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Abstract. If K is an infinite field and G ⊆ K is a subgroup of finite index in an additive
group, then K∗ = G∗G∗−1 where G∗ denotes the set of all invertible elements in G and
G∗−1 denotes all inverses of elements ofG∗. Similar results hold for various fields, division
rings and rings.
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1. Introduction. Let R be a ring (not necessarily commutative) with a unit element

1 and R∗ denotes the multiplicative group of invertible elements of R. In [9] Leep and

Shapiro proved that if G is a subgroup of index 3 in the multiplicative group F∗, then

G+G = F . In [2] Berrizbetia proved that if F is a field andG ⊆ F∗ is a subgroup of finite

index n, then there is a positive integer m, that depends on n, so that if charF = 0 or

charF ≥m, then G−G = F . In [1] Bergelson and Shapiro proved that, for various ring

R, ifG is a subgroup of finite index of R∗, thenG−G = R. In [14] Turnwald proved that

if G is a subgroup of finite index n in the multiplicative group of a division ring F then

G−G = F or |F|< (n+1)4+4n, and if |F|> (n−1)2 and −1 is a sum of elements of G
then every element of F has this property; the bound (n−1)2 is optimal for infinitely

manyn. The theories which have important role in studying of the above were Ramsey

theory, measure theory and number theory, (cf. [4, 7, 15]). Furthermore in [1] the roles

of multiplication and addition were switched, and it was shown that

Proposition 1.1 (see [1, Proposition 2.14]). Let K be an infinite field and G ⊆ K a

subgroup of finite index in additive group. Then G∗G∗−1 =K∗ where G∗ =G\{0}; that

is, for every c ∈K∗ there exist g1,g2 ∈G such that c = g1/g2.

Corollary 1.2. If D is an infinite division ring then the above result is satisfied.

In this paper, the roles of multiplication and addition are switched and it is shown

that Proposition 1.1 and Corollary 1.2 hold for various fields, division rings and rings.

Now let G ⊆ R be a subgroup of finite index in an additive group, G∗ be the set of all

invertible elements in G, G∗−1 = {g−1 : g ∈G∗} and G∗G∗−1 = {g1g2
−1 : g1,g2 ∈G∗}.

2. G∗G∗−1-ring. Let K be a ring or field and G ⊆K be a subgroup of finite index in

an additive group, then it is not necessary that G∗G∗−1 = R∗ or even G∗, G∗−1, and

G∗G∗−1 have group structure. Note the following statements.

(i) Let F = Fp2 , and G = Fp , then G∗ = F∗p and G∗G∗−1 = F∗p ≠ F∗.

(ii) Let α be a root of the polynomial x3+x+1 over the splitting field Z2(α)= F8,

http://ijmms.hindawi.com
http://ijmms.hindawi.com
http://www.hindawi.com


84 D. MOJDEH AND S. H. HASHEMI

where F8 has 8 elements. Put G = {0,α,α2,α+α2} so G∗ = {α,α2,α+α2}. It is clear

that G∗ is not a group, because G∗ does not contain the unit element 1. But G∗G∗−1

is a subgroup of the multiplicative group F∗8 . Furthermore, G∗G∗−1 = F∗8 .

(iii) Let β be a root of the polynomial x4−x+1 over the splitting field Z2(β)= F16.

PutG = {0,1,β,1+β}, soG∗ = {1,β,1+β},G∗−1 = {1,β3+1,β3+β2+β} and therefore

G∗G∗−1 = {1,β3+1,β3+β2+β,β,1+β+β2+β3,1+β,β3}. It is clear that G∗ is not a

group but G∗G∗−1 is a proper subgroup of F∗16.

(iv) Let R = Z/nZ where n is not a prime number. If G ⊂ R is a proper subgroup in

an additive group then it is clear that G∗ =∅ and G∗G∗−1 =∅≠ R∗.

