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CONVERGENT NETS IN ABELIAN TOPOLOGICAL GROUPS
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Abstract. A net in an abelian group is called a T -net if there exists a Hausdorff group
topology in which the net converges to 0. This paper describes a fundamental system for
the finest group topology in which the net converges to 0. The paper uses this description
to develop conditions which insure there exists a Hausdorff group topology in which a
particular subgroup is dense in a group. Examples given include showing that there are
Hausdorff group topologies onRn in which any particular axis may be dense and Hausdorff
group topologies on the torus in which S1 is dense.
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1. Introduction. Let G be an abelian group and 〈xα〉α∈A a net in G. If 0 is the iden-

tity element in G, we can ask what is the finest group topology on G such that 〈xα〉α∈A
converges to 0? In the terminology of [1], we are placing the topology of a noncon-

stant net on the subspace (〈xα〉α∈A∪{0})⊂G and finding the associated Graev topol-

ogy. Ledet and Clark [2] developed a fundamental system approach to defining group

topologies in which a sequence 〈an〉∞n=1 converges to 0. When there exists a Hausdorff

group topology in which 〈an〉∞n=1 converges to 0, Zelenyuk and Protasov [3] said that

〈an〉∞n=1 is a T -sequence. The purpose of this paper is to extend some of the results

of Ledet and Clark to nets and to investigate some applications of these results. We

adopt the terminology of Zelenyuk and Protasov in the following.

Definition 1.1. We say that 〈xα〉α∈A is a T -net if there exists a Hausdorff group

topology on G in which 〈xα〉α∈A converges to 0.

We will discover how subgroups can be made dense in Hausdorff group topologies

and we use this description to show that there are Hausdorff group topologies on

Rn in which any particular axis may be dense and Hausdorff group topologies on the

torus in which S1 is dense.

We will assume as additional hypothesis throughout that G is an abelian group and

each sequence is an injective function from the natural numbers into the group G.

Also the notations N, Z, R, and S1 will denote the natural numbers, integers, reals,

and the circle group, respectively. We use the notation H < G to mean that H is a

subgroup of G and when referring to the element of G/H corresponding to the coset

g+H, we use the notation g. Finally, we denote the cardinality of a set X by |X|.

2. Fundamental systems generated by nets. Since G is abelian, it is possible to

define various fundamental systems on a subgroup of G and use them as a funda-

mental system for the entire group. We will use the elements of the net 〈xα〉α∈A to
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define such a fundamental system for the subgroup generated by 〈xα〉α∈A. For each

α0 ∈ A, define T(α0) = {0}∪{xα | α > α0}∪{−xα | α > α0} where −xα denotes the

inverse of xα inG, and let ζ denote the collection of all nondecreasing sequences inN.

Then for each C = 〈cn〉∞n=1 ∈ ζ and for each increasing countable subset A′ = 〈an〉∞n=1

of A, we define

U
(
C,A′

)= {g1+g2+···+gk | gi ∈ ciT
(
αi
)

for i∈ {1,2, . . . ,k}, k∈N}, (2.1)

where ciT(αi) denotes the set of sums of ci addends, each of which lies in T(αi).

Proposition 2.1. Let �={U(C,A′)|C ∈ ζ and A′ ⊂A is countable and increasing}.
Then � is a fundamental system for the finest group topology on G for which 〈xα〉α∈A
converges to 0.

Proof. Suppose that U(C,A′) and U(D,B′) are elements of �, where A′ = 〈ai〉∞i=1

and B′ = 〈bi〉∞i=1. For each i ∈ N, let ei = min{ci,di} and E = 〈ei〉∞i=1. Now note that

there exists γ1 ∈A such that α1 ≤ γ1 and β1 ≤ γ1. Then for n> 1, we can find γn ∈A
with αn ≤ γn, βn ≤ γn, and γn−1 ≤ γn. Thus Γ = 〈γi〉∞i=1 is increasing, U(E,Γ)∈� and

U(E,Γ)⊂ {U(C,A′)∩U(D,B′)}.
Now suppose that x ∈ U(C,A′). Then x = g1+g2+···+gk where k ∈ N and gi ∈

ciT(αi) for i ∈ {1,2, . . . ,k}. Thus, if C′ = 〈ck+1,ck+2, . . .〉 and A′′ = 〈αk+1,αk+2, . . .〉,
then x+U(C′,A′′)⊂U(C,A′).

