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Abstract. The authors consider themth order nonlinear difference equations of the form
Dmyn+qnf(yσ(n)) = ei, where m ≥ 1, n ∈N = {0,1,2, . . .}, ain > 0 for i= 1,2, . . . ,m−1,

amn ≡ 1, D0yn = yn, Diyn = ain∆Di−1yn, i = 1,2, . . . ,m, σ(n) → ∞ as n → ∞, and
f : R → R is continuous with uf(u) > 0 for u �= 0. They give sufficient conditions to
ensure that all bounded nonoscillatory solutions tend to zero as n→∞ without assuming
that

∑∞
n=0 1/ain =∞, i = 1,2, . . . ,m−1, {qn} is positive, or en ≡ 0 as is often required. If

{qn} is positive, they prove another such result for all nonoscillatory solutions.

2000 Mathematics Subject Classification. 39A10.

1. Introduction. Consider the mth order nonlinear difference equation

Dmyn+qnf
(
yσ(n)

)= ei, (1.1)

where m ≥ 1, n ∈ N = {0,1,2, . . .}, {qn}, {en}, and {a1
n}, {a2

n}, . . . , {am−1
n } are real

sequences, ain > 0 for i = 1,2, . . . ,m−1 and all n ∈ N, amn ≡ 1, D0yn = yn, Diyn =
ain∆Di−1yn for i= 1,2, . . . ,m, {σ(n)} is a sequence of positive integers with σ(n)→
∞ as n→∞, and f : R→ R is continuous with uf(u) > 0 for u �= 0. Throughout, we

will assume that

ρi(n)=
∞∑

s=n+1

ρi−1(s)
ais

, i= 1,2, . . . ,m−1, ρ0(n)≡ 1, (1.2)

satisfies

lim
n→∞ρi(n)= 0 for i= 1,2, . . . ,m−1. (1.3)

Note that condition (1.3) is satisfied if

∞∑
n=N

1

ain
<∞ for each i= 1,2, . . . ,m−1. (1.4)

By a solution of (1.1) we mean a nontrivial real sequence {yn} defined for n ≥
N0 −minn∈Nσ(n), N0 ∈ N, and satisfying (1.1) for n ≥ N0. Such a solution is said

to be oscillatory if for every N ∈ N there exist n1,n2 ∈ N with n2 > n1 > N and

yn1yn2 ≤ 0, and it is said to be nonoscillatory otherwise.

An important problem in the study of oscillation theory of difference equations

is to determine sufficient conditions for all nonoscillatory solutions or all bounded

nonoscillatory solutions to converge to zero as n→∞. This problem has received a
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good deal of attention in the literature, and for recent results of this type, we refer the

reader to the monographs of Agarwal [1], Agarwal and Wong [2] as well as the papers

of Cheng et al. [3], Graef et al. [4], Graef and Spikes [5, 6], Szmanda [7], Thandapani and

Lalli [8], Thandapani and Pandian [9], and Zhang [10]. Most of these results, however,

are obtained under the assumptions that
∑∞
n=N 1/ain = ∞, i = 1,2, . . . ,m−1, and/or

en ≡ 0. It is these last two restrictions that provide the motivation for our work here.

That is, we do not require that either of these conditions hold in our results below.

Our results are of two types. First, if the sequence {qn} is allowed to oscillate,

we provide sufficient conditions for all bounded nonoscillatory solutions of (1.1) to

converge to zero as n→∞. Second, in the case where {qn} is a nonnegative sequence,

we give sufficient conditions for all nonoscillatory solutions of (1.1) to approach zero

as n→∞. Examples to illustrate our results are also included.

2. Asymptotic decay of nonoscillatory solutions. We begin with a lemma that will

be used in the proofs of our main results.

Lemma 2.1. Consider the difference equation

∆un− ∆ρ(n)ρ(n)
un+ ∆ρ(n)ρ(n)

φn = 0, (2.1)

where {φn} and {ρ(n)} are real sequences defined for n≥N , for some N ∈N,

ρ(n) > 0, ∆ρ(n) < 0, lim
n→∞ρ(n)= 0. (2.2)

Let {un} be the solution of (2.1) defined for n≥N and satisfying uN = 0. Then

lim
n→∞φn =∞(−∞) implies lim

n→∞un =∞(−∞). (2.3)

Proof. The solution {un} of (2.1) is given by

un =−ρ(n)
n−1∑
s=N

∆ρ(s)
ρ(s)ρ(s+1)

φs, n≥N. (2.4)

If limn→∞φn =∞(−∞), then clearly

lim
n→∞

n−1∑
s=N

∆ρ(s)
ρ(s)ρ(s+1)

φs =−∞(∞). (2.5)

Hence, by Stolz’s theorem [1],

lim
n→∞un = lim

n→∞

∣∣∣∣∣∆
(−∑n−1

s=N
(
∆ρ(s)/ρ(s)ρ(s+1)

)
φs
)

∆
(
1/ρ(n)

)
∣∣∣∣∣= lim

n→∞φn =∞(−∞), (2.6)

and this completes the proof of the lemma.

