-

ring which contains n distinct right ideals {Ji}ni=1, each of which is a one-dimensional

linear subspace of Rn, such that for all w ∈ �n there exist wi ∈ Ji, 1 ≤ i ≤ n, such

that w =w1+w2+···+wn and vw = vwn for all v ∈�n.

Theorem 2.2. An n-dimensional Euclidean nearring �n is a linear right ideal near-

ring if and only if �n is isomorphic to one of the four types of nearrings whose multi-

plications follow:

(vw)i = 0 or (vw)i = vi for 1≤ i≤n, (2.1)

(vw)i = vi
∣∣wn

∣∣ri for i≠n, (vw)n = vnwn, (2.2)

where ri > 0 for 1≤ i < n,

(vw)i =


vi
(
wn
)ri for wn ≥ 0,

−vi
∣∣wn

∣∣ri for wn < 0,
(2.3)

for i≠n and (vw)n = vnwn where ri > 0,

(vw)i =


vi
(
awn

)ri for wn ≤ 0, i≠n,

vi
(
bwn

)ri for wn > 0, i≠n,

(vw)n =


avnwn for wn ≤ 0,

bvnwn for wn > 0,

(2.4)

where ri > 0, a≤ 0, b ≥ 0, and a2+b2 ≠ 0.

It is convenient to prove Theorem 2.2 via a sequence of lemmas. Recall that the

constant function which maps all of Rn into the real number r is denoted by 〈r〉 and

let Ki = {v ∈�n : vj = 0 for j ≠ i}.

Lemma 2.3. The nearring �n is an n-dimensional Euclidean nearring such that each

Ki, 1≤ i≤n, is a right ideal of �n and vw = v(0,0, . . . ,0,wn) for all v,w ∈�n if and

only if there exist n continuous selfmaps {fi}ni=1 of the real numbers R such that

fi
(
xfn(y)

)= fi(x)fi(y) for 1≤ i≤n, (2.5)
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and the multiplication on �n is given by

(vw)i = vifi
(
wn
)

for 1≤ i≤n. (2.6)

Proof. Suppose first that there exist n continuous selfmaps of R satisfying (2.5)

and the multiplication in �n is given by (2.6). We must show that multiplication is

associative and that each Ki is a right ideal of �n. For 1≤ i≤n, we have
(
(uv)w

)
i = (uv)ifi

(
wn
)=uifi(vn)fi(wn

)
=uifi

(
vnfi

(
wn
))=uifi((vw)n)= (u(vw))i (2.7)

and we see that multiplication is associative. It follows immediately from (2.6) that

each Ki is a right ideal of �n.

Suppose, conversely, that �n is an n-dimensional Euclidean nearring such that each

Ki, 1 ≤ i ≤ n, is a right ideal of �n and vw = v(0,0, . . . ,0,wn) for all v,w ∈ �n. We

must show that there exist n continuous selfmaps {fi}ni=1 of the real numbers R
such that (2.5) and (2.6) are satisfied. According to [3, Theorem 2.10] there exist n2

continuous functions {gij}, 1≤ i, j ≤n, from Rn to R such that

(vw)i =
n∑
j=1

vjgij(w) ∀v,w ∈Rn. (2.8)

Let ei be a vector such that eij = 0 for j ≠ i and eii = 1. From (2.8), we get

(
ekw

)
i =

n∑
j=1

ekjgij(w)= gik(w). (2.9)

Since Jk is a right ideal of �n, we have ekw ∈ Jk for all w ∈ �n. It follows from this

and (2.9) that gik = 〈0〉 for k≠ i and this, together with (2.8), implies that

(vw)i = vigii(w) ∀v,w ∈Rn, 1≤ i≤n. (2.10)

For 1≤ i≤n, define a continuous selfmap fi by fi(x)= gii(0,0, . . . ,0,x). Since vw =
v(0,0, . . . ,0,wn), it follows from (2.10) that

(vw)i = v
(
0,0, . . . ,0,wn

)= vigii(0,0, . . . ,0,wn
)= vifi(wn

)
(2.11)

for 1 ≤ i ≤ n and we see that the multiplication on �n is, indeed, given by (2.6). It

follows from (2.11) that
(
u(vw)