Let U(C,A′)∈�. Now either C is eventually constant of cofinal inN. Ifm,n∈N and

ci =n for all i≥m, let C′ = 〈ci〉∞i=m and A′ = 〈α2i〉∞i=m. Then 2U(C′,A′′)⊂U(C,A′). If

C is a cofinal sequence in N, we can find a subsequence〈cni〉∞i=1 of C which is strictly

increasing. For each i∈N, define

c′i =




c2ni
2

if c2ni is even,

c2ni−1

2
if c2ni is odd.

(2.2)

Then 2U(C′,A′′)⊂U(C,A′).
Finally we note that since −U(C,A′)=U(C,A′), � is a fundamental system for G.

Now let τ be any group topology on G for which the net 〈xα〉α∈A converges to 0 and

let U ∈ τ with 0 ∈ U . We choose a symmetric open set W contained in U with 0 ∈W
and a sequence of symmetric open sets, say V1,V2, . . . , with 0 ∈ Vi for all i,2V1 ⊂W ,

and (n+1)Vn ⊂ Vn−1 for n≥ 2.

For any k ∈ N we have that V1+2V2+···+kVk ⊂ W . Since 〈xα〉α∈A converges to

0 in τ , we can find a tail of the net contained in Vi for each i. Choose αi ∈ A so that

T(αi)⊂ Vi and αi > αj for 1≤ j ≤ i−1. Then kT(αk)⊂ kVk and so if A′ = 〈ai〉∞i=1, we

have that U(N,A′)⊂W .

The process used by Ledet and Clark [2] to construct group topologies in which

a sequence 〈an〉∞n=1 converges to 0 in G actually defines a group topology on the

subgroup generated by {an}∞n=1. Recalling that a Hausdorff group topology is also

completely regular, we see that the topology generated by a sequence can never yield

a connected group topology.



CONVERGENT NETS IN ABELIAN TOPOLOGICAL GROUPS 647

3. Dense subgroups determined by nets. We can describe topologies on G in

which a certain subgroup H is dense in terms of nets which intersect each coset of H
in a specific way. We say that the set{gβ}β∈B ⊂G is a representative collection of G/H
if gβ1−gβ2 �∈H for any β1,β2 ∈ B with β1 ≠ β2, and if for each g0 ∈G/H, there exists

a β0 ∈ B with π(gβ0)= g0 where π is the natural homomorphism. Since |B| = |G/H|,
we use G/H as the index set for this collection.

Definition 3.1. LetH be a subgroup of (G,τ) and let {gβ}β∈G/H be a representative

collection of G/H. If, for each gβ ∈ G/H, there exists a net Pβ : A→ gβ+H such that

the net P :A×G/H →G defined by P(α,β)= Pβ(α) with the ordering (α,β)≥ (α′,β′)
if and only if α≥α′ is a T -net, then we say that P is τ-like.

Proposition 3.2. LetH <G. There exists a Hausdorff group topology on G in which

H is dense if and only if there is a τ-like net P :A×G/H →G.

Proof. Suppose that H is dense in G in some Hausdorff group topology τ and let

� be a fundamental system for τ . Also let {gβ}β∈G/H be a representative collection of

G/H and let gβ ∈ {gβ}β∈G/H . Note that for eachU ∈�,U∩(gβ+H) is nonempty. Thus,

we can find a net Pβ :A→ gβ+H which converges to 0 in (G,τ). Define P :A×G/H →G
by P(α,gβ)= pβ(α), then clearly P is τ-like.

Now suppose that there exists a τ-like net P :A×G/H →G and let � be the funda-

mental system generated by P as described in Proposition 2.1. Let U ∈ � and g ∈ G.

Then U ∩ (g+H) is nonempty since g ∈ gβ+H for some gβ ∈ {gβ}β∈G/H . It follows

that H is dense in G with the topology generated by �.

As you would expect, algebra plays a large role in determining whether there is

a Hausdorff group topology in which a net converges. For example, we can describe

T -sequences using factorization in the group. The following extends results found

in [3].