In our results that follow, we will make use of the notation q+n = max{qn,0} and

q−n =max{−qn,0}.
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Theorem 2.2. Assume that

∞∑
n=N

ρm−1(n)q+n =∞, (2.7)

∞∑
n=N

ρm−1(n)q−n <∞,

∞∑
n=N

ρm−1(n)
∣∣en∣∣<∞.

(2.8)

Then all bounded nonoscillatory solutions of (1.1) tend to zero as n→∞.

Proof. Let {yn} be a bounded nonoscillatory solution of (1.1). Without loss of

generality, we may assume that yn > 0 and yσ(n) > 0 for n ≥ N1 for some N1 ∈ N.

Define

G0(n)=yn, Gi(n)= ain∆Gi−1(n), i= 1,2, . . . ,m−1, (2.9)

and observe that

Gi(n)=Diyn for i= 1,2, . . . ,m−1, ∆Gm−1(n)=Dmyn. (2.10)

Next, we define the family of sequences

uk(n)=
n∑

s=N1+1

ρm−k−1(s)∆Gm−k−1(s), k= 0,1, . . . ,m−1, (2.11)

for n≥N1+1.

A summation by parts yields

uk−1(n)=
n∑

s=N1+1

ρm−k(s)∆Gm−k(s)= ρm−k(n+1)Gm−k(n+1)

−ρm−k
(
N1+1

)
Gm−k

(
N1+1

)+ n∑
s=N1+1

ρm−k−1(s)
am−ks

Gm−k(s)

=−ρm−k(n+1)
∆ρm−k(n)

∆uk(n)+∆uk(n)+uk(n)−2ρm−k
(
N1+1

)
Gm−k

(
N1+1

)

=− ρm−k(n)
∆ρm−k(n)

∆uk(n)+uk(n)−2ρm−k
(
N1+1

)
Gm−k

(
N1+1

)
.

(2.12)

This shows that each sequence {uk(n)}, k = 0,1, . . . ,m−1, satisfies the difference

equation
ρm−k(n)
∆ρm−k(n)

∆uk(n)−uk(n)+φk(n)= 0, (2.13)

which can be written in the form

∆uk(n)− ∆ρm−k(n)ρm−k(n)
uk(n)+ ∆ρm−k(n)ρm−k(n)

φk(n)= 0, (2.14)
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where φk(n) = uk−1(n)+ 2ρm−k(N1 + 1)Gm−k(N1 + 1). Since uk(N1) = 0 by (2.11)

and since ρm−k(n) > 0, ∆ρm−k(n) < 0, and limn→∞ρm−k(n) = 0 by (1.3), we can ap-

ply Lemma 2.1 to (2.14) to conclude that limn→∞uk−1(n) = ∞ (or −∞) which in turn

implies that limn→∞uk(n)=∞ (or −∞).

Multiplying (1.1) by ρm−1(n) and summing from N1+1 to n, we have

n∑
s=N1+1

ρm−1(s)∆Gm−1(s)+
n∑

s=N1+1

ρm−1(s)q+s f
(
yσ(s)

)

=
n∑

s=N1+1

ρm−1(s)es+
n∑

s=N1+1

ρm−1(s)q−s f
(
yσ(s)

)
.

(2.15)

We consider the following two cases:

∞∑
n=N1+1

ρm−1(n)q+nf
(
yσ(n)

)=∞ (2.16)

or ∞∑
n=N1+1

ρm−1(n)q+nf
(
yσ(n)

)
<∞. (2.17)

Suppose (2.16) holds. In view of (2.8) and the boundedness of {yn}, the right-hand side

of (2.15) tends to a finite limit as n→∞. From (2.15), we see that limn→∞u0(n)=−∞.

Hence, applying Lemma 2.1 to (2.14) with k = 1, we have limn→∞u1(n) = −∞. Again

applying Lemma 2.1 to (2.14), this time with k = 2, we see that limn→∞u2(n) = −∞.