)
i =uifi

(
(vw)n

)=uifi(vnfn(wn
))
,(

(uv)w
)
i = (uv)ifi

(
wn
)=uifi(vn)fi(wn

)
,

(2.12)

for all u,v,w ∈ Rn. Let ui = 1, vn = x, and wn = y in (2.12) and, since u(vw) =
(uv)w, conclude that

fi
(
xfn(y)

)= fi(x)fi(y) ∀x,y ∈R, 1≤ i≤n, (2.13)

and we see that (2.5) is satisfied. This concludes the proof.
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Our next task is to characterize those functions which satisfy (2.5). Take i = n in

(2.5) and get fn(x,fn(y))= fn(x)fn(y) for all x,y ∈R which implies that

fn(rx)= rfn(x) ∀x ∈R, ∀r ∈ Ran
(
fn
)
, (2.14)

where Ran(fn) denotes the range of fn. Such a function was referred to in [3] as a

semilinear map and it was shown in [3, Theorem 3.3] that either fn = 〈0〉, fn = 〈1〉, or

Ran(fn)=R, or Ran(fn)=R+ where R+ denotes the nonnegative reals.

Lemma 2.4. Suppose fn = 〈0〉. Then (2.5) is satisfied if and only if either fi = 〈0〉 or

fi = 〈1〉 for 1≤ i < n.

Proof. Suppose (2.5) is satisfied. Then fi(x)fi(y) = fi(0) for all x,y ∈ R. Thus

(fi(0))2 = fi(0) which means that either fi(0)= 0 or fi(0)= 1. Since (fi(x))2 = fi(0)
for all x ∈R, it readily follows that either fi = 〈0〉 or fi = 〈1〉 for 1≤ i≤n.

One easily verifies that if either fi = 〈0〉 or fi = 〈1〉 for 1 ≤ i < n, then (2.5) is

satisfied and, with this observation, the proof is complete.

The proof of Lemma 2.5 is similar to the proof of Lemma 2.4 and, for that reason,

is omitted.

Lemma 2.5. Suppose fn = 〈1〉. Then (2.5) is satisfied if and only if either fi = 〈0〉 or

fi = 〈1〉 for 1≤ i < n.

Lemma 2.6. Let h be a continuous selfmap of R and suppose that

h(x+y+b)= h(x)+h(y) ∀x,y ∈R, (2.15)

where b is any fixed real number. Then there exists a real number r such that h(x)=
rx+rb for all x ∈R.

Proof. We have h(x+z+b)= h(x)+h(z) for all x,z ∈R. Let s =−b and z =y+s
and the latter transforms into

h(x+y)= h(x)+h(y+s) ∀x,y ∈R. (2.16)

Let h(2s)= t and it then follows from (2.16) that h(x+s)= h(x)+t or, equivalently,

h(y+s)= h(y)+t for all y ∈R. We can now rewrite (2.16) as

h(x+y)= h(x)+h(y)+t ∀x,y ∈R. (2.17)

One uses induction on (2.17) to show that

h(mx)=mh(x)+(m−1)t. (2.18)

For any nonzero integer n, let x = 1/n in (2.18) and get

h
(
m
n

)
=mh

(
1
n

)
+(m−1)t. (2.19)

Let m= 1 and h(1)= a in (2.19) and get

h
(

1
n

)
= a+(1−n)t

n
. (2.20)
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From (2.19) and (2.20), we get

h
(
m
n

)
= m
n
(
a+(1−n)t)= m

n
(a+t)−t. (2.21)

Let r = a+ t and conclude from (2.21) that h(x) = rx− t for all rational numbers.

Since h is continuous, we conclude that

h(x)= rx−t ∀x ∈R. (2.22)

We use the latter fact and (2.15) to get

rx+ry+rb−t = h(x+y+b)= h(x)+h(y)= rx−t+ry−t (2.23)

for all x,y ∈R which implies that rb =−t. It follows from this and (2.22) that h(x)=
rx+rb for all x ∈R and the proof is complete.

Recall that for any positive number r , we define 0r = 0.