Definition 3.3. Let S ⊂G,n∈N and g ∈G. We say that g has ann-factorization in

S if and only if there exists a collection of nonzero elements of S, say s1,s2, . . . ,sn, with

g = s1+s2+···+sn. Two n-factorizations, s1,s2, . . . ,sn and t1, t2, . . . , tn, are disjoint if

and only if si ≠ tj whenever i,j ∈ {1,2, . . . ,n}.

Lemma 3.4. Let 〈an〉∞n=1 be a sequence in G. Then 〈an〉∞n=1 is a T -sequence if and

only if for each g ∈ G and n0 ∈ N, there exist only finitely many pairwise disjoint

n0-factorizations of g in {an}∞n=1∪{−an}∞n=1.

Proof. Suppose that for some nonzero g ∈ G and n0 ∈ N, there exist infinitely

many pairwise disjoint n0-factorizations of g in {an}∞n=1 ∪ {−an}∞n=1 and suppose

〈an〉∞n=1 converges to 0 in τ . Then ifU is an open set containing 0 and V is a symmetric

open set satisfying 0 ∈ V and n0V ⊂ U , we can find a tail of 〈an〉∞n=1 contained in V ,

say them-tail. Thus, we can find an n0-factorization of g in {an}∞n=m∪{−an}∞n=m and

g ∈ n0V and n0V ⊂ U . Since U is arbitrary, τ is not Hausdorff and 〈an〉∞n=1 is not a

T -sequence.

Now suppose that for each g ∈G andn0 ∈N, there exist only finitely many pairwise

disjoint n0-factorizations of g in {an}∞n=1∪{−an}∞n=1. Then clearly for each k∈N we
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can find an n1 ∈ N with no k-factorization of g in T(n1). Thus if {ni}ki=1 is any col-

lection such that n1 <n2 < ···<nk, then g �∈ T(n1)+T(n2)+···+T(nk). Note that

there may exist infinitely many k-factorizations of g which are not pairwise disjoint.

So suppose that for every nk+1 > nk, g ∈ T(n1)+ T(n2)+ ··· + T(nk)+ T(nk+1).
Since there are only finitely many pairwise disjoint (k + 1)-factorizations of g in

{an}∞n=1∪{−an}∞n=1, there must exist some collection s1,s2, . . . ,s′k, where k′ ≤ k, and

infinitely many (k+1)-factorizations of g, say F1,F2, . . . , such that {s1,s2, . . . ,s′k} ⊂ Fi
for each i and Fn∩Fm = {s1,s2, . . . ,s′k} whenever m ≠ n. But then there are infinitely

many pairwise disjoint (k−k′ +1)-factorizations of g−s1−s2−···−s′k, a contradic-

tion. Repeating this process, we find a sequence 〈ni〉∞i=1 with g �∈U(N,〈ni〉∞i=1).

So we see that if H is an infinite subgroup of finite index in G, then we can always

find such a net.

Corollary 3.5. Suppose thatH is an infinite subgroup of G and G/H is finite. Then

there exists a Hausdorff group topology on G in which H is dense.

Proof. It is known that every infinite abelian group admits a nondiscrete metriz-

able group topology and hence we can find a nontrivial T -sequence 〈an〉∞n=1 contained

in H. Let {g1,g2, . . . ,gm} be a representative collection of G/H and let {〈bi,n〉∞n=1}mi=1

be any collection ofm disjoint subsequences of 〈an〉∞n=1. For each i∈ {1,2, . . . ,m} and

for each n∈N, define xi,n = gi+bi,n. Then note that for each i, 〈xi,n〉∞n=1 ⊂ (gi+H).
Without loss of generality, we may assume that the net