(v) Let S = Z/nZwheren is a natural number,R = S[x] andH is a proper subgroup

of S. If G = {f(x) = a0+a1x+···+akxk : ai ∈ S, a0 ∈ H}, so G ⊆ R is a subgroup

of finite index in an additive group and G∗ =∅. If the square of every prime number

does not divide n and a0 ∈ S but at ∈ H, for finitely many t > 0, then G ⊆ R is a

subgroup of finite index in an additive group, G∗ = R∗ and G∗G∗−1 = R∗.

(vi) Let R = Z[x] and G = {f(x) = a0+a1x+···+anxn : a0 ∈mZ (m > 1), ai ∈
Z (i≥ 1)}. So G ⊆ R is a subgroup of indexm in an additive group. It is clear that G∗ =
∅=G∗G∗−1 ≠ R∗ = {1,−1}. If for finitely many nonzero indices i’s, ai ∈miZ (mi >
1), then G∗ = R∗ and G∗G∗−1 = R∗.

(vii) Let Q be the set of rational numbers and v2 the 2-adic valuation on Q. Then

R = {x ∈Q : v2(x)≥ 0} = {m/n∈Q : (n,2)= 1} is a valuation ring (cf. [3, 10, 11, 12]

or [13]). If G = {2m/n ∈ R : (n,2) = 1}, then G is a subgroup of finite index 2 in an

additive group where 0+G and 1+G are two distinct cosets G in R. It is easy to see

that G∗ =∅, R∗ = {m/n :m= 2k+1, n= 2l+1}, and G∗G∗−1 ≠ R∗.

The above statement can be shown for any p-adic valuation ring in Q.

By Proposition 1.1, Corollary 1.2, and the previous statements, the following ques-

tion may be raised.

Question 2.1. If F is a finite field or a ring and G is a subgroup of finite index in

an additive group, must G∗G∗−1 = F∗?

We will answer the question for all finite fields and some rings.

If F is a finite field and |F| is sufficiently large to the index of G, in other words, G
is sufficiently large, then G∗G∗−1 = F∗, see the following result.

Theorem 2.2. (i) Let D be a division ring with charD = p and G ⊆D be a subgroup

of index pk in an additive group. If |D| ≥ p2k+1, then G∗G∗−1 =D∗.

(ii) If G is a subgroup of finite index n≥ pk in a division ring D and |D| = p2k, then

G∗G∗−1 ≠D∗.

Proof. (i) Fix c ∈D∗. Let the gi’s be distinct elements in G∗ (|G|>pk+1). We form

the cosets (cg1+G),. . . ,(cgpk+1+G). By the pigeonhole principle at least two cosets

are equal. So cgi+G = cgj+G⇒ 0≠ c(gi−gj)∈G⇒ cg′ = g⇒ c = g/g′ ∈G∗G∗−1.

(ii) Since |D| = p2k hence |D∗| = p2k−1. By hypothesis [D :G]= |D|/|G| ≥ pk, so

|G| ≤ pk and therefore, |G∗−1| = |G∗| ≥ pk−1, so we have, |G∗G∗−1| ≤ (pk−1)2 =
p2k−2pk+1<p2k−1= |D∗| so G∗G∗−1 ≠D∗.

Remark 2.3. Theorem 2.2(ii) gives a bound for |D| in part (i) which is optimum.
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We now give the result which generalizes Proposition 1.1, Corollary 1.2, and

Theorem 2.2(i).

Lemma 2.4. Let R be a ring and let S be a subset of R with invertible differences,

that is, a−b ∈ R∗ for any distinct elements a,b ∈ S.

(i) Suppose G ⊆ R is a subgroup of index n in an additive group. If |S| > n2 then

G∗G∗−1 = R∗.

(ii) If |S| =∞ then G∗G∗−1 = R∗.

Proof. (i) Let r ∈ R∗ be any element. By the pigeonhole principle there exist s,t ∈ S
such that s−t = a and rs−rt both lie in G∗. So r = ba−1 ∈G∗G∗−1, as claimed.

(ii) This part is an immediate consequence of part (i).

Apply the lemma with S = K for the proof of Proposition 1.1, with S = D for the

proof of Proposition 1.1 and Theorem 2.2(i).

We now state the following definition which is a key concept in the paper. This is

the analog of [1, Definition 0.1].