Lemma 2.7. Let a be a nonzero real number and let h be a nonconstant continuous

selfmap of R. If a< 0 and

h(axy)= h(x)h(y) ∀x ∈R, ∀y ≤ 0, (2.24)

then there exists a positive real number r such that

h(x)= (ax)r ∀x ≤ 0. (2.25)

If a> 0 and

h(axy)= h(x)h(y) ∀x ∈R, ∀y ≥ 0, (2.26)

then there exists a positive real number r such that

h(x)= (ax)r , ∀x ≥ 0. (2.27)

Proof. Suppose first that a< 0 and h satisfies (2.24). Suppose further that h(y)=
0 for some y < 0. Then (2.24) implies that h(axy) = 0 for all x ∈ R which results

in the contradiction that h = 〈0〉. Consequently, h(y) ≠ 0 whenever y < 0. It also

follows from (2.24) that h(ax2)= (h(x))2 for all x < 0. Since every negative number

is of the form ax2 for appropriate x, we conclude that h(−∞,0) ⊆ (0,∞). Define a

homeomorphismϕ fromR onto (−∞,0) byϕ(x)=−ex and define a homeomorphism

ψ from (0,∞) onto R by ψ(x) = lnx and let α = ψ ◦h◦ϕ. In view of our previous

observations, α is a continuous selfmap of R. Let b = ln(−a). Then

α(x+y+b)=ψ(h(−ex+y+b))=ψ(h(−eb(−ex)(−ey)))
=ψ(h(a(−ex)(−ey)))=ψ(h(−ex)h(−ey))
=ψ(h(−ex))+ψ(h(−ey))=α(x)+α(y)

(2.28)

for all x,y ∈ R and it follows from Lemma 2.5 that α(x) = rx+rb for some r ∈ R.

Now, h = ψ−1 ◦αϕ−1 and ψ−1(x) = ex while ϕ−1(x) = ln(−x). Let s = erb and for

x < 0, we have

h(x)=ψ−1 ◦α(ln(−x))=ψ−1(r ln(−x)+rb)

=ψ−1(r ln|x|+rb)= erb(eln|x|)r = s|x|r . (2.29)
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Evidently s > 0. Suppose r < 0. Then

lim
x→0−

h(x)= lim
x→0−

s|x|r =∞, (2.30)

which contradicts the continuity of h at zero. Thus, r ≥ 0. Suppose r = 0. Then

h(x)= s for allx ≤ 0. Letx =y =−1 in (2.24) and get s = h(a(−1)(−1)
)= (h(−1)

)2 =
s2. This means that s = 1 since s > 0 and we now have h(x) = 1 for all x ≤ 0. Next,

let x = 1 and let y < 0 in (2.24). Then h(ay) = h(a·1·y) = h(1)h(y) = h(1). Since

every positive number is of the form ay for some negative number y , we conclude

that h(x) = h(1) for all x > 0. Thus, we have h(x) = 1 for all x ∈ R but this contra-

dicts the fact that h is a nonconstant map. Hence, we must conclude that r ≠ 0 which

means r > 0. Take x =y =−1 in (2.24) and use (2.29) to get

s|a|r = h(a)= h(a(−1)(−1)
)= (h(−1)

)2 = s2, (2.31)

which implies that s = |a|r . It follows from this fact and (2.29) that (2.25) holds.

The case where a > 0 is quite similar to the previous case so we will be content

with making a few remarks and omitting most of the details. Suppose h(x) = 0 for

somex > 0. Then, for ally > 0, we haveh(axy)= h(x)h(y)= 0 and we conclude that

h(x)= 0 for all x ≥ 0. Next, let x < 0 and we have 0= h(ax2)= h(x)h(x). This means

that h(x) = 0 for all x which contradicts the fact that h is nonconstant. Therefore,

h(x)≠ 0 for x > 0. Moreover, for any x > 0, (2.26) assures that h(ax2)= (h(x))2 and

it follows that h(0,∞)⊆ h(0,∞). This time, define a homeomorphism ϕ from R onto

(0,∞) by ϕ(x) = ex and a homeomorphism ψ from (0,∞) onto R by ψ(x) = lnx.

Again let α = ψ ◦h ◦ϕ and one easily verifies that α(x+y +b) = α(x)+α(y) for

all x,y ∈ R where b = lna. As before, it follows from Lemma 2.6 that ψ◦h◦ϕ(x) =
α(x) = rx+ rb for some r ∈ R. With a few minor modifications of the arguments

used in the previous case, one shows that the latter implies that (2.27) holds.