〈
xi,n | i∈ {1,2, . . . ,m}, n∈N

〉
(3.1)

is linearly ordered and hence may be considered to be a sequence. Now pick g ∈
G and suppose that there are infinitely many pairwise disjoint factorizations of g
in 〈xi,n | i ∈ {1,2, . . . ,m}, n ∈ N〉. Since G/H is finite, there must exist some col-

lection {k1,k2, . . . ,k′m} ⊂ Z such that
∑m
i=1 |ki| = n0 and infinitely many of the n0-

factorizations of g are of the form

k′1g1+
|k1|∑

i=1

c1,ib1,ni+k′2g2+
|k2|∑

i=1

c2,ib2,ni+···+k′mgm+
|km|∑

i=1

cm,ibm,ni , (3.2)

where ci,j ∈ {−1,1} for each i, j and |k′i| ≤ |ki| for each i. But then

g−k1g1−k2g2−···−kmgm =
|k1|∑

i=1

c1,ib1,ni+
|k2|∑

i=1

c2,ib2,ni+···+
|km|∑

i=1

cm,ibm,ni (3.3)

for each i. Since each factorization is pairwise disjoint and the sequences 〈bi,n〉∞n=1 are

disjoint, there must be infinitely many pairwise disjoint (|k1|+|k2|+···+|km|+1)-
factorizations of g−k1g1−k2g2−···−kmgm in {an}∞n=1∪{−an}∞n=1, contradicting

the fact that 〈an〉∞n=1 is a T -sequence in G. Therefore 〈xi,n | i ∈ {1,2, . . . ,m}, n ∈ N〉
is τ-like and thus generates a Hausdorff group topology on G in which H is dense.

We would certainly like to extend this result since even the standard examples

of groups containing dense subgroups do not satisfy these conditions. We do so by
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generalizing the definition of finite index and determining when there exists a net as

described in Proposition 3.2.

Definition 3.6. An n-factorization s1,s2, . . . ,sn is favorable if and only if si ≠ sj
whenever i≠ j.

Definition 3.7. Let H <G and let 〈xα〉α∈A be a net in H. Then (G,H,〈xα〉α∈A) is

compatible if and only if there exists a representative collection {gβ}β∈G/H ofG/H such

that whenever g ∈G with g = gβ+h, there exists an increasing sequence 〈an〉∞n=1 ⊂A
such that whenever h′ ∈H and g+h′ has a favorable n-factorization in {gβ}β∈G/H∪
{−gβ}β∈G/H , then h−h′ has no favorable n-factorization s1,s2, . . . ,sn such that si ∈
T(αi) for each i.

Theorem 3.8. Let H <G and let 〈xα〉α∈A be a net in H. If

(i) (G,H,〈xα〉α∈A) is compatible, and

(ii) there exists |G/H| subnets of 〈xα〉α∈A such that any two of the subnets have

disjoint tails,

then there exists a Hausdorff group topology on G in which H is dense.

Proof. Without loss of generality, assume that 0 �∈ {xα}α∈A. By condition (ii), for

each β ∈ G/H, we can find a subnet of 〈xα〉α∈A, say 〈xβ,λ | λ ∈ Aβ〉, where Aβ is a

cofinal subset of A. Define P : ∪β∈G/H{β}×Aβ → G by P(β,λ) = gβ+xβ,λ. Recalling

Aβ ⊂A for each β, we partially order ∪β∈G/H{β}×Aβ by (β1,λ1)≤ (β2,λ2) if and only

if λ1 ≤A λ2 where ≤A is the relation which directs A. We denote the resulting net

〈
gβ+xβ,λ | β∈G/H, λ∈Aβ

〉
. (3.4)

Now let g ∈ G. Then there exists a unique gβ ∈ {gβ}β∈G/H and h ∈ H such that

g = gβ +h. Also, by condition (i) there exists an increasing sequence 〈αn〉∞n=1 in A
such that whenever h′ ∈H and g+h′ has a favorable n0-factorization in {gβ}β∈G/H∪
{−gβ}β∈G/H , then h−h′ has no favorable n0-factorization s1,s2, . . . ,sn such that si ∈
T(αi)−{0} for each i. For each α∈A, let

T ′(α)= {0}∪{gβ+xβ,λ | λ≥α
}∪{−(gβ+xβ,λ

) | λ≥α} (3.5)

and suppose for some n∈N, g ∈ T ′(α1)+T ′(α2)+···+T ′(αn). But for every favor-

ablen0-factorization with gi ∈ {−1,1}, gβi+xβi,λi ∈ T ′(αi) for each i and
∑n
i=1 cigβi =

gβ+h′ for some h′ ∈H, we must have that
∑n
i=1 cixβi,λi = h−h′ since (G,H,〈xα〉α∈A)

is compatible. Thus g �∈ T ′(α1)+ T ′(α2)+ ··· + T ′(αn) for any n ∈ N and hence

g �∈U ′(〈1〉,〈αn〉∞n=1) where 〈1〉 denotes the constant 1 sequence and

U ′
(〈1〉,〈αn

〉∞
n=1

)= {g1+g2+···+gk | gi ∈ T ′
(
αi
)

for i∈ {1,2, . . . ,k}, k∈N}. (3.6)

Therefore 〈gβ+xβ,λ〉 is a T -net.