Definition 2.5. A ring R is a G∗G∗−1-ring, if G∗G∗−1 = R∗ for every subgroup

G ⊆ R of finite index in an additive group.

If R is a ring which is a divisible group, then R has no additive subgroups of finite

index (cf. [6]). Combining this statement, Lemma 2.4, and Definition 2.5 we obtain the

following result.

Proposition 2.6. If D is an infinite division ring, then every ring R which contains

a copy of D is a G∗G∗−1-ring. In particular D[x], D[[x]], Mn(D), Mn(D[x]), and

Mn(D[[x]]) are G∗G∗−1-rings.

Proof. If char(D) is zero then every ring that contains a copy of D is a divisible

group and hence R∗ = G∗G∗−1. If the char(D) ≠ 0, Lemma 2.4 implies that R∗ =
G∗G∗−1.

Remark 2.7. The converse of Definition 2.5 does not necessarily hold. Let R =
Q[x], G =Q, then G∗G∗−1 = R∗. But G is not of finite index in an additive group.

3. Properties of G∗G∗−1-ring. In this section, some properties of the G∗G∗−1-ring

is verified.

Proposition 3.1. Let R be a commutative ring and I an ideal of R such that R/I
is a G∗G∗−1-ring. If I does not contain any additive subgroup of finite index and every

element of 1+I is invertible, then R is a G∗G∗−1-ring.

Proof. Let G ⊆ R be a subgroup of finite index in an additive group. Since

(G+I)/G � I/(G∩I) so |I/(G∩I)| < ∞ and hence I ∩G = I. Choose x ∈ R∗, then

x+ I = (g1+ I)(g2+ I)−1. It is easily seen that g1,g2 ∈G∗. So x = g1g−1
2 +a for some

a∈ I. But x = (g1+ag2)g−1
2 where g1+ag2 ∈G∗, that is, R∗ =G∗G∗−1.

Let R be a commutative ring and R[x] the polynomial ring over R. The element

f(x) = a0+a1x+···+anxn ∈ R[x] is invertible if and only if a0 ∈ R∗ and each ai
(i > 0) is nilpotent. So by Proposition 3.1 we have the following result.
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Theorem 3.2. Let R be a commutative ring, R[x] the polynomial ring and I =
{g(x) = a1x+a2x2+···+anxn | ai (i ≥ 1) is nilpotent}. If I does not contain any

additive subgroup of finite index and R is a G∗G∗−1-ring, then R[x] also has that

property.

Proof. We have (R[x]/I)∗ = ((R+I)/I)∗ = {r+I | r ∈ R∗}. SupposeG/I ⊆ R[x]/I
is a subgroup of finite index in an additive group, then G is an additive subgroup of

finite index in R[x] and |R/(G∩R)| = |(R+G)/G|<∞. By hypothesis for r ∈ R∗ there

exist g1,g2 ∈ G∗∩R∗ such that r = g1g−1
2 . So r + I = g1g−1

2 + I = (g1+ I)(g−1
2 + I) ∈

(G/I)∗(G/I)∗−1, that is, (R[x]/I)∗ = (G/I)∗(G/I)∗−1. Now Proposition 3.1 completes

the proof.

As an immediate consequence we obtain the following result.

Corollary 3.3. Let R be a commutative ring without any nonzero nilpotent ele-

ments. If R is a G∗G∗−1-ring then so is R[x].

The converse of Theorem 3.2 holds in general, see the following result.

Theorem 3.4. Let R be a commutative ring. If R[x] is a G∗G∗−1-ring then R also

has that property.

Proof. Let G ⊆ R be a subgroup of finite index in an additive group. Put H = {a0+
r1x1+···+ rkxk : k is a nonnegative integer, a0 ∈ G ri ∈ R i > 0}. It is easily seen

that, H ⊆ R[x] is a subgroup of finite index in an additive group and H∗∩R∗ = G∗.

Since (R[x])∗ = H∗H∗−1 therefore R∗ = (R[x])∗ ∩R∗ = (H∗H∗−1)∩R∗ = G∗G∗−1.

Thus the proof is complete.