Lemma 2.8. Let a ≠ 0 and let h be a nonconstant continuous selfmap of R. Then h
satisfies the functional equation

h(axy)= h(x)h(y) ∀x,y ∈R (2.32)

if and only if there exists a positive number r such that either

h(x)= |ax|r ∀x ∈R, (2.33)

or

h(x)=


(ax)r for ax ≥ 0,
−|ax|r for ax < 0.

(2.34)

Proof. Consider first the case where a< 0. It follows from Lemma 2.7 that

h(x)= (ax)r ∀x ≤ 0. (2.35)

Next, letx > 0 andy = 1 in (2.32). Thenax < 0 and we appeal to (2.32) and (2.35) to get

(
a2x

)r = h(ax)= h(ax1)= h(x)h(1). (2.36)
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Now h(1) ≠ 0 since (a2x)r ≠ 0 whenever x ≠ 0 so we let p = (a2)r /h(1) and from

(2.36), we conclude that h(x) = pxr for x > 0. Take x = y = 1 in (2.32) and since

a< 0, we get

|a|2r = (a2)r = h(a)= h(a·1·1)= (h(1))2. (2.37)

It follows from (2.37) that either h(1)= |a|r or h(1)=−|a|r .

Case 1 (h(1) = |a|r ). Then p = (a2)r/h(1) = (|a|r )2/|a|r = |a|r and we conclude

that h(x) = pxr = |a|rxr = |ax|r for all x > 0. It follows from this and (2.35) that

h(x)= |ax|r for all x ∈R. That is, the function h is given by (2.33).

Case 2 (h(1) = −|a|r ). Then p = (a2)r /h(1) = (|a|r )2/−|a|r = −|a|r and we see

that h(x) = pxr = −|a|rxr = −|ax|r for x > 0. Since a < 0, it follows from this fact

and (2.35) that, in this case, the function h is given by (2.34) and this verifies the

lemma for the case where a< 0. The case where a> 0 is quite similar to the previous

case and for that reason we omit the details.

Lemma 2.9. Let a be a nonpositive real number and b a nonnegative real number

such that a2+b2 ≠ 0 and let h be a nonconstant continuous selfmap of R. Then

h(axy)= h(x)h(y) ∀x ∈R, y ≤ 0, (2.38)

h(bxy)= h(x)h(y) ∀x ∈R, y ≥ 0, (2.39)

if and only if there exists an r > 0 such that

h(x)=


(ax)r for x ≤ 0,

(bx)r for x ≥ 0.
(2.40)

Proof. Suppose that (2.38) and (2.39) are both satisfied. We first consider the case

where a≠ 0≠ b. It then follows immediately from Lemma 2.7 that there exist positive

real numbers r and s such that

h(x)=


(ax)r for x ≤ 0,

(bx)s for x ≥ 0.
(2.41)

Take x = 1 and y =−1 and it follows from (2.38) and (2.41) that

(−a)sbs = (−ab)s = f(−a)= f (a·1·(−1)
)= f(1)f (−1)= bs(−a)r (2.42)

which readily implies that (−a)s = (−a)r which, in turn, implies that r = s. Thus, h
is given by (2.40). It is a routine matter to check that if h is given by (2.40), then it

satisfies both (2.38) and (2.39) and we omit the details.

We next consider the case where h satisfies (2.38) and (2.39) and a= 0. Then b ≠ 0

and it follows from (2.39) and Lemma 2.7 that there exists a positive number r such

that h(x) = (bx)r for all x ≥ 0. It follows from (2.38) that h(0) = h(x)h(y) for all

x ∈ R and all y ≤ 0. Since h(0) = (h(0))2, we have either h(0) = 0 or h(0) = 1.

Suppose h(0) = 1. Then h(x)h(y) = 1 for all x ∈ R and y ≤ 0. Take y = 0 and

conclude thath(x)= 1 for allx ∈R. But this contradicts the fact thath is nonconstant.
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Consequently, we must have h(0) = 0 which means h(x)h(y) = 0 for all x ∈ R and

all y ≤ 0. Let x = 1 and get brh(y) = 0 for all y ≤ 0. Thus, h(y) = 0 for all y ≤ 0

and we have shown that f is given by (2.40) in this case also. It is immediate that if h
satisfies (2.40) and a= 0, then h satisfies both (2.38) and (2.39). The case where b = 0

is very similar to the preceding case and we say no more about it.