By Proposition 3.2, H is dense in the topology generated by

〈
gβ+xβ,λ | β∈G/H, λ∈Aβ

〉
. (3.7)



650 ROBERT LEDET

In order to give examples of groups satisfying the conditions of Theorem 3.8, we

note that there exists uncountably many increasing sequences in N such that the

intersection of any two is finite.

Corollary 3.9. There exist Hausdorff group topologies on R in which Z is dense.

Proof. Let 〈αn〉∞n=1 be an increasing sequence in Z such that an+1/an > n for all

n ∈ N and note that [0,1) is a representative collection of R/Z. So pick r ∈ R. Then

there exists a unique c ∈ [0,1) and k ∈ Z with r = c+k. For each let i ∈ N, let ni =
|k|+i+1 and note that an+1−nan > an for every n. Also ifm∈N and {ci}mi=1 ⊂ [0,1)
with

∑m
i=1 ci = c+k′, then |k′|<m. But for every subset {gi}mi=1 of {an}∞n=1∪{−an}∞n=1

with gi ∈ T(ani) for each i, we have that |∑m
i=1s gi|>anm−(m−1)anm−1 >anm−1. But

certainly anm−1 > |k|+m> |k−k′| since nm−1= |k|+m. Therefore, (R,Z,〈αn〉∞n=1)
is compatible and by the above, there exists a Hausdorff group topology on R in which

Z is dense.

Next we prove a result which will supply us with a large number of examples of

groups containing dense subgroups.

Proposition 3.10. Suppose that G, H are infinite abelian groups. If there exists |G|
linearly independent elements of H, then there exists a Hausdorff group topology on

G×H in which H is dense.

Proof. Note that {(g,0) | g ∈ G} is a representative collection of G×H/H and

let (g,h) ∈ [(G×H)− {(0,0)}]. If h ≠ 0, then we can find an increasing sequence

〈an〉∞n=1 ⊂ A such that h �∈ U(〈1〉,〈an〉∞n=1) since 〈xα〉α∈A is a T -net. If h = 0 and

〈αn〉∞n=1 is any increasing sequence in A, then (g,0) has no favorable factorization

in T(α1) by condition (i). Therefore (G×H,H,〈(0,xα)〉α∈A) is compatible and there

exists a Hausdorff group topology on G×H in which H is dense.

So for example, we see that if G is an abelian group with |G| ≤ |R|. Then there exists

a Hausdorff group topology on G×R in which R is dense. If we impose the same

cardinality restraints on G, then we can similarly show that there exists a Hausdorff

group topology on G×S1 in which S1 is dense.

Thus there are Hausdorff group topologies on Rn, for any n ∈ N, in which any

particular axis may be dense and Hausdorff group topologies on the torus in which

S1 is dense.

We note that Proposition 3.2 does impose some limitations on which subgroups

may be dense in a group and we end this section with a result concerning this. We

denote the power set of a set X by P(X).

Proposition 3.11. If H <G and |G|> 2|H|, then there is no Hausdorff group topol-

ogy on G in which H is dense.

Proof. If H is dense in (G,τ), then for each g ∈ G/H, there must exist a net

〈xg,α〉α∈A ⊂ (g+H) such that 〈xg,α〉α∈A converges to 0 in τ . Note that if g1−g2 �∈H,
〈xg1,α−g1〉α∈A and 〈xg2,α−g2〉α∈A must have distinct tails since τ is Hausdorff. But

{xg,α−g0 | g0 ∈G/H, α∈A} ⊂H. Clearly this is a contradiction since |P(H)|< |G| =
|G/H|.
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