Here, we give a necessary condition for infinite R; G∗G∗−1 = R∗, this condition is

not sufficient. We also verify the behavior of G∗G∗−1-ring under homomorphisms.

Theorem 3.5. If R is a G∗G∗−1-ring. Assume that S is a nontrivial homomorphic

image of R with homomorphism ϕ : R→ S then

(i) S is infinite.

(ii) Assume ϕ−1{1S} = {1R}. If R∗ is a G∗G∗−1-ring , then S∗ also a G∗G∗−1-ring.

Proof. (i) Suppose S is a finite ring. Let G = kerϕ ·G ⊆ R is a subgroup of finite

index in an additive group, because R/G � S. Then G∗G∗−1 = R∗ therefore 1R ∈
G∗G∗−1 and 1S =ϕ(1R) ∈ϕ(G∗G∗−1) =ϕ(G∗)ϕ(G∗−1) ⊆ϕ(G)ϕ(G∗−1) = 0 there-

fore S = 0 which is a contradiction, and the proof is complete.

(ii) Let G ⊆ S be a subgroup of finite index in an additive group. Put H =ϕ−1(G),
then H is a subgroup of R. Now define the following homomorphism

α : R �→ S
G
, α(x)=ϕ(x)+G, (3.1)

so α is also surjective and by the first isomorphism theorem R/H � S/G. Since S/G is

finite then so is R/H and thus H is of finite index. Then by hypothesis H∗H∗−1 = R∗
now we have ϕ(H∗)ϕ(H∗−1)=ϕ(H∗H∗−1)=ϕ(R∗)= S∗ so G∗G∗−1 = S∗, and this

implies that S∗ is a G∗G∗−1-ring.

Theorem 3.5 implies that if R is a finite ring, then R∗ is not a G∗G∗−1-ring.
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We now verify the behavior of G∗G∗−1-rings under products.

Theorem 3.6. Suppose R = R1×R2, if R∗1 and R∗2 is G∗G∗−1-ring then so is R∗.

Proof. Suppose G ⊆ R = R1×R2 is a subgroup of finite index of R. Put A1 = {a∈
R1 : (a,0)∈G}. Now define

α : R �→ R1×R2

G
, α(a)= (a,0)+G, (3.2)

soA1 = kerα. It implies thatA1 ⊆ R1 is a subgroup of finite index in an additive group.

Therefore A∗1A
∗
1
−1 = R∗1 . Similarly, we define A2 in R2, so A∗2A

∗
2
−1 = R∗2 . Now we have

A1×A2 = {(a,b) | (a,0),(0,b) ∈ G} = {(a,0)+ (0,b) | (a,0),(0,b) ∈ G} ⊆ G+G ⊆ G
and also (A1×A∗2 )(A1×A∗2 )−1 = (A∗1 ×A∗2 )(A∗1 −1×A∗2 −1)=A∗1A∗1 −1×A∗2A∗2 −1 = R∗1 ×
R∗2 = R∗. Since A1×A2 ⊆G then G∗G∗−1 = R∗ and thus R∗ is a G∗G∗−1-group.

Theorem 3.7. Let R be a ring, I its ideal and every element of 1+ I is invertible. If

R is G∗G∗−1-ring then R/I is also G∗G∗−1-ring.

Proof. Let G/I ⊆ R/I be a subgroup of finite index in an additive group, then

G ⊆ R is a subgroup of finite index in an additive group. Choose r +I ∈ (R/I)∗ where

r ∈ R∗ and r = g1g−1
2 where gi ∈ G∗, i = 1,2. Therefore, r + I = (g1+ I)(g2+ I)−1 ∈

(G/I)∗(G/I)∗−1.

Theorems 3.5, 3.6, the properties of isomorphism, Proposition 2.6, Artin-Wederburn

theorem (cf. [8]), and Theorem 3.7 imply the following result.

Corollary 3.8. (i) If R � R1×R2 then R∗1 and R∗2 are G∗G∗−1-rings if and only if

R∗ is a G∗G∗−1-ring.

(ii) Every semisimple ring which has no finite homomorphic image is aG∗G∗−1-ring.