Theorem 2.10. The functions fi (1≤ i≤n) satisfy (2.5) if and only if

fi = 〈0〉 or fi = 〈1〉 for 1≤ i≤n, (2.43)

or there exist a nonzero number a and positive numbers ri (1 ≤ i < n) such that

fn(x)= ax and either fi(x)= |ax|ri or

fi(x)=


(ax)ri for ax ≥ 0,

−|ax|ri for ax < 0,
(2.44)

or there exist an a≤ 0, a b ≥ 0 with a2+b2 ≠ 0 and ri > 0 (1≤ i < n) such that

fn(x)=


ax for x ≤ 0,

bx for x > 0,
(2.45)

fi(x)=


(ax)ri for x ≤ 0,

(bx)ri for x > 0,
(2.46)

for 1≤ i < n.

Proof. It is immediate that the functions {fi}ni=1 satisfy (2.5) if (2.43) holds and

it is a routine matter to show that if fn(x) = ax for some a ≠ 0 and there exist

n−1 positive numbers {ri}n−1
i=1 such that either fi(x)= |ax|ri for 1≤ i < n or fi(x) is

given by (2.44), then the functions {fi}ni=1 satisfy (2.5). Similarly, it follows in a routine

manner that if fn and fi (1 ≤ i < n) are given by (2.45) and (2.46), respectively, then

the functions {fi}ni=1 again satisfy (2.5).

Suppose, conversely, that the functions {fi}ni=1 satisfy (2.5). We must show that

they must be one of the families described in the statement of the theorem. First

of all, we observed following the proof of Lemma 2.3 that by taking i = n in (2.5),

we get fn(rx) = rfn(x) for all x ∈ R and all r ∈ Ran(fn) and it was shown in [3,

Theorem 3.3] that either fn = 〈0〉, fn = 〈1〉, or Ran(fn)=R or Ran(fn)=R+.

Case 3 (fn = 〈0〉 or fn = 〈1〉). It follows from Lemmas 2.4 and 2.5 that fi = 〈0〉 or

fi = 〈1〉 for 1≤ i≤n and thus, (2.43) is satisfied.

Case 4 (Ran(fn) = R). In this case, we have fn(xy) = xfn(y) for all x,y ∈ R. Let

y = 1, let f(1)= a and conclude that fn(x)= ax for all x ∈R. Evidently, a≠ 0 since

Ran(fn) = R. Since (2.5) is satisfied, we have fi(axy) = fi(x)fi(y) for all x,y ∈ R
and it follows from Lemma 2.8 that there exists a positive number ri such that either

fi(x)= |ax|ri for all x ∈R or

fi(x)=


(ax)ri for ax ≥ 0,

−|ax|ri for ax < 0,
(2.47)

for all x ∈R.
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Case 5 (Ran(fn) = R+). In this case, we have fn(xy) = xfn(y) for all x ≥ 0 and

all y ∈ R. Take y = 1 and b = fn(1) and conclude that fn(x) = bx for x ≥ 0. Next,

let x < 0, take y = −1, let a = −fn(−1) and conclude that fn(x) = fn((−x)(−1)) =
−xfn(−1) = ax. Evidently, a ≤ 0, b ≥ 0, and a2+b2 ≠ 0 since Ran(fn) = R+. In this

case, fn satisfies (2.45) and it follows from (2.5) that fi(axy)= fi(x)fi(y) for y ≤ 0

and fi(bxy)= fi(x)fi(y) for y ≤ 0. This, in view of Lemma 2.9, implies that each fi,
1≤ i < n, is given by (2.46). This completes the proof.

Our next result is an immediate consequence of Lemma 2.3 and Theorem 2.10.

Recall that Ki = {v ∈Rn : vj = 0 for j ≠ i}.

Theorem 2.11. Let �n be an n-dimensional Euclidean nearring. Then each Ki, 1≤
i≤n, is a right ideal of �n and vw = v(0,0, . . . ,0,wn) if and only if the multiplication

in �n is given by one of the following:

(vw)i = 0 or (vw)i = vi, for 1≤ i≤n, (2.48)

(vw)i = vi
∣∣awn

∣∣ri for i≠n, (vw)n = avnwn, (2.49)

where a≠ 0 and ri > 0 for each i,

(vw)i =


vi
(
awn

)ri for awn ≥ 0,

−vi
∣∣awn

∣∣ri for awn < 0,
(2.50)

for i≠n and (vw)n = avnwn where a≠ 0 and ri > 0,

(vw)i =


vi
(
awn

)ri for wn ≤ 0, i≠n,

vi
(
bwn

)ri for wn > 0, i≠n,

(vw)n =


avnwn for wn ≤ 0,

bvnwn for wn > 0,

(2.51)

where ri > 0, a≤ 0, b ≥ 0, and a2+b2 ≠ 0.