Repeating this procedure, we can conclude that limn→∞um−1(n)=−∞, which implies

that limn→∞yn =−∞. This, however, contradicts the assumption that {yn} is positive,

and thus (2.16) cannot hold.

Next, letting n → ∞ in (2.15) and using (2.17), we see that limn→∞u0(n) is finite.

From (2.13), with k= 1, we have

ρm−1(n)
∆ρm−1(n)

∆u1(n)=u1(n)−φ1(n) (2.18)

or

u1(n)= ρm−1(n)
ρm−1

(
N1
)

u1

(
N1
)−ρm−1

(
N1
) n−1∑
s=N1

∆ρm−1(s)
ρm−1(s)ρm−1(s+1)

φ1(s)


. (2.19)

Taking the limit as n→∞ and using (1.3), we obtain

lim
n→∞u1(n)=− lim

n→∞ρm−1(n)
n−1∑
s=N1

∆ρm−1(s)
ρm−1(s)ρm−1(s+1)

φ1(s). (2.20)

This limit must be finite since limn→∞u1(n) = −∞ implies limn→∞yn = −∞, which

contradicts the positivity of {yn}, and limn→∞u1(n) = ∞ implies limn→∞yn = ∞,

which contradicts the boundedness of {yn}. Continuing in this way, limn→∞um−1(n)
is finite. Therefore, limn→∞yn exists as a finite number. On the other hand, in view of

(2.7) and (2.17), it is easy to verify that

liminf
n→∞ yσ(n) = liminf

n→∞ yn = 0. (2.21)

Thus, it follows that limn→∞yn=0, and this completes the proof of the theorem.
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Example 2.3. Consider the difference equation

∆
(
n∆
(
n∆
(
n(n+1)∆yn

)))+yγn = 1
γn

, n≥ 1, (2.22)

where γ is a positive integer. We have ρ1(n)= ρ2(n)= ρ3(n)= 1/(n+1) and we see

that all conditions of Theorem 2.2 are satisfied. Hence, all bounded nonoscillatory

solutions of (2.22) tend to zero as n→∞. In fact, {yn} = {1/n} is a solution of (2.22)

having this property.

In the following theorem, we show that the conclusion of Theorem 2.2 still holds if

the roles of the sequences {q+n} and {q−n} are interchanged.

Theorem 2.4. All bounded nonoscillatory solutions of (1.1) tend to zero as n→∞ if

the following conditions are satisfied:

∞∑
n=N

ρm−1(n)q+n <∞, (2.23)

∞∑
n=N

ρm−1(n)q−n =∞, (2.24)

∞∑
n=N

ρm−1(n)
∣∣en∣∣<∞. (2.25)

Proof. Let {yn} be a bounded nonoscillatory solution of (1.1), say, yn > 0 and

yσ(n) > 0 for n≥N1 ≥N0. Define Gi(n) and uk(n) as in (2.9) and (2.11). Assume that

∞∑
n=N1+1

ρm−1(n)q−nf
(
yσ(n)

)=∞. (2.26)

Letting n → ∞ in (2.15) and using (2.23), (2.25), and the boundedness of {yn}, we

obtain limn→∞u0(n) = ∞. Applying Lemma 2.1 to (2.14) with k = 1, we see that

limn→∞u1(n)=∞. Repeated applications of this argument yield limn→∞um−1(n)=∞,

which implies that limn→∞yn =∞. This contradicts the boundedness of {yn}, and so

we must have ∞∑
n=N1+1

ρm−1(n)q−nf
(
yσ(n)

)
<∞. (2.27)

The remainder of the proof is similar to the proof of Theorem 2.2 and will be

omitted.

Example 2.5. Consider the equation

∆4(2n+1∆yn
)−2ny3

n−2 =−
1

4n−3
, n≥ 0. (2.28)

It is easy to verify that the hypotheses of Theorem 2.4 are satisfied with ρ1(n) =
ρ2(n)= ρ3(n)= 1/2n+1. It follows that all bounded nonoscillatory solutions of (2.28)

approach zero as n→∞. One such solution is {yn} = {1/2n}.

As an example where {qn} is oscillatory, we have the following example.
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Example 2.6. Consider the equation

∆3(2n+1∆yn
)+
{

2n−1[1+(−1)n
]−

[
1+(−1)n+1

]
2n2

}
yn

=
[
1+(−1)n

]
2

−
[
1+(−1)n+1

]
2n+1n2

, n≥ 1.