(iii) LetR be aG∗G∗−1-ring and J the Jacobson radical ofR. Then S is aG∗G∗−1-ring.

Remark 3.9. If S is a G∗G∗−1-ring and R is a subring of S then R is not necessarily

a G∗G∗−1-ring. So If ϕ : R→ S is a monomorphism and S is a G∗G∗−1-ring then R is

not necessarily a G∗G∗−1-ring.

We end this section by verifying whether D∗ =G∗G∗−1 D is an infinite division ring

and G = F+[D,D] where F denotes the center of D and [D,D] denotes the additive

commutator subgroup of D, (cf. [5]). As an example see the following example.

Example 3.10. Suppose that D =Q(i,j,k) is the rational quaternion, by a simple

investigation one can see that [D,D] = ai+ bj + ck for a,b,c ∈ Q, therefore G =
F+[D,D]=D and so G∗G∗−1 =D∗.

This also holds for real quaternions. But in general we have the following result.

This question is answered for a finite-dimensional division algebra (or more gener-

ally central algebra).

Lemma 3.11. Let D be a finite-dimensional division (or, more generally, central sim-

ple) algebra with center F . Then [D,D] coincides with the set of elements ofD of trace 0.
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Proof. Let d1,d2, . . . ,dn2 be a basis of D of F vector space; here n = deg(D). Let

T0 be the n2−1-dimensional of F -subspace of D consisting of trace-zero elements.

Clearly [D,D] ⊆ T0. Thus it is enough to show that dimF [D,D] ≥ n2 − 1. Let K be

a splitting field of D. Then D⊗F K =Mn(K). It is easy to see that [Mn(K),Mn(K)] is

precisely the set of n×n-matrices of trace zero. On the other hand, this set is spanned

by elements [di,dj], as i,j = 1,2, . . . ,n2. Thus n2−1 of these elements are linearly

independent overK and, hence, over F . This proves the inequality dimF [D,D]≥n2−1,

as desired.

We therefore conclude that dimF [D,D]=n2−1, while dimF (D)=n2. Thus

F+[D,D]=


D, if char(F) does not divide n,

[D,D], if char(F) divides n.
(3.3)

If D is noncommutative (i.e., of degree n≥ 2) then the following lemma shows that

D∗ = [D,D]∗([D,D])∗−1 in any characteristic.

Lemma 3.12. Let D be a finite-dimensional division algebra of degree n ≥ 2 with

center F and let G be a d-dimensional F -vector subspace of D.

(a) Assume 2d>n2. Then D∗ =G∗G∗−1.

(b) Assume G = [D,D]. Then D∗ =G∗G∗−1.

Proof. (a) Let a ∈ D∗. Since 2d > n2, the d-dimensional F -vector spaces G and

aG have a nontrivial intersection in D, that is, g1 = ag2 for some g1,g2 ∈ G∗. Then

a= g1g2
−1, as desired.

(b) By Lemma 3.12, d= dimF [D,D]=n2−1. Since D is noncommutative, n≥ 2 and

thus 2d= 2n2−2>n2. Now apply part (a).

Question 3.13. (1) If R is not a finite homomorphic image, must R∗ be infinite?

Must R contain an infinite subset with invertible differences?

(2) Is there a ring with no finite homomorphic image, but with some finite index

subgroup G avoiding all units: G∗ =∅?

(3) If R is a G∗G∗−1-ring then must R∗ be infinite? If R is a G∗G∗−1-ring must R
contain an infinite sets with invertible differences?

(4) If R is a G∗G∗−1-ring, then must the matrix ringMn(R) also have that property?

Conversely, if Mn(R) is a G∗G∗−1-ring, then must R be a G∗G∗−1-ring?

(5) If R is a G∗G∗−1-ring and R is a subring of a ring S then must S also be a

G∗G∗−1-ring?

(6) If R/I is a G∗G∗−1-ring and 1+ I is invertible elements then must R also have

that property?

(7) LetD be an infinite (algebraic) division algebra over its center F . IfG = F+[D,D].
Is D∗ =G∗G∗−1?
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