Proof of Theorem 2.2. Suppose first that �n is a Euclidean nearring which is

isomorphic to a nearring �n1 whose multiplication is given by any one of (2.1), (2.2),

(2.3), and (2.4) inclusive. It is immediate that each Ki, 1≤ i≤n is a right ideal of �n1.

For each w ∈ �n1, let wi be the vector such that wi
i =wi and wi

j = 0 for j ≠ i. Then

wi ∈ Ki, w = w1+w2+···+wn, and vw = vwn for all v ∈ �n1. That is, �n1 is a

linear right ideal nearring and so is �n since any isomorphism from �n1 onto �n is a

linear automorphism of Rn.

Suppose, conversely, that �n is a linear right ideal nearring with linear right ideals

Ji, 1≤ i≤n. Letϕ be any linear automorphism of Rn such thatϕ[Ki]= Ji and define

a multiplication ∗ on (Rn,+) by v∗w = ϕ−1(ϕ(v)ϕ(w)) where ϕ(v)ϕ(w) is the

product ofϕ(v) andϕ(w) in the nearring �n. With this multiplication, (Rn,+,∗) is a

nearring which we denote by �n1 hereafter. Moreover,ϕ is an isomorphism from �n1

onto �n. Consequently, each Ki is a right ideal of �n1. According to Definition 2.1, for

eachw ∈�n1, there existwi ∈ Ji, 1≤ i≤n, such thatϕ(w)=w1+w2+···+wn and
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ϕ(v)ϕ(w)=ϕ(wn). Sincew =ϕ−1(w1)+ϕ−1(w2)+···+ϕ−1(wn) andϕ−1(wi)∈
Ki for 1≤ i≤n, it readily follows that (ϕ−1(wi))i =wi for each i and (ϕ−1(wi))j = 0

for j ≠ i. Consequently, all this implies that

v∗w =ϕ−1(ϕ(v)ϕ(w))= v∗ϕ−1(wn)= v∗(0,0, . . . ,0,wn
)

(2.52)

and it follows from Theorem 2.11 that the multiplication in �n1 is given by one of

(2.48) to (2.51). The proof will be complete once we show that the nearring whose

multiplication is given by (2.49) is isomorphic to the one whose multiplication is given

by (2.2) and the nearring whose multiplication is given by (2.50) is isomorphic to the

nearring whose multiplication is given by (2.3). Denote by �n1 the nearring whose

multiplication is given by (2.2) and denote by �n2 the nearring whose multiplication

is given by (2.49). The multiplication in both cases will be denoted by juxtaposition.

Since a≠ 0, we are able to define a bijection ϕ from �n1 onto �n2 by

(
ϕ(v)

)
i =

vi
|a|ri for 1≤ i < n, (

ϕ(v)
)
n =

vn
a
. (2.53)

It is immediate thatϕ is an additive isomorphism. As for multiplication, for 1≤ i < n
we have

(
ϕ(vw)

)
i =

(vw)i
|a|ri = vi

∣∣wn
∣∣ri

|a|ri , (2.54)

(
ϕ(v)ϕ(w)

)
i =

(
ϕ(v)

)
i
∣∣a(ϕ(w))n

∣∣ri = vi
|a|ri

∣∣∣∣awn

a

∣∣∣∣
ri
= vi

∣∣wn
∣∣ri

|a|ri . (2.55)

In addition to this, we have

(
ϕ(vw)

)
n =

vnwn

a
= a(ϕ(v))n

(
ϕ(w)

)
n =

(
ϕ(v)ϕ(w)

)
n (2.56)

and it follows from (2.54), (2.55), and (2.56) that ϕ is an isomorphism from �n1

onto �n2.