(2.29)

Observe that q+n = 2n, q−n = −1/n2, and ρ1(n) = ρ2(n) = ρ3(n) = 1/2n+1. All the

hypotheses of Theorem 2.2 are satisfied so all bounded nonoscillatory solutions of

(2.29) approach zero as n → ∞. Here, {yn} = {1/2n} is such a solution. Clearly, a

simple modification of this equation will yield an example of Theorem 2.4.

In our final result, we examine (1.1) in the case where {qn} is positive and establish

conditions under which all nonoscillatory solutions are bounded and tend to zero as

n→∞.

Theorem 2.7. Assume that condition (1.4) holds, {qn} is positive, liminfu→∞f(u)>0,

and limsupu→−∞f(u) < 0. If

∞∑
n=N

ρm−1(n)qn =∞, (2.30)

∞∑
n=N

∣∣en∣∣<∞, (2.31)

then all nonoscillatory solutions of (1.1) tend to zero as n→∞.

Proof. Let {yn} be a nonoscillatory solution of (1.1), say, yn > 0 and yσ(n) > 0

for n≥N1 ≥N0. Define Gi(n) and uk(n) as in (2.9) and (2.11). We will first show that

{yn} is bounded above. From (1.1), we obtain

Gm−1(n)−Gm−1
(
N1
)+ n−1∑

s=N1

qsf
(
yσ(s)

)= n−1∑
s=N1

es. (2.32)

Since the first sum in (2.32) is positive, and by (2.31), the second sum is bounded,

there exists a constant Km−1 such that

Gm−1(n)= am−1
n ∆Gm−2(n)≤Km−1 for n≥N1. (2.33)

Dividing the last inequality by am−1
n and summing from N1 to n−1, we obtain

Gm−2(n)−Gm−2
(
N1
)≤Km−1

n−1∑
s=N1

1

am−1
s

for n≥N1, (2.34)

which, in view of (1.4), implies there exists a constant Km−2 such that

Gm−2(n)= am−2
n ∆Gm−3(n)≤Km−2 for n≥N1. (2.35)

Repeatedly applying the above argument, we obtain constants Km−3, . . . ,K1,K0 such

that

Gm−3(n)≤Km−3, . . . , G1(n)≤K1, G0(n)≤K0 for n≥N1. (2.36)

It follows that {yn} is bounded from above.
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Now, we argue as in the proof of Theorem 2.2 using

n∑
s=N1+1

ρm−1(s)∆Gm−1(s)+
n∑

s=N1+1

ρm−1(s)qsf
(
yσ(s)

)= n∑
s=N1+1

ρm−1(s)es (2.37)

in place of (2.15). Noting that (2.31) implies the right-hand side of (2.37) tends to a

finite limit as n→∞, we claim that

n∑
s=N1+1

ρm−1(s)qsf
(
yσ(s)

)
<∞. (2.38)

If this was not the case, we could use Lemma 2.1 to obtain limn→∞uk(n) = −∞ for

k = 0,1, . . . ,m− 1, and contradict the boundedness of {yn}. Next, using (2.37) and

(2.38) we can show that limn→∞uk(n) is finite for each k = 0,1, . . . ,m − 1. Thus,

limn→∞yn exists and is finite. On the other hand, from (2.30) and (2.38), we see that

liminfn→∞yn = 0. Hence, {yn} tends to zero asn→∞, and this completes the proof of

the theorem.

We conclude this paper with some examples of Theorem 2.7.

Example 2.8. Consider the equation

∆
(
2n∆

(
2n∆

(
2n∆yn

)))+8ny3
n+k =

1
8k
, n≥ 0, (2.39)

where k is a positive integer. In this case, ρ1(n) = 1/2n, ρ2(n) = (1/3)(1/4n), and

ρ3(n)=(1/21)(1/8n). Since all conditions of Theorem 2.7 are satisfied, every nonoscil-

latory solution of (2.39) tends to zero as n→∞, and {yn} = {1/2n} is such a solution.

Example 2.9. Consider the equation

∆
(
n(n+1)∆

(
(n+2)(n+3)∆

(
n(n+1)∆yn

)))+n4y3
kn=

n
k3(kn+1)3

, n≥1, (2.40)

where k is a positive integer. All the hypotheses of Theorem 2.7 are satisfied with

ρ1(n)= 1/(n+1), ρ2(n)= 1/2(n+1)(n+2), and ρ3(n)= 1/6(n+1)(n+2)(n+3), so

every nonoscillatory solution of (2.40) tends to zero asn→∞. Here, {yn}={1/n(n+1)}
is a solution of (2.40).
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