This time, let �n1 be a nearring whose multiplication is given by (2.3) and let �n2

be a nearring whose multiplication is given by (2.50). Again, define a bijection from

�n1 onto �n2 just as in (2.53). Here, there are a number of cases to consider for a

product vw depending upon whether a < 0, a > 0, wn < 0, or wn ≥ 0. Consider the

case where a< 0 and wn < 0. It then follows that for 1≤ i < n, we have

(
ϕ(vw)

)
i =

(vw)i
|a|ri =−vi

∣∣wn
∣∣ri

|a|ri . (2.57)

Since a(ϕ(w))n =wn < 0, we also have

(
ϕ(v)ϕ(w)

)
i =−

(
ϕ(v)

)
i
∣∣a(ϕ(w))n

∣∣ri =−vi
∣∣wn

∣∣ri
|a|ri . (2.58)

In addition, we have

(
ϕ(vw)

)
n =

(vw)n
a

= vnwn

a
= a(ϕ(v))n

(
ϕ(w)

)
n =

(
ϕ(v)ϕ(w)

)
n, (2.59)

and it follows from (2.57), (2.58), and (2.59) thatϕ(vw)=ϕ(v)ϕ(w) whenever a< 0

and wn < 0. The remaining cases follow in much the same manner and, with this

observation, we conclude the proof.
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Corollary 2.12. A two-dimensional Euclidean nearring �2 has two distinct nonzero

proper closed, connected right ideals J1 and J2 such that for every w ∈ �2 there exist

w1 ∈ J1 and w2 ∈ J2 such that w = w1+w2 and vw = vw2 for all v ∈ �2 if and

only if �2 is isomorphic to one of the seven two-dimensional Euclidean nearrings whose

multiplications follow:

vw = v ∀v,w ∈�2,

vw = (0,0) ∀v,w ∈�2,

vw = (v1,0
) ∀v,w ∈�2,

vw = (0,v2
) ∀v,w ∈�2,

vw = (v1

∣∣w2

∣∣r ,v2w2
) ∀v,w ∈�2,

vw =


(
v1wr

2 ,v2w2
)

for w2 ≥ 0,(−v1

∣∣w2

∣∣r ,v2w2
)

for w2 < 0,

vw =


(
v1
(
aw2

)r ,av2w2
)

for w2 ≥ 0,(
v1
(
bw2

)r ,bv2w2
)

for w2 > 0,

(2.60)

where r > 0 in each case, a≤ 0, b ≥ 0, and a2+b2 ≠ 0.

Proof. Suppose that the multiplication on a two-dimensional Euclidean nearring �

is given by any one of (2.60) inclusive. Then K1 = {v ∈�n : v2 = 0} and K2 = {v ∈�n :

v1 = 0} are two distinct proper closed, connected right ideals of �. For any w ∈ �n,

let w1 = (w1,0) and w2 = (0,w2). Then wi ∈ Ki, w =w1+w2, and vw = vw2 for all

v ∈�. Thus, if �2 is isomorphic to �, then �2 contains two distinct nonzero proper

closed, connected right ideals J1 and J2 such that for everyw ∈�2 there existw1 ∈ J1

and w2 ∈ J2 such that w =w1+w2 and vw = vw2 for all v ∈�2.

Suppose, conversely, that a two-dimensional Euclidean nearring �2 has two distinct

nonzero proper closed, connected right ideals J1 and J2 such that for every w ∈ �2

there exist w1 ∈ J1 and w2 ∈ J2 such that w = w1 +w2 and v ∗w = v ∗w2 (it is

convenient to denote the multiplication in �2 by ∗) for all v ∈�2. Since the additive

subgroup J+1 of the ideal J1 is a closed, connected nonzero subgroup of R2, it follows

from [1, Proposition 3, page 71] that J+1 contains a one-dimensional linear subspace

L1 of R2. According to one of the statements preceding [1, Proposition 3, page 71], J+1
is isomorphic to Rp×Zq where Z is the group of integers and 0≤ p+q ≤ 2. But q = 0

since J+1 is connected and p = 1 since J+1 is a proper nonzero subgroup of R2. That is,

J1 is a linear subspace of R2 and, of course, the same is true of J2. Thus, �2 is a linear

right ideal nearring and it now follows from Theorem 2.2 that �2 is isomorphic to one

of the seven two-dimensional Euclidean nearrings whose multiplications are given by

(2.60).
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